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Abstract: In order to achieve the promise of smart spaces where the environment acts to fulfill the
needs of users in an unobtrusive and personalized manner, it is necessary to provide means for a
seamless and continuous identification of users to know who indeed is interacting with the system
and to whom the smart services are to be provided. In this paper, we propose a new approach capable
of performing activity-free identification of users based on hand and arm motion patterns obtained
from an wrist-worn inertial measurement unit (IMU). Our approach is not constrained to particular
types of movements, gestures, or activities, thus, allowing users to perform freely and unconstrained
their daily routine while the user identification takes place. We evaluate our approach based on IMU
data collected from 23 people performing their daily routines unconstrained. Our results indicate
that our approach is able to perform activity-free user identification with an accuracy of 0.9485 for
23 users without requiring any direct input or specific action from users. Furthermore, our evaluation
provides evidence regarding the robustness of our approach in various different configurations.

Keywords: user identification; image representation; CNNs; IMU; inertial sensors; wearable sensors

1. Introduction

Providing support to everyday life while disappearing into the background has long
been seen as the goal of ubiquitous computing [1]. An essential task towards this goal
is the ability of the system to provide personalized services, for which it is necessary
to recognize the user interacting with the system at any given time. This is known as
user identification [2]. The idea of user identification is to match a newly obtained biometric
sample from an already registered user against all records in the system’s existing database
and to then indicate to which of the registered users that sample corresponds [3]. We can
say that, for user identification to adhere to the goal of ubiquitous computing, it needs to
minimize intrusiveness and avoid demanding any kind of direct input or specific action
from users that may interrupt the regular flow of their daily routines [4].

Many different user-identification approaches have been proposed in the past. A large
body of work has been performed around biometrics, such as fingerprints, irises, and faces;
however, while accurate, they all require direct input from the user [5]. Approaches that
seek to alleviate this issue are based on the behavior patterns of users. In this respect,
however, most approaches have focused on performing identification based on a small
set of gestures, actions, or activities. Some examples include approaches based on gait
patterns (e.g., [6,7]), hand-waving gestures (e.g., [8]), and based on multiple activities, such
as sitting, standing, and walking [9].

The dependence of this type of methods on specific gestures, actions, or activities
may be seen as representing an interruption on the regular flow of the daily routines of
users. Recently, some approaches that solve activity recognition and user identification
simultaneously have been proposed [5,10], thereby, making the identification more flexible
in terms of the activities that may be considered. However, those methods are, at their
core, activity-based approaches, which use learned activity information to perform the
identification. This necessarily constrains the identification to operate based on a specific
set of activities.
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To the best of our knowledge, there is only one previous work that has proposed
an approach that attempts to free the user from any gestures, actions, or activities while
performing the identification, under the term continuous user identification [11]. In that
work, the authors presented an approach that, using wavelet transform over quaternions
obtained from a wrist-worn IMU, performed identification without requiring any direct
input or specific action from the users. Despite this, the approach suffered from low
accuracy, which was particularly noticeable as the number of people considered in the
identification increased.

In this paper, we propose an activity-free user-identification approach (see Section 3),
based on data recorded by a wrist-worn Inertial Measurement Unit (IMU). Our approach is
able to perform the identification at any given point in time without requiring any direct
input or specific action from users to operate, and instead it is capable of performing the
identification at any point in time throughout the regular daily routine of users.

Furthermore, our approach is based on a wearable, since we believe that it is an
option that may better suits users’ privacy concerns, since they can decide to remove it
and thus stop the recording at will, which is not possible with device-free approaches,
based on, for instance, WiFi signals or video recording. A key aspect of our approach
is the representation of IMU time-series data as images, which has proven relevant for
the task of activity recognition [12] and has shown promising results in the past for user
identification [13]. This method allows to exploit current vision techniques to achieve high
levels of accuracy and robustness without having to deal with overly complex machine-
learning models.

To asses the performance of our approach, we conduct an extensive evaluation that
considers different relevant configurations, including different specific image representation
designs, different numbers of registered users, different training dataset sizes, and different
convolutional neural network architectures (see Section 4). According to our results (see
Section 5), the accuracy of our approach under the best configuration was 0.9485 for
23 registered users. Furthermore, our results provide evidence on the robustness of our
approach to various different configurations.

The main contributions of our work are summarized as follows:

• An activity-free user identification that does not require any direct input or specific
action from users (see Section 3.1).

• A further exploration of the use of image representations of IMU data to obtain high
performance levels based on vision techniques, which has proven relevant in the past
for activity recognition [12] and has shown promising results for identification [13].
We show that the image representation that we propose improves the performance of
CNNs compared to their application directly on raw time-series data (see Section 3.2)

• An extensive evaluation that demonstrates the effectiveness and robustness of our
approach and provides insights that may be helpful both for practitioners interested
in implementing our approach in real-world applications as well as for researchers
seeking for future lines of work.

The remainder of this paper is organized as follows. In Section 2, we review the related
literature. Our approach is fully described in Section 3, including the whole pipeline and the
image representation that we propose. The setup, rationale, and detailed description of our
experiments are in Section 4. Then, in Section 5, we provide our results and analysis. Finally,
in Section 6, we provide our conclusions, including some potential lines for future work.

