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Abstract: The rotor is an essential actuator of quadrotor UAV, and is prone to failure due to high speed
rotation and environmental disturbances. It is difficult to diagnose rotor faults and identify the fault
localization simultaneously. In this paper, we propose a fault diagnosis and localization scheme based
on the Extended State Observer (ESO) and Deep Forest (DF). This scheme can accurately complete
the fault diagnosis and localization for the quadrotor UAV actuator without knowing the fault size by
combining the model-based and the data-driven methods. First, we obtain the angular acceleration
residual signal of the quadrotor UAV by using ESO. The residual signal is the difference between
the observed state of ESO and the true fault state. Then, we design the residual feature analysis
method by considering the position distribution of the quadrotor UAV actuator. This method can
embed the actuator fault localization information into the fault data by simultaneously considering
pitch and roll of the quadrotor UAV. Finally, we complete the fault diagnosis and localization of the
quadrotor UAV actuator by processing the fault data by using DF. This scheme has the advantages of
straightforward observer modeling, strong generalization ability, adaptability to small sample data,
and few hyperparameters. Our simulation results indicate that the accuracy of the proposed scheme
reaches more than 99% for the unknown size of the quadrotor UAV actuator fault.

Keywords: deep forest; extended state observer; fault diagnosis; quadrotor UAV; data-driven

1. Introduction

In recent years, quadrotor Unmanned Aerial Vehicle (UAV) has gradually become
an important part of people’s lives [1]. The quadrotor UAV has the advantages of simple
operation, vertical take-off and landing, and good flexibility [2]. It is widely used in
video shooting, agricultural cultivation, logistics transportation, and other fields [3]. With
the research on the reliability of quadrotor UAV, the fault diagnosis of quadrotor UAV
actuator has also become one of the research hotspots [4]. The actuator of quadrotor
UAV is usually in the working state of high speed rotation [5]. Due to frequent task
execution and environmental interference, these actuators usually experience various
failures leading to efficiency reduction, circuit, and mechanical damage [6]. Accurately
finding the actuator fault localization and determining the fault type can greatly improve
the reliability techniques of quadrotor UAV [7]. Therefore, it is necessary to study the fault
diagnosis for the quadrotor UAV actuator [8].

The fault diagnosis methods for the quadrotor UAV actuator are mainly categorized
into model-based and data-driven methods [9]. Ren et al. [10] completed the fault diagnosis
of quadrotor UAV actuator by designing the Robust H-Infinity Observer. Gao et al. [11]
combined Extended Kalman Filter and adaptive estimation method to diagnose actuator
fault types. The above model-based methods require accurate mathematical modeling
of the quadrotor UAV and the actuator [12]. Model-based methods are also difficult
to effectively achieve accurate modeling of interference and various errors. With the
development of machine learning technique, data-driven methods are widely used in
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fault diagnosis [13]. Park et al. [14] applied the neural network method to the actuator
fault diagnosis of a quadrotor UAV under unknown control signals. In this method, the
network with hundreds of layers increases the computation amount and the design process
is complicated. Fu et al. [9] combined convolutional neural networks and long short-term
memory networks to establish the fault localization model of UAV actuator. Although
this method completed the fault localization of the actuator, it did not consider the fault
diagnosis of different types of actuator faults. The data-driven method can achieve high
fault diagnosis accuracy without relying on the model, but it is prone to overfitting and
cannot effectively deal with the fault diagnosis under the condition of system state change.

Actuator fault type diagnosis and fault localization identification are very important
for quadrotor UAV actuator fault diagnosis, but they are usually carried out separately.
In this paper, we propose a fault diagnosis and localization scheme for a quadrotor UAV
actuator based on ESO-DF under the condition of unknown fault size. In this scheme,
model-based and data-driven methods are combined to realize fault type diagnosis and
fault localization identification simultaneously. The Extended State Observer (ESO) is
an observer in Active Disturbance Rejection Control (ADRC) [15]. ESO can track the
motion state of the system quickly and accurately with a small number of parameters [16].
Li et al. [17] has achieved good results by applying ESO to autonomous underwater
vehicle actuator fault diagnosis. DF is an ensemble learning method based on decision tree
proposed by Zhou et al. [18]. This method has the advantages of less hyperparameters, less
computation, and small sample size. Qin et al. [19] applied DF to realize the fault diagnosis
of rolling bearing. For the fault diagnosis of quadrotor UAV, Ai et al. [20] applied DF to the
fault diagnosis of quadrotor UAV for the first time, which verifies the effectiveness of DF in
fault diagnosis.

