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Abstract: This work presents a novel methodology to adjust the inductance of real coils (electronically)
and to cancel out serial losses (up to tens or even hundreds of Ohms in practice) electronically. This
is important in various fields of electromagnetic sensors (inductive sensors), energy harvesting,
measurement and especially in the instrumentation of various devices. State-of-the-art methods do
not solve the problem of cancellation of real serial resistance, which is the most important parasitic
feature in low- and middle-frequency bands. In this case, the employment of serial negative resistance
is not possible due to stability issues. To solve this issue, two solutions allowing the cancellation
of serial resistance by the value of the passive element and an electronically adjustable parameter
are introduced. The operational ranges are between 0.1 and 1 mH and 0.1 and 10 mH, valid in
bandwidths from hundreds of Hz up to hundreds of kHz. The proposed concepts are experimentally
tested in two applications: an electronically tunable oscillator of LC type and an electronically tunable
band-pass RLC filter. The presented methodology offers significant improvements in the process
of circuit design employing inductors and can be beneficially used for on-chip design, where serial
resistance issues can be very significant.

Keywords: active filter; current conveyor; electronic adjustment; inductance simulator; loss cancella-
tion; oscillator; variable gain amplifier

1. Introduction

Many electronically adjustable applications, designed for various frequency bands, ex-
pect the utilization of active elements (AE) [1,2] in the implementation of circuits employing
only resistors and capacitors as inertial passive elements. The behavior of the inductor is
frequently obtained from a capacitor-based impedance response, among others by so-called
impedance inverters [3] and gyrators [4] (also known as inductance simulators). These
devices allow the adjustment of the multiplication or conversion constant; thus, they also
ensure electronic adjustability. They are known as impedance multipliers, intended espe-
cially for large-range variation in capacitance values (see, for example, [5–10] and references
cited therein) or inductance values converted from capacitance values (examples available
in [11–24] and references cited therein). These impedance multipliers and converters are
very popular for so-called fractional-order designs [25].

Research on impedance multiplication and conversion circuits started more than
50 years ago with basic Antoniou solutions [26,27] using operational amplifiers (OAs) [1,2].
The best known examples [28] of these circuits use operational transconductance amplifiers
(OTAs) [1,28] because electronic adjustment of their transconductance (gm) for tunability
purposes is straightforward. These approaches are very useful, especially when the simu-
lated “active” inductance [29] reaches very high or extreme values. Standard passive wired
coils with high values of inductance (tens of mH and more) are extremely large (bulky)
and heavy devices. Real low-frequency wire coils with values of tens–hundreds of mH
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(intended for frequencies below hundreds of kHz and for audio bands) are very impractical
for up-to-date flexible and compact designs. This was the reason for the development of
impedance inverters and converters [26–29]. However, the load capabilities of these active
inductors are limited (impossible to drive large values of currents) and the application of
synthetic inductance elements (based on active devices) suffers from the significant impacts
of real parasitic features originating from the used AEs (limited bandwidth and nodal
parasitic impedances especially).

Nowadays, progress in fabrication technologies (due to the employment of specific
materials and layers) brings very small elements (inductors having values in hundreds of
µH, units of mH and more) also suitable for low-frequency design (below MHz). Therefore,
the final devices are significantly smaller (typically comparable to a package of standard
0.5 W or smaller resistors fabricated in through-hole assembling technology) than wire-
based bulky and heavy coils. Unfortunately, standardization of the usage of real inductors
in common practice in electronically adjustable systems has several issues, namely (a) the
absence of the electronic adjustability of inductance values, (b) the real serial resistance of
fabricated inductors (the full inductance modeling involves also other parasitic elements [3],
but serial resistance (RS in Figures 1–3) is the most significant issue [14,22]) and (c) if active
inductors based on impedance simulators (converters) are used, there is an identical
problem with serial resistance [11–25].
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RS cancellation.

A precise comparison of the state-of-the-art (SoA) solutions of electronically control-
lable inductance simulators is provided in Table 1. The following conclusions can be made:
(a) only a limited number of complex solutions (example in [17]) allow the cancellation
(neither electronic cancellation) of serial losses, and (b) voltage adjustment of the value
of inductance is not a standard feature, except in [17,18,25] (bias DC current used for the
remaining solutions is accompanied by some issues—mostly the dependence of terminal
resistances on this feature [28]). As is evident, the implementation of active impedance
inverter-based inductance simulators allowing the adjustment of the serial resistance value
(or its cancellation) brings significant complexity [17].
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Table 1. Brief comparison of typical solutions of electronically adjustable inductance simulators
(impedance inverters using capacitors) with presented methodology of real inductance adjustment.