2. Related Work
2.1. Motion-Based Identification
2.1.1. Single and Multiple Gesture/Action/Activity-Based Identification

A large body of work on motion-based user identification has considered walking
as the activity from which the identification is to be performed. For instance, in [6], the
authors presented an approach that profiles human movement using WiFi signals and,
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based on that, performs the identification. A similar device-free, indoor identification based
on gait patterns was presented in [14].

In [7], the authors presented an approach based on deep learning that identifies people
based on their gait patterns obtained from inertial sensors in smartphones. With respect to
gestures, hand waving is a gesture that has been widely considered for user identification
(e.g., [8]).

Seeking to more broadly encompass a user’s daily activities, different approaches have
considered multiple gestures, actions, or activities to perform identification. Examples of
multi-gesture identification approaches are an approach that uses head-mounted displays
and considers blinking and head movements to perform the identification [15], an approach
based on WiFi as sensing method and gestures, such as kicking and waving [16], and an
approach considering various gestures (e.g., hand waving, come-over, one-hand raised, and
phone-to-ear), which are performed either standing or sitting and recorded by a Microsoft
Kinect [8].

In terms of multi-action/activity approaches, we have examples, such as an approach
that considers walking, jogging, and going up/down stairs for identification [2], an ap-
proach that considers talking and stationary activities (e.g., working in front of the computer
and operating a hot stove) [17], and an approach that considers, among others, household
cleaning activities and office-work activities [18].

Recently, multi-activity-based approaches that are more flexible in terms of the set of
activities considered have been proposed (e.g., [5,10]). These approaches are focused on
solving activity recognition and user identification simultaneously, transferring knowledge
between these tasks to improve jointly the performance of both. In [10], the authors
proposed a deep-learning approach in which two deep neural networks (one for activity
recognition and one for user identification) were combined to solve both tasks. In [5],
the authors proposed an approach based on a deep-learning siamese neural network and
temporal convolutions that allows solving both activity recognition and user identification
with no explicit labeling information given.

The main difference between gesture/action/activity-based approaches and our
activity-free identification is that, in our case, the approach does not depend, require,
or expect any specific action from the user to perform the identification. This is also true
if we consider approaches that allow users to perform any of a set of multiple gestures,
actions, or activities, since no matter how comprehensive the set is, it remains hard to
encompass everything that is entailed in the daily routines of users.

The more recent developments that simultaneously solve activity recognition and
activity-based identification (e.g., [5,10]) provide more flexibility about the type of activities
that may be considered. However, the models they propose are based on sharing informa-
tion learned about the activities to perform the identification. In this respect, our approach
does not use any activity-related information, and thus performs the identification giving
complete freedom to the users to follow their daily routines without any restrictions.

2.1.2. Activity-Free Identification

A number of approaches in the past have claimed to be focused on activity-free user
identification. However, most of them are in fact either multi-modal or based on multiple
gestures, actions, or activities. Among these approaches, we have an approach based on
the people’s bodies shape as captured by an array of cameras while the people perform
activities, such as eating and drinking, waving, walking, and running [19]. Another
example approach, also claiming to perform continuous identification, considers keystroke
and mouse motion patterns for identification [20].

To the best of our knowledge, only the work in [11] has truly focused on activity-free
identification, although this is referred to as continuous identification. That approach
proposes the use of wavelet transform over quaternions that are computed from the inertial
sensor data recorded by a wrist-worn IMU. The main issue with the work presented in [11]
is the accuracy of the approach, which, even for the smallest group of registered users (i.e.,
two users), remained around 0.88.
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Moreover, as the size of the group of registered users became larger, the drop in
accuracy became particularly pronounced, going down to as little as 0.63 for the case
of 10 registered users. In this respect, our approach improves considerably upon the
performance of this existing work, both in terms of the accuracy and robustness to changes
in the number of registered users (acc = 0.9487 for 23 users).

2.2. CNNs for Time Series

Some previous works have used CNNs as part of their user-identification approaches
(e.g., [5,10,21]). Similar to [22], the approaches in [10,21] combined CNNs with LSTMs. The
approach in [21] used a CNN to obtain high-level features that are related to user behavior
and physical characteristics. This is similar to the way the approach in [10] used CNN for
automated feature engineering. In [5], the authors used a distinct type of convolutional
network, specifically a temporal convolutional network (TCN), which, through a hierarchy
of convolutions, is able to entail the temporal relations of the time-series data at different
time scales. In contrast to these methods, our approach focuses on obtaining an image
representation with as much relevant information as possible to allow even a simple CNN
to yield good results.

2.3. Image Representations of Time Series

The main differences between our approach and other existing approaches that either
use images that depict directly the input signals on images (e.g., [23,24]) or those that
apply specific encoding, such as Gramian Angular Field (GAF) and the Markov Transition
Field (MTF) (e.g., [25,26]) is that, in our case, we focus on producing image representations
that represent as many patterns as necessary in a way that takes specific advantage of the
strengths that have been long recognized in CNNs [27].