In order to better extract the fault features of quadrotor UAV actuators, we have made
corresponding improvements to ESO [21]. We extract the angular acceleration of pitch and
roll through the improved ESO to extract fault features. In addition, in order to confirm the
location of the actuator failure, we designed an actuator residual feature analysis method
combined with the location distribution of the quadrotor UAV actuator [22]. Through this
method, we can embed the fault location information of the actuator into the residual fault
data. Finally, we completed the fault type diagnosis and fault localization identification of
the quadrotor UAV actuator by using the DF method.

The contributions of this paper are summarized as follows:

1. We have improved the ESO combined with the characteristics of the quadrotor UAV actuator
failure. We obtain the angular acceleration containing the fault characteristics of the quadrotor
UAV actuator through ESO.

2. Aiming at the problem of fault location identification of quadrotor UAV actuators, we designed
an analysis method of actuator fault residual characteristics. By combining the angular
acceleration information of pitch and roll, the method embeds the fault location information of
the actuator into the fault data.

3. Aiming at the problem that the judgment of the fault type and the fault location cannot be ob-
tained at the same time, we designed an actuator fault diagnosis and localization scheme based
on ESO-DF. By combining the model-based method and the data-driven method, the scheme
fully extracts fault features and achieves high-accuracy fault diagnosis and localization results.

The remainder of this paper is organized as follows. The problem definition and
basic theory are introduced in Section 2. In Section 3, the proposed method is introduced.
In Section 4, the setup of the simulation experiments is presented and the results of the
experiments are analyzed. Finally, conclusion is given in Section 5.

2. Preliminaries
2.1. Mathematical Model of Quadrotor UAV

In the simulation experiment of this paper, we have the following three assumptions
on the mathematical model of the quadrotor UAV:

• The quadrotor UAV is a rigid body.
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• The mass of the quadrotor UAV is uniformly distributed and the center of mass
overlaps with the geometric center.

• The four actuators of the quadrotor UAV are evenly distributed on the fuselage accord-
ing to the X shape, as shown in Figure 1.
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Figure 1. The body fix reference frame of the quadrotor UAV. The xb axis is set to be parallel to the
body and points toward the nose. The yb axis is set to be perpendicular to the body and points to the
right. The zb axis is set to be perpendicular to the xb–yb plane and pointing downwards.

The six-degree-of-freedom mathematical model [23] of the quadrotor UAV is shown
below:
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ẍ =
1
m

U1(sin θ cos ψ cos ϕ + sin ψ sin ϕ)− 1
m
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ÿ =
1
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U1(sin θ sin ψ cos ϕ− cos ψ sin ϕ)− 1
m

Dyẏ2 (5)
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1
m

U1 cos θ cos ϕ− g− 1
m

Dz ż2 (6)

where (x, y, z) represents the coordinates of the center of mass of the vehicle under the
earth coordinate system. θ, φ, and ψ are the pitch, roll and yaw angle, respectively. jr refers
to the rotational inertia of the rotor. m, g represent the mass and gravitational acceleration
of the quadrotor drone, respectively. U1 represents the lift of a quadrotor UAV. U2, U3, and
U4 represent the aerodynamic moment. Dx, Dy, and Dz are air resistance coefficients of
three axes. Jx, Jy, and Jz refer to the rotational inertia of the body.

2.2. Actuator Fault Model

In this paper, the quadrotor UAV actuator faults mainly include speed constant devia-
tion faults and speed gain loss faults [24].