Solution
Use of
Real

Inductor

Number of
Active/Passive

Elements
(Including

Serial
Resistance)

Driving
Force

Controlled
Parame-

ter

Reported
as

Lossless

Cancellation
of Losses (in

Lossy
Operation)

Possible

Electronic
Cancella-

tion of
Losses

Power
Con-

sumption
*

FOM

[11] No 2/1(0) DC current gm N/A No No N/A 0.33
[12] No 2/3(0) DC current gm N/A No No up 41 mW 0.20
[13] No 1/2(0) DC current gm partially a No No 0.9 mW 0.33
[14] No 1/2(0) - gm Yes No No N/A 0.33
[15] No 1/2(0) DC current gm Yes No No N/A 0.33
[16] No 1/2(0) DC current gm Yes No No N/A 0.33
[17] No 4/4(0) DC voltage B No Yes Yes N/A 0.38
[18] No 4/3(0) DC voltage A Yes No No N/A 0.14
[19] No 1/2–3(0) DC current gm partially a No No N/A 0.33
[20] No 1/2(0) DC current gm No No No 5.7 mW 0.33
[21] No 1/2(0) DC current gm N/A No No N/A 0.33
[22] No 1/2(0) DC current gm No No No 63 mW 0.33
[23] No 2/2(0) DC current gm No No No N/A 0.25
[24] No 2/1–2(0) DC current gm partially a No No N/A 0.33
[25] No 2/2(0) DC voltage gm Yes No No 20 mW 0.25

Figure 2 Yes 2/2(3) DC voltage A Yes Yes No 113 mW 0.50
Figure 3 Yes 3/2(3) DC voltage A Yes Yes Yes 162 mW 0.60

N/A—not available, a partially—some reported solutions have this capability, * very low power consumptions
are valid for solutions using low-voltage CMOS technologies, gm—transconductance adjustment, B—current gain
adjustment, A—voltage gain adjustment, FOM = (electronic control + cancelation of losses + electronic control
of losses)/(number of active + passive elements without losses) where, when particular feature is available, the
numerator equals 1; if not, 0 is inserted.

To the best of the authors’ knowledge, works solving the issue of the serial resis-
tances of real inductors (excluding the inductance simulators presented in Table 1) are not
presented in the current SoA. However, this work shows that standard inductance (as a
passive element) can be beneficially used in tunable applications, and newly proposed
solutions reveal that the serial resistance RS of an inductor can be easily cancelled without
adding other complex circuitry. The utilization of negative resistance in series with a lossy
element (see Figure 1) for cancellation purposes is not possible due to the instability of
this solution [30]. These solutions can only be used for border of stability adjustment in
oscillators but definitely not in linear applications, where the positive feedback path of the
amplifier causes nonlinear comparator operation. A similar issue may occur in negative
inductance simulators (see [13,19], for instance) in the case of linear applications.

This paper targets the development of simple active circuitries allowing (a) electronic
adjustment of the value of inductance by DC control voltage, (b) the possibility to adjust or
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eliminate serial losses (serial resistance), (c) stable operation in linear applications and (d)
the application of commercially available active devices only for widespread accessibility.

The rest of the paper is organized as follows. Section 2 discusses two novel circuit
solutions of adjustable inductance and explains their operation. Section 3 presents the
basic features of specific design examples from simulations and lab measurement. In
Section 4, two beneficial examples of the proposed solutions (electronically adjustable LC
oscillator and LC band-pass filters) are shown. Section 5 summarizes the importance of the
proposed methodology and the obtained results for the field of sensing, instrumentation
and measurement. Section 6 concludes this paper.

2. Circuits Suitable for Inductance Adjustment
2.1. Cancellation of Serial Resistance by Passive Element

A variable gain amplifier (VGA) [1] is an example of a device useful for the implemen-
tation of the active part of the electronically adjustable impedance [31]. The VGA has a
very simple (ideal) principle described by the following equation: VOUT = (V+ − V−)·A,
where A represents the electronically settable voltage gain.

The presence of the lossy element in the case of inductance may result in a limited
value of attenuation in the stop bands of frequency filters, as typical applications of LC
elements. Therefore, a method for the elimination of this effect would be very useful. The
circuit solution with serial resistance cancellation as well as electronic adjustability of the
inductance value is shown in Figure 2. The topology uses a VGA, a current conveyor
of second generation (CCII+) [1,2] and one passive element. The outer behavior of the
CCII+ device is described by ideal inter-terminal relations, VX = VY, VY = 0, IZ = IX. The
electronically adjustable parameter (A) of the VGA serves for the electronic adjustment of
the resulting inductance value. Resistor RC represents the counterbalance of the external
serial resistance of coil RS

/ and the parasitic serial resistance of the current input terminal
X (RX). The form of this adjustable impedance can be found as

Zin_L1(s) =
sL + RS − RC

A− 1
. (1)

Supposing the equivalence of RS
/ + RX = RS = RC, the lossy part disappears and (1) reduces

to the form
Zin_L1(s) =

sL
A− 1

, (2)

offering tunable inductance Ltun = L/(A − 1). The value of voltage gain A > 1 should be set
for stable operation. Then, this parameter ensures the inversely proportional adjustment of
tunable inductance value Ltun.