3. Approach
3.1. Identification Pipeline

The user identification that we propose in this paper follows a pipeline that is inspired
by the pipeline presented in [11], where the identification was obtained in two steps. First
a machine-learning classification is performed over the instances of the input time series,
where each instance corresponds to non-overlapping windows. Then, the final identifi-
cation is produced based on a voting mechanism among predefined decision segments
that contain a number of windows of the time series. The key difference in our case is
the image representation process, which takes the time-series data and transforms it into
images that are then fed into the machine-learning-classification method. As a classification
method, we consider a convolutional neural network (CNN), since CNNs have proven to
be particularly well-suited in dealing with image data [28].

The pipeline of our approach is depicted in Figure 1. On the left-hand side, we can see
the time-series data as received from the IMU (only depicting a single channel for simplicity;
however, we have one time series for each x, y, z component of each of the three inertial
sensors in the IMU, i.e., accelerometer, gyroscope, and magnetometer). The time series is
divided into non-overlapping windows of same size. We decided to use non-overlapping
windows. We attempted different configurations for the sliding window mechanism,
and we noticed that there was no significant difference in accuracy when considering
overlapping windows; however, overlapping considerably increased the computation time.

Following the identification pipeline illustrated in Figure 1, different patterns related
to the variation over time of the sensor data are computed for each of the windows in the
time series (see Section 3.2.2). The patterns corresponding to a single window are then
represented in pixel form according to predefined filling strategies (see Section 3.2.4), and
the resulting pixel regions are placed altogether into an image representation following a
predefined layout (see Section 3.2.3). This is repeated for the whole time series to obtain
one image representation for every window.
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Figure 1. Pipeline of our approach.

We consider the possibility of generating either black and white (B&W) or color (RGB)
images. Once the image representations are generated, they serve as the input instances
of a CNN that classifies each to a particular identity class. The next step is to use the
results from the CNN and consider a voting round among the classified instances of decision
segments that encompass a predefined number of windows. The voting mechanism yields
the final identification based on the identity class that according to a predefined criteria is
considered the winner within each decision segment.

3.2. Image Representations
3.2.1. Intuition and Rationale

The intuition behind the use of image representations of time-series data for IMU-
based user identification is to take advantage of convolutional neural networks (CNNs),
which have shown the best results when used on image data [28]. In this way, we aim at
boosting the performance of the identification, inspired by the promising results previously
obtained in [13].

The image representations we propose are designed with the following objectives
in mind: (a) representations that are particularly well suited for motion-based user iden-
tification, (b) representations that allow to include as many patterns that are relevant to
distinguish individuals by their arm and hand motions, and (c) representations that play
to the strengths of CNNs, particularly locality and edge detection [27].

In order to address (a), we do not represent time-series data directly (as some previous
works have suggested (see Section 2.3)); however, we instead consider patterns that describe
the variation over time in the data obtained from the inertial sensors. Concerning (b),
we consider extending the designs of image representations that have been previously
proposed to allow for the inclusion of as many relevant patterns as needed [12,13]. Finally,
in what relates to (c), we define the representations as a compound of consistent regions
that are filled with pixels in a way that represent the pattern values as continuous lines.

3.2.2. Patterns

We focus only in representing patterns over time. Specifically, for each of the time-
series components we consider the oscillatory and steady variations and the range of values
over a time window of predefined size. The oscillatory variation is seen as such in which
the value of the time series increases and decreases in every immediate subsequent time
step. The steady variation refers to the case in which the value of the time series either only
increases or decreases over a period of time. The change in value in both types of variation
can be of any magnitude. Concerning the range, we consider the maximum and the gap
between maximum and minimum values. Figure 2 illustrates these patterns.
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steady oscillatory

time window

max.

min.

Figure 2. Variation patterns over time.

For the computation of the variation patterns, the window is divided into consecutive
non-overlapping segments, according to the type of variation. Each segment spans not
less than three data points in order to be able to distinguish if the transitions between data
point values indicates a steady or a oscillatory variation. The value of the variation v is
then computed for each of the segments, according to the formula in Equation (1), where di
corresponds to a value of a data point at step i and di−1 to the value at the previous step.

v =
1

k − 1

k

∑
i=1

di − di−1 (1)

Finally, the value for each type of variation is obtained by averaging the values of all
segments of the same type of variation within the current window.

3.2.3. Image

For each window in the time series, we generate one raster image or bitmap [29], either
black and white (B&W) or color (RGB). Our goal is to combine the patterns values found
within a window into an image. For that purpose, we define an empty bitmap of X × Y
number of pixels and Z number of channels, divided into several regions of x × y number
of pixels, where each region is meant to represent one pattern value. This is illustrated in
Figure 3. For this paper, we consider for the single-channel (B&W) case, an image divided
into 36 (6 × 6) regions, where x and y are the same for all regions.

𝑋 # of pixels

𝑌 # of pixels

𝒙 # of pixels

𝒚
# 

of
 p

ix
el

s

𝑍 # of channels

Figure 3. Image and regions.