2.2.1. Actuator Speed Constant Deviation Fault

The speed constant deviation fault is usually caused by bias current or bias voltage in
the circuit. The fault model is as follows.

ω f (t) =
{

ω(t) 0 ≤ t < t f
ω(t) + ∆ t f ≤ t

(7)

where ω(t) represents the rotational speed of the actuator under no-fault conditions. ω f (t)
represents the actual rotational speed of the actuator. ∆ represents the deviation speed



Sensors 2022, 22, 7355 4 of 15

value between the actual value of the actuator rotational speed and the expected value. At
t = t f , the actuator has a fault with a speed deviation value of ∆.

2.2.2. Actuator Speed Gain Loss Fault

The speed gain loss fault is usually caused by mechanical damage to the motor or
propeller. The fault model is as follows.

ω f (t) =
{

ω(t) 0 ≤ t < t f
ρω(t) t f ≤ t

(8)

where ω(t) represents the rotational speed of the actuator under no-fault conditions. ω f (t)
represents the actual rotational speed of the actuator. ρ represents the actuator speed gain
loss factor. At t = t f , the actuator has a fault with speed gain loss.

2.3. Extended State Observer (ESO)

The purpose of ESO is to solve the core problem of the observation of disturbances
in ADRC. It borrows the idea of the state observer in modern control theory, that is, on
the basis of observing the state variables a1, a2. . . an of the system, all factors that affect the
output of the controlled object except the control quantity are called the total disturbance
f (x1, x2, . . . xn). Then, it expands the total disturbance into a new state variable an+1, and
uses its special feedback mechanism to establish an expanded state observer to observe the
total disturbance. The biggest advantage of ESO is that it does not depend on the model
that generates the perturbation. It also does not require a detailed and accurate system
model to estimate the model parameter uncertainty and the total disturbance value caused
by changes in the external environment. In the final output, the observed disturbances are
offset in real time to obtain the estimated the total disturbance by ESO.

The following is an introduction to the ESO design of a second-order system.
Equation (9) is the ADRC form of a second-order system.

ẋ1 = x2
ẋ2 = f (x1, x2, ω(t)) + bu
y = x1

(9)

where f (x1, x2, . . . xn) is the total disturbance. It contains the internal disturbance generated
by the system state variable x1, x2 and the external disturbance ω(t). In order to observe
the specific size of f (x1, x2, . . . xn), we introduce a new state variable x3 = f (x1, x2, ω(t)).
Substitute x3 = f (x1, x2, ω(t)) into Equation (9) to obtain the expanded second-order
system as shown in Equation (10).

ẋ1 = x2
ẋ2 = x3 + bu
ẋ3 = ḟ (x1, x2, ω(t))
y = x1

(10)

For better tracking of the expanded third-order system, the following linear ESO is
established for Equation (11): 

e1 = a1 − y
ȧ1 = a2 − βe1
ȧ2 = a3 − β2e1 + bu
ȧ3 = −β3e1

(11)

where e1 is the error between the observed quantity a1 and the output y of the controlled
object. u is the output value of the controller. β1, β2, and β3 are related to the bandwidth ωb
of the system. when t→ ∞, e1 → 0, in other words, a1 → x1, a2 → x2, a3 → x3. Through
the above proof, the observation of the total disturbance can be realized.
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2.4. Deep Forest

Deep Forest (DF) is an ensemble learning method based on decision tree proposed
by Professor Zhihua Zhou in 2017. DF mainly consists of two parts as shown in Figure 2:
Multi-Grained Scanning (MGS) and Cascade Forest (CF). After the original input features
are expanded by MGS, they are input into CF for classification. The features are filtered
through multiple layers in CF, and the final classification category can be obtained. The
following describes the specific implementation process of DF based on the three-category
classification of sequences whose original input features are 400 dimensions.
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Figure 2. Fundamentals of deep forests. It mainly includes multi-grained scanning and cascade forest.