The relative sensitivities of the Ltun value to parameters L and A reach SR_Ltun
L =

∂Ltun/∂L × L/Ltun = L and SR_Ltun
A = ∂Ltun/∂A × A/Ltun = −A/(A − 1). The purpose of

the parasitic elements, marked by magenta color in Figure 2, will be explained later.

2.2. Electronic Cancellation of Serial Resistance and Electronic Control of Inductance Value

The full electronic adjustability (inductance value and cancellation of serial losses)
is achieved in the topology presented in Figure 3. The resulting form of ideal input
impedance yields

Zin_L2(s) =
sL + RS − RC A2

A1
. (3)

Impedance Zin_L2 passes into lossless form when A2 = RS/RC, which results in Ltun = L/A1,
where A1 serves for indirectly proportional adjustment. Compared to the previous case,
the denominator has a simpler and more advantageous form. The relative sensitivity of the
Ltun value to parameters L and A1 reaches +1 and −1, respectively.
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3. Simulation and Experimental Results

The features of the proposed concepts were verified by simulations and also laboratory
measurements. In the case of simulation, the PSpice simulation tool using standard macro-
models was used. In the case of laboratory measurements, integrated device AD844 (CCII+
part) [32] and voltage multiplier AD835 (VGA) [33] were employed as active elements. The
power supply voltage was ±5 V.

The selected method of verification (using the off-the-shelf active elements) brings the
fast and simple reproducibility of the presented research for a wide research community.
Moreover, the values of real inductances implemented in our design are not available in
the process design kit libraries of standard CMOS processes. Therefore, the whole circuit
including passive elements cannot be integrated. The use of large values of inductances
(µH, mH) is intentional because commercially available, discrete inductances of these
values have significant issues with the described serial losses. The presented methodology
solves this issue (i.e., values of mH and bands of kHz were selected intentionally for
verification, experiments and applications). Moreover, it adds the electronic adjustment of
the inductance value. This is important for some practical cases of low-frequency (<kHz)
measurement and sensing applications. The low-power CMOS design of the topology is
possible but there are also limitations (high-value inductances will be connected externally,
decrease in signal voltage levels/dynamics of application, as well as allowed adjustability
ranges, compromises in the design defined by values of real parts of impedances of high-
impedance nodes).

3.1. Cancellation of Serial Resistance by Passive Element—Experimental Verification

Firstly, the topology introduced in Figure 2 was tested. The design parameters and
values of elements suppose operation up to hundreds of kHz with an inductance value
in the range of 0.1 and 1 mH (Ltun). Next, a real coil with L = 1 mH, RS

/ = 100 Ω was
used. We also have to include the significant parasitic resistance of the X terminal of
CCII+ 50 Ω [32] in calculations; therefore, RS = 150 Ω was considered. Trimmer RC (see
Figure 2) with a value of 1.5 kΩ was used as a serial resistance cancellation tool. The value of
RC was approximately set to RS (150 Ω). The trimmer can be set from 0 to 1.5 kΩ. We need
to compensate/cancel the value of RS ∼= 150 Ω with it. Therefore, the value of RC has been
set to 150 Ω too. However, we have to consider also the internal resistance of the AD844 X
terminal [32] that may suffer from large fabrication tolerance. If it is determined as 50 Ω,
for instance, RC ∼= 100 Ω. The range of Ltun adjustment leads to the values of A between
10 (0.1 mH) and 2 (1 mH). The driving voltage is set in accordance with the principle shown
in Figure 4 to 1 V (0.1 mH) and 0.2 V (1 mH). The results of tunability are presented in the
form of magnitude impedance plots (see Figure 5). For this measurement, the Keysight
DSO-X 3024T oscilloscope, having the option of Frequency Response Analysis (FRA), and a
simple impedance measuring readout were used. The simulation- and measurement-based
results indicate Ltun = 0.12 and 1.13 mH (evaluated at 30 kHz) and Ltun = 0.12 and 0.95 mH,
respectively. The difference between experiment and theory achieves maximally 5% error.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 16 
 

 

x1 +
‒

+

x2

y1
y2

x1‒x2 = x

y1‒y2 = y
z

w1

xy + z

Rg

V+
VOUT

910 Ω

Vout = (V+ ‒ V‒)·Vset_A·(Rf + Rg)/Rf

V‒

Vset_A AD835

Rf
100 Ω

‒

 
Figure 4. Principle of VGA operation and gain setting. 

 
Figure 5. Magnitude impedance plots of solution presented in Figure 2. 