3.2.4. Patterns to Pixels

To define the correspondence between a pattern value and the pixels in a region, we
first consider pixels as marked or unmarked, where a marked pixel has a value of 255
(i.e., a white pixel) and an unmarked pixel has a value of 0 (i.e., a black pixel). To obtain the
number of marked pixels corresponding to a given pattern value, we define a mapping M
between the minimum (minp) and maximum (maxp) values of the given pattern throughout
the whole time-series data and the minimum (minpx) and maximum (maxpx) number of
pixels that can potentially be marked within a region.
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This allows to transform any given pattern value x into the corresponding number of
marked pixels within a region according to Equation (2).

M(x) =
⌊

min
px

+

(
maxp −minp

maxpx −minpx

)
(x − min

p
)

⌋
(2)

The value of M(x) is ensured to be a whole number (through the use of the floor
function) to make the translation into number of marked pixels easier. The pixel marking is
performed as to mark contiguous pixels according to a predefined path. This is illustrated
in Figure 4.

Figure 4. Continuous pixel marking (edge detection).

3.3. Classification

For the classification part of our approach, we follow two steps. First, we use a
convolutional neural network (CNN) to obtain a tentative class for each example in the
data that corresponds to a window within the time series. Then, we define decision segments,
which divide the time series into chunks of the same number of windows. Finally, we apply
a voting mechanism, according to a predefined criteria, to decide the class for each of the
decision segments and consequently for the examples within.

The voting mechanism in the second step provides two advantages. First, it obtains
further information from patterns occurring close in time to take the decision. Second, it
allows the possibility for a second opinion, if it is not possible to decide on one specific
class, instead of going directly to a misclassification. Our approach is not concerned with
the specific way in which a second opinion is taken; however, instead, it leaves such cases
as undecided or a reject.

We consider four possible voting criteria, of which only one is used in the execution of
the approach: first to plurality, plurality, win by x number of votes, and majority. Majority
and plurality are typical voting strategies [30]. In majority voting, the winner must have
more than 50% of the votes. In contrast, plurality gives the win to any with at least one
vote more than the rest. The criterion first to plurality is meant to consider a case where
the number of undecided is removed entirely, since even in the case of a draw the winner
is the first class to have obtained more votes. In Figure 5, we show a simple example that
illustrates the two-step classification, particularly on the different classifications that the
voting may yield depending on the specific criterion used.

ex.1 ex.2 ex.3 ex.4

id-A id-B id-C id-A

ex.5 ex.6 ex.7 ex.8

id-A id-B id-B id-A

ex.9 ex.10 ex.11 ex.12

id-A id-B id-A id-A

decision segment 1

CNN
classification

Voting

(a)

(b)

(c)

decision segment 2 decision segment 3

id-A

undecided

id-A

id-B

undecided

undecided

id-A

id-A

id-A

Figure 5. Example of the voting mechanism. Three different voting criteria are represented in this
example: (a) first to plurality, (b) plurality, and (c) majority.
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4. Evaluation Methodology
4.1. Experimental Setup
4.1.1. Dataset

We collected data from 23 people between 25 and 35 years old (mean: 29.13; std: 3.09).
The collection took place throughout 2021 and beginning of 2022. All the participants were
researchers working at the university. The environment where the participants went about
their regular routines is an office space inside a university building. The participants were
asked to follow their daily office routines and no specific gesture, action, or activity was
required from them.

We considered an office, computer-science, research-like environment, where we
collected, for each participant, data over three sessions, each recorded on a different day.
The duration of each session was of approximately 5 h. The IMU used for collection was
the Shimmer3 [31], calibrated at a sampling rate of 51 Hz. The data includes the x, y,
z components of each of the inertial sensors in the IMU, i.e., accelerometer, gyroscope,
and magnetometer. We plan to make the data fully available in a public repository in the
near future. The data collection was conducted in accordance to the guidelines of the ethics
commission of our university.

The reason for collecting our own dataset, instead of using for our evaluation an
existing activity-based dataset, is to avoid what we see as a direct threat to the validity of
our evaluation. Although we could disregard the activity labels, any existing activity-based
dataset contains data collected from people performing a specific set of activities, which
in our view, no matter how comprehensive this set may be, constrains a daily routine to
only some foreseen activities, which might not be realistic in many cases. Therefore, in
seeking a sound evaluation, we decided to consider a dataset collected from people that
perform their daily routines unconstrained without any direct input or specific action from
their side.

In both our preliminary experiment (Section 4.2) and our main experiments (Section 4.3),
we considered a dataset that we collected, following a setup similar to the one in [11]. We did
not use the dataset provided in [11] because their dataset does not provide the raw data as
recorded by the inertial sensors in the IMU but only includes the quaternions computed from
the inertial sensor raw data. This is a key factor for us because, as part of our evaluation, we
wanted to examine if the raw data could have an impact on performance.

4.1.2. Basic Experimental Configuration

The basic configuration of our approach for the evaluation consists of a windows size
of 51 data points (i.e., 1 s of data) and decision segments that span 30 windows (i.e., 30 s
of data). For all but Experiment 2, which compares the performance of our approach for
different voting criteria, we consider first to plurality, since this criterion allows us to have
no undecided decision segments.

In all our experiments, except for Experiment 4 (see Section 4.3.4), we use a con-
volutional neural network (CNN) defined as follows. Two convolutional layers, each
considering 128 filters of size 3 × 3. Each convolutional layer is followed by a max-pooling
layer, with filter size of 2 × 2 and a stride of 2. These layers are followed by a dense layer of
256 units. In all cases, we obtain our results considering 10-fold cross-validation.