2.4.1. Multi-Grained Scanning

MGS is a method of feature expansion. The original features are cut by sliding
windows to enhance the classification effect of CF. In Figure 2, MGS cuts the original
400-dimensional input features through 100-dimensional, 200-dimensional, and
300-dimensional sliding windows with a step size of 1 dimension. In total, 301, 201 and
101 features are obtained, respectively. Then, each segment of the obtained features is input
into Forest A and Forest B, respectively. Then, feature extraction is performed on each
segment of features through Forest A and Forest B, respectively. After each feature passes
through Forest A or Forest B, a three-dimensional feature can be obtained. All the features
extracted from Forest A and Forest B obtained by each sliding window are connected
together. A 100-dimensional sliding window can obtain 301 (number of features) × 2 (For-
est A and Forest B) × 3 (3-dimensional features) = 1806 dimensions, as shown in Figure 2.
Similarly, a 200-dimensional sliding window and a 300-dimensional sliding window can
obtain 1206-dimensional features and 606-dimensional features, respectively. Finally, by
concatenating the features obtained by the three sliding windows, the 3618-dimensional
features are obtained as the input of CF.

In MGS, Forest A and Forest B are two kinds of decision trees. Decision trees can
complete the classification task of input features. The original 400-dimensional input
features are transformed into 3618-dimensional features after feature extraction by MGS.
This process completes the enhancement of the original features, which is beneficial to the
classification process of CF.

2.4.2. Cascade Forest

CF is a module that completes the classification work inside DF, as shown in Figure 2.
CF is composed of multiple layers of forest. Each layer of CF consists of multiple forests. For-
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est is an optional decision tree classification method, and its number in cascaded forests can
also be set. The input to the first layer of CF is 3618-dimensional features obtained by MGS.
After each feature passes through each forest in each layer, a 3-dimensional feature can
be obtained. Since the default number of forests is 4, the features of 3 × 4 = 12 dimensions
can be obtained after each layer. In order to enhance the classification ability, the obtained
12-dimensional features are connected with the input of 3618-dimensional features of the
cascade forest and then input to the next layer for processing. CF performs a loss calcula-
tion on the classification results of each layer. When the classification results obtained by
several consecutive layers do not change, the final classification category can be obtained
by calculating the average and maximum values of the classification results of the last layer.

3. The Proposed Scheme

In this section, the overall framework of our proposed ESO-DF scheme is presented
first in Section 3.1. Then, two key parts of the proposed ESO-DF scheme are described
in Sections 3.2 and 3.3, respectively, namely, the residual acquisition method based on
ESO and the designed residual feature analysis method. In addition, Section 3.4 describes
the procedure for establishing an actuator fault data set. Finally, the fault diagnosis and
localization process of the unknown fault size of the quadrotor UAV actuator based on the
proposed ESD-DF scheme is described in detail at the end of this section.

3.1. Fault Diagnosis and Localization Scheme Based on ESO-DF

The overall framework of fault diagnosis and localization of the quadrotor UAV
actuator based on ESO-DF under the condition of unknown fault size is shown in Figure 3.
First, we send maneuver control commands to the quadrotor UAV. The UAV maneuvers
according to the control commands. The sensor collects angular acceleration information
according to the actual motion state of the UAV. ESO obtains residual data including
actuator fault information according to the control torque calculated by the controller
and the angular acceleration information collected by the sensor. In order to obtain the
actuator fault location information, we designed an actuator residual feature analysis
method based on the location distribution of the quadrotor UAV actuator. With this
method, the information of the fault location is embedded in the fault data. Finally, a fault
data sequence containing fault type and fault location information is obtained. We feed the
failure data sequence into the DF for training and testing. Through the above process, we
have completed the fault diagnosis and localization of the quadrotor UAV actuator.

testing data

pitch

DF Model

acceleration of 
ESO observations

roll

maneuver control 
command

acceleration of 
sensor measurement

fault data

pitch angular acceleration residual

roll angular acceleration residual

Quadrotor UAV

Fault Feature Extraction

Fault Diagnosis and 
Location Model

Actuator fault 
type and fault 

location

trainging data

Fault Diagnosis and Location

is the minus sign

Figure 3. The overall framework of fault diagnosis and localization of the quadrotor UAV actuator
based on ESO-DF.
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3.2. Residual Acquisition Method Based on ESO