The most affecting small-signal parasitic features are concentrated to high-imped-
ance nodes (see passive elements highlighted in magenta color in Figure 2). These analyses 
were performed with the help of the simplification mode of symbolical solver SNAP [34]. 
The visible resonant frequency peak is defined by both parasitic capacities of high-imped-
ance nodes Cp1 and Cp2: 

 r
p1 p2

1A
L C C

 



, (4)

thus, this value varies with A. Considering known values from previous discussion (L = 
0.1 mH, L = 1 mH) and small-signal parameters from the datasheet (Cp1 = 2 pF, Cp2 = 7 pF, 
Rp = 3–4 MΩ) [32,33], the expected values are fr1 ≅ 5.04 MHz (A = 10) and fr2 ≅ 1.68 MHz (A 
= 2). These are very close to the results obtained from simulations (see Figure 5). A signif-
icant increase in the values of Cp1,2 must be considered in the experimental setup because 
of the impact of the printed circuit board (tested device + impedance measuring readout) 
that increases these values by approximately 20 pF (thus, Cp1 = 22 pF, Cp2 = 29 pF). This 
results in fr1 ≅ 2.12 MHz (A = 10) and fr2 ≅ 0.71 MHz (A = 2), again close to the results of 
experiments. The minimal value of impedance at the lowest frequencies has the following 
limit: 

 
S C S p C p

in_min
p 1

R R R R R R
Z

R A
 




. (5)

It yields |Zin_min| below tenths of Ω for A = 2 → 10 at 0 Hz (DC). These values are suffi-
ciently low so as not to exert undesired influences on the overall performance of the circuit 
in Figure 2. Experimental results at low frequencies (100 Hz) are significantly influenced 
by the limits of the measurement methodology and the dynamical limits of the measuring 
equipment. 

Figure 4. Principle of VGA operation and gain setting.
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The most affecting small-signal parasitic features are concentrated to high-impedance
nodes (see passive elements highlighted in magenta color in Figure 2). These analyses were
performed with the help of the simplification mode of symbolical solver SNAP [34]. The
visible resonant frequency peak is defined by both parasitic capacities of high-impedance
nodes Cp1 and Cp2:

ωr ∼=
√

A− 1
L
(
Cp1 + Cp2

) , (4)

thus, this value varies with A. Considering known values from previous discussion
(L = 0.1 mH, L = 1 mH) and small-signal parameters from the datasheet (Cp1 = 2 pF,
Cp2 = 7 pF, Rp = 3–4 MΩ) [32,33], the expected values are f r1 ∼= 5.04 MHz (A = 10) and
f r2 ∼= 1.68 MHz (A = 2). These are very close to the results obtained from simulations (see
Figure 5). A significant increase in the values of Cp1,2 must be considered in the experi-
mental setup because of the impact of the printed circuit board (tested device + impedance
measuring readout) that increases these values by approximately 20 pF (thus, Cp1 = 22 pF,
Cp2 = 29 pF). This results in f r1 ∼= 2.12 MHz (A = 10) and f r2 ∼= 0.71 MHz (A = 2), again close
to the results of experiments. The minimal value of impedance at the lowest frequencies
has the following limit:

|Zin_min| ∼=
RSRC + RSRp − RCRp

Rp(A− 1)
. (5)

It yields |Zin_min| below tenths of Ω for A = 2 → 10 at 0 Hz (DC). These values are
sufficiently low so as not to exert undesired influences on the overall performance of
the circuit in Figure 2. Experimental results at low frequencies (100 Hz) are significantly
influenced by the limits of the measurement methodology and the dynamical limits of the
measuring equipment.

3.2. Electronic Cancellation of Serial Resistance and Electronic Control of Inductance
Value—Experimental Verification

Results for the second solution, shown in Figure 3 (a fully electronically adjustable
circuit), are plotted in Figure 6. For its analysis, the value of RC was set to 100 Ω (RS
is still 150 Ω) because direct equality of RS and RC is not necessary in this case. For
cancelling the effect of RS, the value of A2 is 1.5 (Vset_A2 = 0.15 V) theoretically (the real
value should be slightly higher, Vset_A2 = 0.152 V, i.e., A2 = 1.52 when |Zin_min| = 0.2 Ω,
which is a sufficiently low value). This uncertainty is given by the tolerance/dispersion
of the RX (50–65 Ω) and RS values. The adjustability range of gain A1 was 0.1 → 10
(Vset_A1 = 0.01→ 1 V). The ideal range of Ltun reaches 10→ 0.1 mH. The simulation yields
a range of 8.3 → 0.11 mH, while laboratory measurements yield 12.0 → 0.11 mH. The
mechanisms of real parasitic behavior are very similar to the previous case. Moreover, as
was expected, the possibility to set gain A2 precisely has a substantial effect on the low-
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frequency features. This effect is visible in Figure 7, where the variation in A2 is captured.
The simulation-based resonant peaks in Figure 6 are located at frequencies of 525 kHz
(Vset_A1 = 0.01 V) and 5.45 MHz (Vset_A1 = 1.00 V). The measured values for these settings
are 148 kHz and 1.20 MHz (1.20 MHz also in Figure 7), respectively, as a consequence of
existing parasitic capacities.
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It can be seen that the value of |Zin_min| is equal to 15 Ω (when A2 = 0), based
on formula

|Zin_min| ∼=
RSRC + RSRp − RCRp A2

Rp A1
. (6)