4.1.3. Evaluation Metrics

The main metric that we use in our evaluation is accuracy, defined as the number
of instances that are correctly classified to the right identity divided by the total number
of instances.

4.2. Preliminary Experiment

Our preliminary experiment is meant to help us find the appropriate baseline, against
which the performance of our approach is to be compared. We consider as baseline the
approach presented in [11], which is the only previous work that targets a truly contin-
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uous identification. However, there are two aspects that we believe are relevant for our
particular case:

(a) Using CNN over the time-series data directly, instead of the k-NN and Random Forest
(RF) techniques considered in [11]. We considered this aspect, since our approach
is based on the use of a CNN over image representations of the time-series data.
Therefore, it is relevant to observe the performance of the approach when considering
the same CNN working on the time-series raw data directly.

(b) Establishing the best possible type of time-series data to be used as input. Starting
with the wavelet transform (WT) over quaternions as used in [11], passing through the
use of quaternions directly without transformation, and finishing up at the raw level,
considering directly the data from the inertial sensors in the IMU (i.e., accelerometer,
gyroscope, and magnetometer), which are used for the computation of quaternions,
we did not consider the other well-known approach for analyzing the frequency
content of time-series data—namely, Fourier transform—since previous works have
indicated that Fourier transform introduces resolution issues, particularly when
dealing with sudden changes of frequency throughout time [32].

In order to address the aspects above, we design an experiment in which we compare
the performance of the approach presented in [11] using a CNN (instead of RF), with, on the
one hand, quaternions as input and, on the other hand, the raw data directly taken from
the inertial sensors in the IMU. For this preliminary experiment, we considered a reduced
number of participants (N = 10) from the dataset.

4.3. Main Experiments
4.3.1. Experiment-1—Design Comparison

In this experiment, we evaluate a number of specific image representation designs
that follow the basic general design elements of our approach, presented in Section 3.2.
For each design, we measure the average time (in seconds) that an image representation
takes to be generated (i.e., the average generation time) and the accuracy of the model
trained using that design. To measure the average generation time, we consider the images
corresponding to the whole dataset. Concerning the measurement of the accuracy, we
consider only the case of the maximum number of registered users that we have—namely,
23 users.

We consider four different filling strategies for our evaluation. These strategies refer
to different ways in which to mark contiguous pixels according to a predefined path.
The strategies that we consider are aimed at producing images with well-localized and
distinguishable edges that can be easily reproduced. Next, we describe each of the filling
strategies that we consider, which are illustrated in Figure 6.

(a) (b) (c)

(d)

Figure 6. Filling strategies. (a) Counterclockwise, (b) Clockwise, (c) Diagonal, and (d) Strokes.
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Counterclockwise (CCW) This strategy is depicted in Figure 6a. The idea is to mark the pixels
consecutively starting on the middle of the region and following a counterclockwise
path, without passing over the same pixel twice.

Clockwise (CW) This strategy (depicted in Figure 6b) follows a continuous clockwise path,
starting on the top left, leaving no pixel unmarked, and never passing through the
same pixel more than once.

Diagonal (Diag) The diagonal strategy (as seen in Figure 6c) is based on 45◦ diagonal that
are drawn upwards, starting at the pixel of the top-left corner, leaving no pixel
unmarked in a non-overlapping manner.

Strokes (Strk) This strategy is meant to yield continuous strokes across three different
regions on the same row of the image, as illustrated in Figure 6d. From left to right,
the first region is filled using reverse diagonals starting on the top-left corner, the next
region is filled using horizontal lines that start on the row where the previous region
ended, and the last region is filled using diagonals starting on the row where the
previous region ended.

We consider two general designs for the layout of the regions in the canvas: design A
and design B. The main difference between these designs is on how the patterns are laid
down across the regions and the channels of the canvas.

Design A. In this design, the patterns for the current window of all sensors are represented
in a single channel. This is illustrated in Figure 7a, where the variation patterns and the
range of the the three components (x, y, and z) from the accelerometer, the gyroscope,
and the magnetometer are all represented in a single channel. In the RGB case, the two
extra channels are used to represent the same patterns but for the preceding and following
windows as can be seen in Figure 7b.
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Figure 7. Image representation—Design-A. (a) Single channel and (b) Multi-channel.

We evaluate four different variations of Design-A as follows:

Design-A-1 A single channel is considered in this design (B&W images). The patterns
of the current window for the accelerometer, gyroscope, and magnetometer are,
respectively, represented on the first, third, and fifth region, counting from left to
right. The second, fourth, and sixth regions are, respectively, representing an extended
window that considers the current window and the ones before and after, for each of
the sensors in the IMU. Furthermore, each region is filled using both counterclockwise
and clockwise strategies. Each region assigned to the variation patterns represents
both oscillatory and steady variations, using the counterclockwise strategy for the
oscillatory and the clockwise strategy for the steady variation.
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This is made without allowing overlapping, for which we restrict maxpx to 200 for
each pattern. Concerning the regions that represent the range, we consider three
different values: the maximum, the difference, and the mean. The clockwise strategy
is used for the maximum and the mean, while the counterclockwise strategy is used
for the difference. No overlapping is allowed, for which we restrict maxpx to 144 for
the maximum and the difference patterns, and to 112 for the mean. The mean pattern
starts at the 145th pixel. An instance of this design can be seen in Figure 8a.