ESO can accurately track the movement status of the quadrotor UAV according to
maneuver control command. ESO can estimate the approximate total disturbance based
on the input and output data of the system. The performance of ESO is only related to the
estimation accuracy of b0 and the observer bandwidth [25]. In Equation (11), the input of the
ESO is the control torque and the angle measured by the sensor after the solution, and the
output of the ESO is the angle residual information. In order to obtain the fault information
of the actuator, we have improved the ESO combined with the fault characteristics of the
actuator. When an actuator fails, its failure characteristics will first be reflected in the lift.
When there is an abnormal state of lift, the angular acceleration, not the angle, will change
significantly. So we made some improvements to ESO based on this feature so that ESO can
output angular acceleration residual information. When a certain actuator fails, the angular
acceleration residual information output by the ESO will change significantly. Since the
pitch and roll channel of quadrotor UAV are similar, the ESO model of angular acceleration
of pitch channel is introduced below. The model is as follows:

ȧ1 = a2 + β1eθ

ȧ2 = a3 + β2eθ + b0U3
ȧ3 = β3eθ

eθ = θ − a1
eθ̈ = θ̈ − ȧ2

 (12)

where β1, β2, and β3 are related to the bandwidth ωb of the system. eθ is the residual
between the angle observed by the ESO and the angle measured by the sensor. θ̈ is the
measured value of the pitch angle acceleration sensor. U3 is the pitch axis control torque,
see Equation (2).

When t→ ∞, a1 → θ, thus eθ → 0. We take the difference between the ȧ2 observed by
the ESO based on the control torque and the angular acceleration θ̈ measured by the sensor
to obtain eθ̈ . eθ̈ is the residual difference between the angular acceleration observed by ESO
and that measured by sensor. From the ESO model of Equation (12), it can be seen that the
characteristics of actuator fault under maneuvering conditions can be obtained without
introducing additional signals.

3.3. Residual Feature Analysis Method

We designed an actuator residual feature analysis method by combining the actuator
position distribution of quadrotor UAV. Since the actuators of the quadrotor UAV are
X-shaped and evenly distributed around the body, the four actuators will have different
effects on pitch and roll when they fail separately; therefore, we embedded fault localization
information into the fault data by splicing the angular acceleration of pitch and roll in the
time dimension, as shown in Figure 4.

e


e

fault datae


e

t

2 t

Figure 4. Actuator fault data feature fusion process. ∆t is the sampling length. The pitch angular
acceleration residuals eθ̈ and roll angular acceleration residuals eϕ̈ of the corresponding time are
spliced, that is, the fault data containing unknown fault information is finally obtained.

3.4. Fault Dataset Establishment

The attitude maneuver of the quadrotor UAV is carried out according to the maneuver
control command at t = td. The actuator fails while performing a maneuver, that is, a fault
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of random size is injected into the actuator at t = td. Then, we obtain angular acceleration
residual data by using ESO. After that, the residual signal in [td − ∆t/2, td + ∆t/2] is
intercepted. We obtain fault data by processing the intercepted residual signal using the
actuator residual feature analysis method. Finally, we build the actuator failure dataset by
repeating the experiments for N times.

3.5. Workflow of Actuator Fault Diagnosis and Localization Based on ESO-DF

The workflow of the proposed ESO-DF based actuator fault diagnosis and localization
scheme is depicted in Figure 5.

Maneuvering Control 
Command

Establishment of the Actuator Fault 
Training Dataset

DF Training Process

Attitude Maneuvering of 
Quadrotor UAV

Obtain Residuals by Using 
ESO

Residual feature analysis
(Embed fault location 

information)

Establishment of the Actuator Fault 
Testing Dataset

the Trained DF Model

Output of actuator fault diagnosis 
and locationEnd

Start

Training process Testing process

Change of Actuator Speed

Actuator Speed 
Constant Deviation 

Fault

Actuator Speed Gain 
Loss Fault

Fault Injection

Figure 5. Flow chart of the ESO-DF based actuator fault diagnosis and localization scheme.