The parasitic zero can be approximately found at frequency

ωz ∼=
RSRC + RSRp − RCRp A2

LRp
, (7)

which, in our case, results in f z ∼= 24 kHz for A2 = 0.
Simulation-based stability tests regarding transfer in feedback loops do not reveal any

significant issues, including the saturation of the DC operation points of active elements or
ringing and oscillations in the presented signals in application examples. Potential issues
may occur for borderline control values of gain A when impedance reaches very high
values, and some real parasitic DC offsets may cause the saturation of active element(s)
because of high loop gain.
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4. Application Examples

We have selected two typical applications where the presented solutions of adjustable
impedances have beneficial utilization. The first one targets the design of a tunable single-
phase oscillator of the two-point LC family. The second one is a simple linear LC filter of
the band-pass response.

4.1. Electronically Adjustable LC Oscillator

Figure 8 shows the topology of the oscillator using tunable inductance (and values of
parameters, discussed in Section 3), as well as the test PCB used for experimental verifica-
tion of the introduced application examples. We selected a universal printed circuit board
(PCB) for verification and experimentation. It has very small areas of soldered paths (only
the supply path is distributed as a PCB wire) and air-wire (including jumpers) interconnec-
tions of nodes. It must be noted that the precise design of the PCB in all tested cases is not
necessary in the case of methodology verification and experimentation. The most visible
limitation is the frequency of the resonant peak of impedance, approximately determined
by Equation (4). Decreasing the PCB capacity shifts this peak to higher frequencies (unfor-
tunately, the shift is insignificant). Therefore, this step was omitted. Moreover, the chosen
applications (e.g., oscillator, filter) assume working capacities around 1 nF, which makes
these real non-idealities (100 times smaller) insignificant.
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including AGC, (c) PCB for experimental measurement (a universal board including adjustable in-
ductor). 

Figure 8. New electronically adjustable LC oscillator: (a) simplified ideal principle, (b) full topology
including AGC, (c) PCB for experimental measurement (a universal board including adjustable
inductor).

A single additional capacitor C = 1 nF creates a fully operating oscillator from the
circuit in Figure 2. The characteristic equation of this circuit was obtained in the form of

s2 +
(RS − RC)

L
s +

A− 1
LC

= 0, (8)

and gives a very simple condition of oscillation RS ≤ RC and an equation for oscillation
frequency:

ω0 =

√
1

LtunC
=

√
A− 1

LC
∼=

√√√√Vset_A

(
Rf+Rg

Rf

)
− 1

LC
. (9)

The relative sensitivities of the oscillation frequency to the parameters in Equation (9) reach
typical values, e.g.,−0.5 (because of the square root in the denominator). When we consider
the middle form of (9) including gain A, then SR_ω0

A = ∂ω0/∂A × A/ω0 = A/(2 × (A − 1)).
An almost identical form is valid also for Vset_A because resistors have a constant value.

The value of L was selected as 120 µH and RS was intentionally increased to 1 kΩ.
These values are expected for the theoretical adjustability of the range of oscillation fre-
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quency f 0 from 0.5 up to 1.2 MHz by changing the value of gain A of VGA. An example of
hundreds of kHz was selected intentionally in order to show the effectivity of the method
in the context of a very large RS (a high value in comparison to RF coils that have approxi-
mately one-hundred-times lower values of RS and are more suitable above tens of MHz)
and an L value fitting for designs in hundreds of kHz. The theoretical design expects gain
A1 in the range of 2 up to 8 (Vset_A1 = 0.2→ 0.8 V) for the indicated tunability. Accurate
theoretical adjustment of f 0 is allowed between 0.46 and 1.22 MHz in this Vset_A1 range.
The PSpice simulations show that a slight increase of Vset_A1 > 0.8 V for the high-frequency
limit will be required; therefore, Vset_A1 = 0.2 → 1 V is considered. The comparison of
the theoretical, simulated and measured results for the adjustment of Vset_A1 is shown in
Figure 9a. Results from simulations yield a readjustment of f 0 from 0.45 up to 1.24 MHz,
whereas results from measurements show tunability from 0.49 up to 1.366 MHz. The
output level of the oscillator reaches an approximately constant value around 0.45 VP-P,
while the total harmonic distortion (THD) remains between 1 and 1.5 % (see Figure 9b).
Figure 10 illustrates an example of an output waveform and FFT spectrum for Vset_A1 = 1 V
(f 0 = 1.366 MHz).
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The equivalence of RS = RC and the oscillation condition (RS ≤ RC), respectively, are
directly used for amplitude stabilization purposes. Resistor RC was replaced by the NSL-
32SR3 optocoupler [35], which decreases the value of resistance when the diode current
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increases, and the range of resistivity adjustment reaches values from tens of kΩ down to
low hundreds of Ω [36].