Design-A-2 This design is the RGB version of Design-A-1. A sample of this design is
depicted in Figure 8b. As in any RGB version of Design-A, the red channel is focused
on the actual current window, while the green channel focuses on the previous
window and the blue channel on the next window.

Design-A-3 This design uses strokes as the filling strategy and only the current time window
from the data. On the top of the bitmap, the first, third, and fifth columns represent
the corresponding oscillatory variation, and the representation of the maximum
range is placed on the bottom. The second, fourth, and sixth columns represent
the corresponding steady variation on the top of image, and the difference between
maximum and minimum on the bottom. A sample of the images produced using this
design is depicted in Figure 8c.

Design-A-4 This design is the RGB version of Design-A-3 (a sample appears in Figure 8d).

(a) (b) (c) (d)

(e) (f) (g)

Figure 8. Samples of the image representation designs. (a) A-1, (b) A-2, (c) A-3, (d) A-4, (e) B-1,
(f) B-2, and (g) B-3.

Design B. Figure 9 depicts the layout of design B. As can be seen in the figure, each channel
represents the patterns from one of the sensors in the IMU. In this case, the B&W case
(in Figure 9a) only represents patterns from the accelerometer, and in the RGB case (in
Figure 9b), the gyroscope and the magnetometer are represented in the green and blue
channels, respectively.

As it is shown in Figure 9a, the bitmap for each channel can be seen as divided into
four main super-regions of nine regions each, where the top ones are meant to represent
the variation in the three components (x, y, z) of the corresponding sensor data, and the
bottom two are dedicated to the range, one for the maximum value and one for the
difference between maximum and minimum. Each of these super-regions consider the
current window (cw) and two extended windows, one spanning the preceding and current
windows (pcw), and one spanning the current and next windows (cnw).

Specifically, we evaluate three different variations of Design-B, all of which are RGB
and vary between each other only on the filling strategy considered: Design-B-1 (counter-
clockwise), Design-B-2 (diagonal), and Design-B-3 (strokes). A sample of each of these
designs is depicted in Figure 8e, Figure 8f, and Figure 8g.
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Figure 9. Image representation—Design-B. (a) Single channel and (b) Multi-channel.

4.3.2. Experiment-2—Voting Criteria Comparison

In this experiment, our goal is to evaluate, depending on the specific voting criteria
considered, how much of the error is undecided (or rejected) and how much is misclassified.
This comparison is relevant if we consider the case in which, given an undecided identifica-
tion, which we consider a reject, it would be possible to use a supporting approach to take
the final decision, instead of obtaining the misidentification directly.

We use the following metrics for this experiment. True Acceptance Rate, which is defined
as the number of instances that are accepted (or not undecided) and correctly classified
to the right identity divided by the total number of instances. In our case, it corresponds
directly to the accuracy. Misclassification Rate, defined as the number of instances that
are incorrectly classified to the wrong identity divided by the total number of instances.
Finally, False Rejection Rate which is defined as the number of instances that are rejected (or
undecided) divided by the total number of instances.

We consider six different voting criteria, which are explained in Section 3.3: first to
plurality, plurality, win by three votes, win by six votes, win by nine votes, and majority.
For this experiment, we use the design that obtained the best accuracy in the benchmarking
of Experiment 1.1.

4.3.3. Experiment-3—Training Size

In this experiment, we focus on varying the size of the training dataset. The intent is
to measure the impact that different sizes of the data used for training may have on the
performance of our approach. The rationale is that in real-world applications the users will
expect the system to require a minimum training period before operation. The sizes we
consider for the training dataset are 5 (the typical size of a session of collected data per
user), 3, 2, 1, and 0.5 h. In all cases, the testing set is formed by the rest of the collected data.

For each of these cases, the ratio of the size of the training dataset with respect to the
size of the whole data is approximately 1/3 (i.e., 5 h for training and 10 h for testing), 1/5
(i.e., 3 h for training and 12 h for testing), 2/15 (i.e., 2 h for training and 13 h for testing),
1/15 (i.e., 1 h for training and 14 h for testing), and 1/30 (i.e., 0.5 h for training and 14.5 h
for testing), respectively. In either case, the data splits are formed by taking at random
samples from all the three sessions of collected data.

In this experiment, we consider all the possible number of registered users, from 2
to 23. For all but 23 registered users, we consider five different combinations of users in
order to account for the variation of the performance of our approach depending on the
specific group of people considered as registered users in the identification. This criteria
follows the method proposed by [33] to for a more rigorous evaluation of identification ap-
proaches.
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4.3.4. Experiment-4—CNN Architectures

We evaluate the performance of our approach under four different CNN architectures.
This is meant to show how the performance may be impacted by the design of the architec-
ture. In all cases, we consider simple architectures, with some being deeper and/or wider
than others.