The entire process can be split into two parts: training and testing. The specific steps
are set out below.

3.5.1. Training Process

1. Injecting faults into actuators while maneuvering: injecting faults into actuators while
the quadrotor UAV is performing attitude maneuvers.

2. Extracting residual fault signals: According to the control torque and the angular
acceleration information measured by the sensor, the ESO outputs the angular ac-
celeration residual sequence containing the actuator fault information, that is, the
fault data.

3. Embedding fault localization information into fault data: we apply residual feature
analysis method to embed fault localization information into fault data. The fault data
obtained by embedding fault location information are a time series of a certain length.

4. Train Fault Diagnosis and Localization Model: we obtain the fault diagnosis and
localization model trained by injecting fault data into DF.
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3.5.2. Testing Process

1. Obtain testing data: we follow steps 1, 2, and 3 of the training process to obtain test
failure data.

2. Actuator fault diagnosis and localization: We complete the fault diagnosis and lo-
calization of the quadrotor UAV actuator by processing the test fault data using the
trained model.

4. Simulation and Results Analysis
4.1. Metrics

The evaluation metrics used in this paper include accuracy, precision, recall, and F1
score. The F1 score is the harmonic average of the precision and recall indicators. The
calculation of various indicators is introduced below.

The accuracy is one of the important evaluation metrics to measure the fault diagnosis
model. The calculation formula is as follows:

accuracy(y, ŷ) =
1

nsamples

nsamples −1

∑
i=0

I(ŷi = yi)× 100% (13)

where nsamples is the number of all fault samples. y is the sample true fault type label.
ŷ is the predicted fault type label for all samples. I(•) is an indicator function, when y is
completely equal to ŷ, the value of I(•) is 1, otherwise the value of I(•) is 0.

For each sample under each fault type, the precision is the ratio of the number of
correctly predicted labels to the number of labels predicted to be correct by the classifier.
The calculation formula is as follows:

precision(ys, ŷs) =
|ys ∩ ŷs|
|ŷs|

× 100% (14)

where ys is the label data of the real fault type. ŷs is the label data for the predicted
fault type.

For each sample under each fault type, the recall is the proportion of the number of
correct predicted labels in the total number of correct labels. The calculation formula is
as follows:

recall(ys, ŷs) =
|ys
⋂

ŷs|
|ys|

× 100% (15)

where ys is the label data of the real fault type. ŷs is the label data for the predicted
fault type.

The F1 score takes into account the precision and recall rate of the classification model
at the same time. It is a harmonic average of the precision rate and recall rate of the model.
The calculation formula is as follows:

F1 = 2 · precision · recall
presion + recall

(16)

4.2. Simulation Setup and Data Acquisition

In this paper, the maneuver control instructions provided to the quadrotor UAV are
shown in Equations (17)–(19). The attitude maneuver of the quadrotor UAV is carried
out according to Equation (1) to Equation (6) and maneuver control instructions. When
maneuvering, a fault is injected into the actuator of the quadrotor UAV according to
Equations (7) and (8), that is, t f = td. Then, we obtain the residual fault data according to
Equation (12). In Equation (12), ωb = 100, b0 = 13.9237. The mean value of measurement
noise of angular acceleration measured by the sensor is 0, and the variance is 0.1 rad/s.

ψ = 0◦ (17)
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θ = 0◦ (18)

ϕ =

{
0 0 ≤ t < td
ϕd td ≤ t < T

(19)

where ψ is the yaw angle, θ is the pitch angle, ϕ is the roll angle. ϕd is the desired roll angle
command for maneuvering at t = td.