The amplitude stabilization requires a buffered output voltage and its amplification,
as is shown in Figure 8 (blue rectangle with dashed lines). Any rectification, a long time
constant and a complex regulation loop [36] are not required because the optocoupler itself
has a very slow reaction. Then, negative feedback for automatic stabilization is ensured. In
the case of tunable inductance, the cancellation procedure of RS by RC directly includes
also the possibility to set the oscillation condition (amplitude stabilization). No additional
parallel negative resistor is required. Consequently, the circuitry of this electronically
tunable (and amplitude stabilized) LC oscillator is very simple in comparison to many
similar solutions [30].

The presented settings in Figure 10 represent a tradeoff between the tunability range,
acceptable THD and usable amplitude levels. In RF systems, a much higher THD is still
acceptable. In these cases, the output level could be close to 2Vp-p with the same supply
voltage. Another possibility to increase the output voltage swing is to change the type of
VGA or use a VGA with a higher supply voltage, but the bandwidth would be significantly
reduced (AD835 used as VGA has the best frequency features from commercially available
variable gain amplifiers). The THD would not be impacted significantly; however, power
consumption would increase rapidly. Therefore, our solution represents an acceptable
tradeoff of useful features and availability.

We tried to compare typical narrow-band solutions of LC oscillators intended for high-
frequency purposes with our design. The proposed solution seems to be slightly complex
but the intended application bandwidths (kHz, MHz) do not allow us to implement the
method used in the published solutions (see Table 2 and circuits in [37–45]). This is
because of the values and physical realization of integrated inductors (unsuitable for low
frequencies due to values in nH and also their implementation). Moreover, the range
of tunability allowed in these solutions is very narrow (ratio between f max and f min is
typically around f max/f min = 1.2, i.e., varactors allow adjustment between 1.7 and 1.9 GHz,
for example). Wider tunability (e.g., from 3 up to 5 GHz) supposes the switching of LC
banks (“LC tanks”) by additional control logic. The driving voltage range seems to be also
very large [38,42], while the gained frequency ranges of tunability are very low. On the
other hand, these systems do not need precise amplitude stabilization and low waveform
purity due to different application purposes (communications) and have also very good
phase noise (>80 dBc/Hz) in comparison with low-frequency solutions (typically between
40 and 80 dBc/Hz). Wideband applications at kHz and MHz require larger frequency
tunability/adjustability and amplitude stability than standardly available in high-frequency
LC approaches. To the best of the authors’ knowledge, low-frequency LC oscillators have
not been designed frequently yet, because synthetic equivalents of inductances [45] offer
inductor-less operation. However, manufacturers have offered also some low-quality (high
serial losses) inductors in a small applicable package for several years. Therefore, it is
worth considering their implementation (electronic tunability and elimination of losses) in
common designs, which is also purpose of this work.

The general LC oscillator topology or the Colpitts one [37,45] can be considered
simpler than the topology of the oscillator presented in this paper. However, our topology
is complete and it also includes a biasing and amplitude stabilization system. Moreover,
the standard LC oscillators (including the Colpitts one) do not allow wideband electronic
tunability (by driving DC voltage) because the capacity of varicaps/varactors (standardly
used in LC oscillators) has a very limited adjustment range. The electronic tunability of
the oscillation frequency by the inductance value (as presented in our case) has not been
tested in recently published works because it has certain limitations, especially at high
frequencies (extensive active circuitries), but can be used without issues in kHz and MHz
bands with significant advantages (wideband tuning). The wideband tunability of the
frequency with almost constant output levels and low THD requires the implementation
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of a circuit for amplitude stabilization, which is standardly not used in LC oscillators
(including the Colpitts type) because of their narrowband tunability [37–45].

Table 2. Brief comparison of typical LC oscillators and proposed type.