The specific architectures that we consider are as follows:

CNN-0 This architecture consists of two convolutional layers, each considering 128 filters
of size 3 × 3. Each convolutional layer is followed by a max-pooling layer, with filter
size of 2 × 2 and a stride of 2. These layers are followed by a dense layer of 256 units.
(This is the architecture used throughout all our evaluation)

CNN-1 This architecture is defined first with a convolutional layer using 16 filters of size
3 × 3 and a stride of 2, then a max-pool layer with filter size of 3 × 3 and a stride of 2,
followed by a convolutional layer using 32 filters of size 3 × 3 and a stride of 1, then
again the same max-pool layer as before, and finally a dense layer with 120 units.

CNN-2 This architecture considers three different convolutional layers, the first one using
16 filters of size 3 × 3 and a stride of 1, the second one using 32 filters of size 3 × 3
and a stride of 1, and the third one using 64 filters of size 3 × 3 and a stride of 1. Each
of these layers is followed by a max-pool layer with filter size of 3 × 3 and a stride
of 2. At the end, one dense layer with 256 units is placed followed by another dense
layer with of 120 units.

CNN-3 This architecture is defined as follows. First two convolutional layers using 32 filters
of size 3 × 3 and a stride of 1, each followed by a max-pool layer with filter size of
3 × 3 and a stride of 2. This is then followed by a convolutional layer using 64 filters
of size 3 × 3 and a stride of 1 and again the same max-pool right after. Two dense
layers finish the architecture, first one with 256 units and then one of 120 units.

The design of architecture CNN-0 could be considered as naive, since although it
follows the traditional construction of a CNN, in terms of types of layers and their order,
it defines convolutional layers with a large number of filters and of exactly the same
size, both of which are typically not recommended [34]. The rest of the architectures are
more in accordance with the construction that is widely used for CNNs, with the size of
the layers increasing as they are deeper. In fact, we use CNN-0 throughout most of our
evaluation, since we aimed to show that our approach is robust even to not-so-ideally
designed CNN architectures.

4.4. Experiment-5—Performance for Different Numbers of Registered Users

In this experiment, we evaluate the difference in performance depending on the
number of users registered in the system, as this is a known issue of identification ap-
proaches [11]. We evaluate our approach for as few as two registered users and all the way
until 23 users to observe the difference in the performance throughout. The results of this
experiment are obtained using 10-fold cross-validation.

Furthermore, we consider five different combinations of users out of the total number
of participants for each of the number of registered users, as proposed in [33] to achieve
a rigorous evaluation of identification approaches by accounting for the variation of the
performance of our approach depending on the specific group of people.

4.5. Experiment-6—Comparison with Existing Works

In this experiment, we compare the performance of our approach to that of 3 existing
approaches, which we found to be the ones with best performance in the literature in
IMU-based user identification. One of the approaches is an approach based on Gated Re-
current Units (GRU), a type of recurrent network [35]. The second approach is an approach
based on a Temporal Convolutional Network (TCN) [36], an architecture that is formed by
hierarchy of convolutions to abstract the temporal relations. The third approach is Deep-
ConvLSTM [36], an approach that considers an architecture that combines convolutional
models with LSTMs to account for the temporal information in the data.
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We measure the performance of each of the approaches using our dataset. In all
cases, we consider the same basic configuration, and the results are obtained using a
10-fold cross-validation.

5. Results and Analysis
5.1. Preliminary Experiment Results

The results of our preliminary experiment are depicted in Figure 10. The results show
that wavelet transform over quaternions, as proposed in [11], clearly outperformed by a
considerable margin the case of using directly quaternions instead. However, when consid-
ering the raw time-series data directly from the inertial sensors in the IMU, the performance
improved slightly with respect to the results obtained using wavelet transform over quater-
nions. This may be explained by a loss of information due to the transformation. Based
on these results, we select, as our baseline, the approach that considers the raw data from
accelerometer, gyroscope, and magnetometer, with CNN as the machine-learning model.
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Number of registered users

Raw data (Acc. & Gyr. & Magn.) with CNN
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Figure 10. Preliminary experiment results—comparison between CNN with quaternions as input,
CNN with raw data (accelerometer (Acc.), gyroscope (Gyr.), and magnetometer (Mgn.), and the state
of the art (SoT) in continuous identification, which uses wavelet transform (WT) over quaternions as
input and Random Forest (RF) as the ML model.

5.2. Experiment-1 Results—Design Comparison

In Table 1, we present the results of our evaluation for each of the designs we have
considered. The best accuracy is achieved by Design-A-2 with 0.9487, which is not surprising
since it is the one that encodes more information. This fact is reflected on the average
generation time of this design, which is the longest of all the ones we considered at 0.0538 s.
The design that in average takes less time to be generated is Design-A-3, taking an average of
0.0109 s. In terms of the best compromise, both in accuracy and generation time, Design-A-1
seems to be the best option, with an accuracy of 0.9479 and an average generation time of
0.0182 s. Furthermore, as it is B&W, this (together with Design-A-3) requires less storage
and demands less computation power when training the machine-learning model.
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Table 1. Experiment-1.1 results—design performance comparison.