During the experiment, the size of the roll angle maneuver control command ϕd
sent to the quadrotor UAV at t = td = 2 s is a random number between [0◦, 20◦]. When
t f = td = 2 s, the speed constant deviation fault and the speed gain loss fault are injected
into the four actuators, respectively. The size of the speed deviation value ∆ is a random
number between [50 n/s, 800 n/s]. The angle signal and residual signal of No. 1 actuator
with ∆ = 200 n/s fault at ϕd = 10◦ are shown in Figure 6. The size of the speed gain loss
factor ρ is a random number between [0.5, 1.0]. The angle signal and residual signal of No. 1
actuator with ρ = 0.7 fault at ϕd = 10◦ are shown in Figure 7. Each actuator repeats the
experiment to obtain 100 sets of data under no-fault conditions, and repeats the experiment
to obtain 400 sets of data under the condition of constant speed deviation fault and speed
gain loss fault, for a total of 900 sets of data. Finally, we obtain 3600 sets of training data
and test data, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t(s)

0

2

4

6

8

10

12

14

16
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Figure 6. No. 1 actuator constant deviation fault. (a) Pitch angle signal value. (b) Roll angle signal
value. (c) Pitch angular acceleration residual signal. (d) Roll angular acceleration residual signal.
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Figure 7. No. 1 actuator gain loss fault. (a) Pitch angle signal value. (b) Roll angle signal value.
(c) Pitch angular acceleration residual signal. (d) Roll angular acceleration residual signal.

4.3. Actuator Fault Localization Analysis

The actuators of the quadrotor UAV are evenly distributed on the fuselage, as shown in
Figure 1. When different actuators fail, the state changes of pitch and roll of the quadrotor
UAV are different. It can be seen from Figure 6 that when Actuator 1 has a constant
rotational speed deviation fault, the pitch state will increase while the roll state will decrease.
As can be seen from Figure 7, when Actuator 1 has a failure of rotational speed gain loss,
the state of pitch will decrease and the state of roll will increase. Through simulation
experiments, we obtained the state change trends of pitch and roll of different actuators
when different faults occurred, as shown in Table 1.

It can be seen from Table 1 that when the same fault occurs in different actuators,
the combination of angular acceleration residual changes in pitch and roll is different.
Therefore, our designed actuator residual feature analysis method can embed the fault
localization information into the fault data. In this paper, we set the parameter ∆t = 1 s
of the actuator residual feature analysis method. We obtain the final fault data using a
combination of the angular acceleration residuals for pitch and roll using the actuator
characterization method; however, when the fault types of the actuators are not unique,
different types of faults in different actuators may show the same variation combination
of pitch and roll, as shown in Figure 8. The fault data of the constant deviation fault of
Actuator 1 and the fault data of the gain loss of Actuator 2 are so similar that it is difficult
for the human eye to identify effectively. In order to complete the diagnosis of the fault
type of the actuator and the identification of the fault localization at the same time, it is
necessary to inject the fault data into the DF model for training and testing.
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(a) (b)

(c) (d)

Figure 8. Actuator fault data. (a) No. 1 actuator constant deviation fault data. (b) No. 1 actuator gain
loss fault data. (c) No. 2 actuator constant deviation fault data. (d) No. 2 actuator gain loss fault data.

Table 1. The trend of each signal value change when the actuator fails. ↑means the corresponding
value increases, ↓means the corresponding value decreases

Actuator Number and Fault Pitch Angle
Residual Ofpitch Angular

Acceleration
Roll Angle

Residual of Roll Angular
Acceleration

No. 1 constant deviation ↑ ↑ ↓ ↓
No. 2 constant deviation ↓ ↓ ↑ ↑
No. 3 constant deviation ↓ ↓ ↓ ↓
No. 4 constant deviation ↑ ↑ ↑ ↑

No. 1 gain loss ↓ ↓ ↑ ↑
No. 2 gain loss ↑ ↑ ↓ ↓
No. 3 gain loss ↑ ↑ ↑ ↑
No. 4 gain loss ↓ ↓ ↓ ↓

4.4. Comparative Analysis of Fault Diagnosis and Localization

We complete the fault diagnosis and localization of the quadrotor UAV actuator under
the condition of unknown fault size by using the DF model to process the fault data. In
order to verify the effectiveness of the DF algorithm, we introduce Random Forest (RF) for
comparison. The reason we chose RF for comparison is that RF fault diagnosis is widely
used and DF is an improved algorithm based on RF. In this paper, the parameters of DF and
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RF all use default parameters. We completed a final comparative experiment by comparing
the two methods and whether ESO was used, as shown in Table 2.