Solution
Colpitts

Type

Number
and Type

of Ac-
tive/Passive
Elements

(Including
Serial

Resistance
and Am-
plitude

Stabiliza-
tion)

Bias
Point

Setting
Not Re-
quired

Continuous
Electronic

Tuning
Allowed
(in Full
Range)

Switching
of Capaci-
tor/Inductor

Banks
Not

Required
for Full
Range

Driving
Force

Amplitude
Stabiliza-

tion
(Almost
Constant
Output
Level at
All Fre-

quencies)

Tunability
Range
Ratio

(f max/f min
in Single

Band
without
Switch-

ing)

Application
Bands

Suitable
for Low

Fre-
quency
Bands

[37] Yes 1 BJT/4 No N/A N/A N/A
N/A

(N/A)
N/A N/A N/A

[38] No
2

CMOS/8+
No Yes (No) No

Voltage
(0.4→ 2.3 V)

No (N/A) ∼=1.3–1.5 GHz No

[39] No
5+

CMOS/3+
No Yes (No) No

Voltage
(0→ 1.2 V)

No (N/A) ∼=1.02 GHz No

[40] No
5+

CMOS/5+
No Yes (No) No

Voltage
(0→ 1.2 V)

N/A
(N/A)

∼=1.02 GHz No

[41] No
5+

CMOS/5+
No Yes (No) No

Voltage
(0→ 1.8 V)

N/A
(N/A)

∼=1.06 GHz No

[42] No
1–2 BJT, 2
CMOS/8+

No Yes (No) No
Voltage

(0→ 3.0 V)
No (N/A) ∼=1.2 GHz No

[43] No 4 CMOS/5 Yes Yes (No) Yes
Voltage

(0→ 0.9 V)
N/A
(Yes)

∼=1.1 GHz No

[44] Yes

1 amplifier,
2+

CMOS/3
or more

No N/A N/A N/A
N/A

(N/A)
N/A N/A N/A

[45] No 2 CMOS/3 No No No
Voltage

(0.7→ 1.2 V
N/A

(N/A)
∼=1.2 GHz No

Figure 8 No
2 OA,
VGA,

CCII/6
Yes Yes (Yes) Yes

Voltage
(0.2→ 1 V)

Yes ∼=2.8
kHz,
MHz

Yes

+ additional banks (transistors for switching and passive elements) can be added based on full required range,
N/A—not available.

4.2. Electronically Tunable LC Band-Pass Filter

Cancellation of the serial resistance of the real coil is beneficial for many linear ap-
plications (active filters especially). The band-pass (BP) filter topology (see Figure 11) of
this application results from a standard RLC passive equivalent [3,4] of the filter but with
significant advantages. The tunable inductance from Figure 3 (electronic adjustment of
Ltun and also active electronic cancellation of losses) offers one-decade tuning of the center
frequency through two decades of the available range of the value of Ltun (0.1→ 10 mH).
Precise minimization of the discussed parasitic effects connected with serial resistance
(proper adjustment of A2) causes good attenuation in the low-frequency stop band. The
resulting transfer function (then expanded to a complete form based on the parameters of
the active tunable inductance solution) has the following form:

KBP(s) =
1

RC s
s2+ 1

RC s+ 1
LtunC

=

1
RC s+ RS−RC A2

RLC

s2+
CR(RS−RC A2)+L

RLC s+ A1R+RS−RC A2
RLC

(10)
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Formula (10) indicates the presence of a low-frequency parasitic zero
(f z_BP = (RS − RCA2)/(2πL) = RS/(2πL)) and finite attenuation
Kmin (ω→ 0) = RS/(RS + A1R) when the RS parameter is not cancelled by A2. Considering
A2 = RS/RC (expected lossless operation), the center frequency has the form of

ωC =

√
1

LtunC
=

√
A1

LC
∼=

√√√√Vset_A1

(
Rf+Rg

Rf

)
LC

, (11)

and the bandwidth (independently of the center frequency, settable by the value of R)
can be found as BW = 1/(2π·RC). The quality factor can be influenced by the value of
resistor R (Q = R·

√
(C/L)). The relative sensitivities of the center frequency to important

parameters (A1, L, C) are very similar to the previous oscillator (in fact, the form is identical)
and it reaches −0.5 for L and C and SR_ωC

A = ∂ωC/∂A1 × A1/ωC = A1/(2 × (A1 − 1)) for
gain A1. The relative sensitivity of the quality factor to the value of R reaches 1 (+0.5 and
−0.5 for C and L). These, as well as previously noted values of sensitivities, are typical for
similar solutions.