Design-ID Type of Image Filling Strategy
Avg.

Generation
Time (s)

Accuracy

Design-A-1 B&W counter- and
clockwise 0.0182 0.9479

Design-A-2 RGB counter- and
clockwise 0.0538 0.9487

Design-A-3 B&W strokes 0.0109 0.9297

Design-A-4 RGB strokes 0.0227 0.9378

Design-B-1 RGB counterclockwise 0.0150 0.9325

Design-B-2 RGB diagonal 0.0155 0.9374

Design-B-3 RGB strokes 0.0206 0.9423

5.3. Experiment-2 Results—Voting Criteria

In Figure 11, we present the results for Experiment 2, which evaluated our approach
for different voting criteria. As can be observed in the figure, the difference in the True
Acceptance Rate is not considerable across the different criteria, with a difference of 0.0536
between the best case (i.e., first to plurality with 0.9485) and the worst case (i.e., winning by
nine votes with 0.8949).

However, when we consider the False Rejection Rate we can see that the difference
between some of the cases is noticeable. These cases, as discussed in Section 4.3.2, may
represent an opportunity for a second supporting approach to take the final decision
(e.g., direct input from the user), and thus improve the final overall performance of the
identification. Thus, for instance, the winning by 9 criterion has room for a second opin-
ion of nearly 0.1, which could signify as much as 0.99 accuracy using a highly accurate
supporting method.
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Figure 11. Experiment 2 results—voting criteria comparison: (a) First to plurality. (b) Plurality.
(c) Wining by three votes. (d) Winning by six votes. (e) Winning by nine votes. (f) Majority.

5.4. Experiment-3 Results—Training Size

The results of this experiment are depicted in Figure 12. The average of the maximum
values across all training sizes considered is 0.9915. On the other hand, the average of the
minimum values across all training sizes considered is 0.8855.
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Figure 12. Experiment-3 results—training size.

Overall, we can say that the size of the training dataset does have an impact on the
performance of our approach, particularly as the number of registered users increases.
Specifically, when 5 h of data are considered for training the gap between the best and
worst accuracy values is 0.0565, whereas when the training size is reduced to only half an
hour, the gap is more than three-times larger at 0.1819.

5.5. Experiment-4 Results—CNN Architectures

The results for this experiment on different CNN architectures are presented in
Table 2. The specific architecture considered has an impact on the accuracy obtained, how-
ever, not in a substantial manner. This demonstrate that our approach is robust to different
model architectures.

Table 2. Accuracy per CNN architecture.

CNN Architecture

CNN-0 CNN-1 CNN-2 CNN-3

0.9436 0.9122 0.9485 0.9479

5.6. Experiment-5 Results—Performance for Different Number of Registered Users

The results of this experiment are presented in Figure 13. As we can see in the figure,
the performance drops as the number of participants increases. Despite this, we observe
that the drop in performance is not considerable at slightly more than 5%.
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Figure 13. The performance according to the number of registered users.

5.7. Experiment-6 Results—Comparison with Existing Works

The results of this experiment are presented in Table 3. As we can see, our approach is
able to outperform the other approaches. This is despite that our approach makes use of a
relatively simple CNN architecture, compared to the more complex architectures employed
by the other approaches, particularly DeepConvLSTM, which combines convolutions and
recurrent networks.

Table 3. The performance.

State of the Art Our Approach

Approach Accuracy Accuracy Difference

DeepSense (GRU) [35] 0.8935 + 0.0549
TCN [5] 0.9327 0.9485 + 0.0159

DeepConvLSTM [36] 0.9008 + 0.0477

6. Conclusions

In this paper, we proposed an activity-free user-identification approach that built
around the idea of using image representations of time-series data recorded by a wrist-worn
IMU. Our image representations allowed our method to take advantage of the strengths
of convolutional networks regarding image processing tasks and thus improve upon the
accuracy and robustness of the state of the art in user identification.

The results from our extensive evaluation provide insights that may be helpful both
for practitioners interested in taking our identification method into real-world applications
as well as for researchers seeking to further advance the state of the art. We recognize a
number of threats to the validity of our evaluation methodology. The first is related to
the participants and their characteristics. The number of participants was only 23, which
allowed us to evaluate the performance of our approach for certain spaces that are not
shared by large groups. At this point, the generalization of our approach to spaces with
larger crowds is not guaranteed.

However, our current results for 23 registered users (with an accuracy of 0.9542) show
promise for further developing the approach to be able to handle a larger number of
registered users. Furthermore, all participants were from a similar age group (25–35 years
old). This may have had an impact on the performance of our approach since we focused on
motion patterns. One might expect, for instance, the rate of motion of older adults to differ
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importantly when compared to young adults and children. Therefore, further evaluation
including other age groups would be relevant to help support the generalizability of
our approach.

Another threat to the validity of our evaluation is the environment considered in the
data collection—namely, an office space in a university building. We believe that the office
environment that we considered is a space that share similarities with a number of other
indoor spaces, and thus our results should be generalizable in that respect. However, in
other environments, such as a warehouse, an industrial plant, etc., the dynamics may be
quite different. Therefore, a wider range of environments should be considered to further
validate the performance and robustness of our approach.
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