Table 2. The scheme of actuator fault diagnosis and fault localization.

Number Specific Scheme

scheme 1 ESO-DF
scheme 2 DF
scheme 3 ESO-RF
scheme 4 RF

The results of the training and testing accuracy of the above four schemes for the fault
diagnosis and localization of the quadrotor UAV actuator are shown in Table 3. It can be
seen from Table 3 that the accuracy of the DF scheme is higher than that of the RF scheme.

Table 4 shows the accuracy and recall results of four schemes calculated according to
Equations (14) and (15) for fault diagnosis and localization of quadrotor UAVs. The results
of the F1 score calculated by the four schemes according to Equation (16) are shown in
Figure 9. As can be seen from the figure, the F1 scores of ESO-DF and ESO-RF are relatively
close. However, the F1 score of ESO-DF has a smaller variation range and is more stable.

Table 3. Fault diagnosis and fault localization accuracy of different schemes.

Scheme The Training Accuracy The Testing Accuracy

ESO-DF 99.3000% 99.0500%
DF 97.9750% 97.9750%

ESO-RF 98.9500% 98.9500%
RF 95.5500% 95.5500%

Table 4. Fault diagnosis and fault localization precision of different schemes.

Fault Type and
Location

Precision Recall

ESO-DF DF ESO-RF RF ESO-DF DF ESO-RF RF

No fault 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000%
No. 1 constant

deviation 98.2759% 99.2500% 98.0344% 96.3415% 99.7500% 99.2500% 99.7500% 98.7500%

No. 2 constant
deviation 99.7481% 92.8571% 100.0000% 89.0736% 99.0000% 97.5000% 99.2500% 93.7500%

No. 3 constant
deviation 98.9899% 98.4848% 98.7437% 96.2779% 98.0000% 97.5000% 98.2500% 97.0000%

No. 4 constant
deviation 98.2673% 98.7245% 97.3039% 94.8187% 99.2500% 96.7500% 99.2500% 91.5000%

No. 1 gain loss 99.2386% 99.2537% 99.2308% 96.3325% 97.7500% 99.7500% 96.7500% 98.5000%
No. 2 gain loss 97.5369% 98.4334% 97.2906% 95.1613% 99.0000% 94.2500% 98.7500% 88.5000%
No. 3 gain loss 98.7531% 99.0000% 99.2481% 95.6522% 99.0000% 99.0000% 99.0000% 99.0000%
No. 4 gain loss 99.7475% 94.1032% 99.7468% 91.9481% 98.7500% 95.7500% 98.5000% 88.5000%

According to the fault diagnosis results of various indicators above, we verify that
the DF scheme is superior to the RF scheme. Because ESO can better extract the fault
features of the system, the effects of fault diagnosis and localization are improved after
the introduction of ESO. Through our proposed ESO-DF method, the fault type diagnosis
and fault localization identification of the quadrotor UAV actuator under the condition of
unknown fault size can be completed at the same time.
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Figure 9. Fault diagnosis and fault localization F1 scores of different schemes.

5. Conclusions

In this paper, we completed the fault diagnosis and localization of unknown fault size
of quadrotor UAV actuator by using the ESO-DF based scheme. The scheme achieves high-
accuracy fault diagnosis and localization results by combining model-based method with
data-driven method. In addition, we designed a residual characteristic analysis method
by considering both pitch and roll. This method is straightforward in design, but it can
embed fault localization information into fault data. The simulation results indicate that
the fault type and fault localization of the actuator can be provided precisely. By comparing
the results of other methods, this scheme has better generalization ability and accuracy. In
future work, we will try to conduct experimental verification on a real quadrotor UAV.
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