When the ideal design supposes the operationability of the BP having a large value
of inductance (units of mH), then operational frequencies of tens–hundreds of kHz are
expected. Selection of C = 4.7 nF, BW = 35 kHz returns the value of R equal to 967 Ω (close
to 1 kΩ value from fabrication series). The ideal tunability of center frequency f C gives the
range 23→ 234 kHz for Ltun adjustment 0.1→ 10 mH (Vset_A1 = 0.01→1 V), as used in
the analysis for the topology presented in Figure 3. Further parameters are also identical
to the parameters used in the design (RS = 150 Ω, RC = 100 Ω, A2 =1.52) discussed in
Section 3.2. The simulation and measurement results show f C between 26 and 224 kHz and
25.7→ 234 kHz, respectively. Resulting frequency responses are shown in Figure 12. It is
visible that the simulated bandwidths are almost identical to the ideal cases (in fact, ideal
and simulated traces are overlapping with each other), especially at the low-frequency
border. In these cases, the input amplitude of the DSO-X 3024T generator (in FRA mode)
was set to 200–500 mV.
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5. Importance of the Proposed Method for Sensing, Instrumentation and Measurement

Inductors are extremely important in the fields of measurement, instrumentation and
communication [46]. Moreover, these electrical components, for instance, are critical in
sensing systems for electrodynamic velocity [47], energy harvesting [48], etc. The serial
resistance of the inductor, representing an important real parameter of the coil, creates issues
especially in the low-frequency bands (below 1 kHz) of the coil operation. Researchers
in [49] clearly explain the importance of this parameter for the efficiency of near-field
wireless power transfer but, depending on the frequency, it also plays a significant role
in low-power sensing devices. Similarly as in [49], the serial resistance of the inductor
decreases the efficiency of a receiving antenna (e.g., used in a sensor of an electromagnetic
field). Commercially fabricated coils (and various types of inductors) have always this
feature, influencing more or less the real operation of a system. Therefore, when a highly
precise device is designed, a methodology allowing the adjustment or even cancellation of
losses due to the serial resistance of the inductor is appreciated. The method introduced in
this work shows how to move the features of the inductor/coil closer to an ideal device
operating with an un-damped response in resonators (as documented in our experiments).

6. Conclusions

In this paper, a novel method of electronically adjustable inductance including the
cancellation of losses (a significant undesired property of standard passive elements)
was introduced. The value of adjustment has been targeted to one or two decades of
tunable inductance variation from hundreds of µH up to tens of mH (in our case, from
0.1 mH up to 10 mH). The two proposed solutions have two types of adjustability of the
tunable inductance value (proportional to A − 1 or A) and two methods of serial resistance
cancellation (passive value and electronic adjustment) that can be used beneficially in
various applications. Their experimental verification confirmed their operationability in
the intended value ranges from 0.11 up to 0.95 mH and from 0.11 up to 12 mH by driving
voltage Vset_A adjusted between 0.2 (or 0.01 V, respectively) up to 1 V. The measured
power consumptions correspond to discrete solutions (113 and 162 mW for solutions in
Figures 2 and 3).

Two applications were selected for the explanation of the usefulness of the proposed
method. The first application example shows the design of an LC-type oscillator offering
electronic tuning and a simple solution of amplitude stabilization (direct engagement
of the optocoupler for oscillation condition control). It was experimentally tested from
0.49 up to 1.37 MHz with THD below 1.5%. The second application is an RLC band-
pass filter allowing a beneficial tunability range within one decade (not typical for the
standard form of expression for the center frequency in the RLC solution) by a wide range
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of inductance adjustment. The center frequency adjustment was verified in a range from
26 kHz up to 234 kHz.

The presented approach opens up the possibility to use various materials for coil
fabrication having significantly higher specific material resistivity because, as was shown,
the used technique allows the cancellation of this parasitic feature. The presented method-
ology can be beneficially used for on-chip design (low-value inductors having losses in tens
of Ω), where serial resistance issues can be very significant. This results in the possibility
of the simplification or cost reduction of the inductance fabrication process, and it brings
electronic adjustability of the inductance. The possibility to eliminate serial resistance
precisely, as well as adjusting the value of inductance to an exact value electronically, is
very beneficial because the standard tolerances of these elements are typically ±20% or
even more.

The presented method of implementation and verification is not optimized for low-
power design. A key contribution is in circuit theory, regardless of the power consumption
of an example application. Therefore, standard off-the-shelf active elements were used.
Therefore, the experimental results as well as the selected means of verification are sufficient
to confirm the operationability of the proposed circuits precisely. Of course, frequency
bands, as well as power consumption and voltage levels, can be optimized when required
for a particular application. Power consumption could be decreased without changing the
topology. In the case of having CMOS-integrated circuits replacing the functions of AD844
and AD835, optimized for low-power design, the power consumption could be up to tens
of mW (based on the selected process) when similar performance is expected. Note that
the inductance will be still connected to the chip externally as a discrete part (values in µH
and mH are not integrable). Therefore, we selected the complete employment of discrete
elements (also active parts) in our verifications of the methodology.

The active elements in the proposed topology can be constructed by the CMOS struc-
tures presented in [50] (while the forms and values of passive elements remain unchanged).
However, the limited bandwidth (in comparison with features of high-power-consuming
bipolar AD835) and parasitic effects would result in lower-frequency positions of the
parasitic resonant peaks of the impedance plot and reduced dynamics and adjustability.
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