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Abstract: Remote sensing image fusion is a fundamental issue in the field of remote sensing. In this
paper, we propose a remote sensing image fusion method based on optimal scale morphological
convolutional neural networks (CNN) using the principle of entropy from information theory. We
use an attentional CNN to fuse the optimal cartoon and texture components of the original images to
obtain a high-resolution multispectral image. We obtain the cartoon and texture components using
sparse decomposition-morphological component analysis (MCA) with an optimal threshold value
determined by calculating the information entropy of the fused image. In the sparse decomposition
process, the local discrete cosine transform dictionary and the curvelet transform dictionary compose
the MCA dictionary. We sparsely decompose the original remote sensing images into a texture
component and a cartoon component at an optimal scale using the information entropy to control
the dictionary parameter. Experimental results show that the remote sensing image fusion method
proposed in this paper can effectively retain the information of the original image, improve the spatial
resolution and spectral fidelity, and provide a new idea for image fusion from the perspective of
multi-morphological deep learning.

Keywords: remote sensing image fusion; morphological component analysis; information entropy;
deep learning; multi-scale

1. Introduction

Due to the limitations of satellite technology, most remote sensing images can only be
panchromatic (PAN) images and low-resolution multispectral (LRMS) images of the same
area. The goal of remote sensing image fusion is to fuse the spectral information of LRMS
images and the spatial information of PAN images to generate a remote sensing image
with both high spatial resolution and high spectral resolution [1]. Classical component
substitution (CS) [2] methods are the most widely used, but they often result in spectral
distortion. Multiresolution analysis (MRA) [3] methods are also often utilized. Compared
with the CS method, methods based on MRA retain the spectral information better, but
the spatial details are seriously lost. Model-based [4] methods have also been applied to
remote sensing image fusion. The aforementioned methods can effectively reduce spectral
distortion, but usually lead to blurred results.

The popular convolutional neural networks (CNN) method can learn the correlation
between PAN images and LRMS images because of its excellent nonlinear expression and
achieves better fusion results than traditional remote sensing image fusion methods [5,6].
Therefore, many existing fusion methods choose to combine traditional methods with deep
learning methods [7–9] and have achieved good results. However, one of the basic tasks of
image analysis and computer vision is to extract different features of an image. Most of the
existing deep learning fusion methods treat the source image as a single component without
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considering the diversity of image components, thus ignoring the different morphological
details in the source image. Remote sensing image usually contain spectral information and
spatial structure, among which the PAN image reflects the spatial distribution information
and structure information of the image. The texture component of the PAN image contains
the image surface information and its relationship with the surrounding environment,
which can better reflect the spatial structure information of the PAN image. The boundary
of the cartoon component of remote sensing image is smoother and the spectral information
is retained, so the spectral information of the LRMS image can be completely characterized
by its cartoon component, and the redundancy and noise can be filtered out.

Morphological component analysis (MCA), proposed by J. Starck et al. [10,11], has
been used to solve problems such as image decomposition [12], image denoising [13], and
image restoration [14]. The main idea of this algorithm is to associate each morphological
component in the data with a dictionary of atoms. Each component of the image is assumed
to correspond to a suitable dictionary enabling the sparsest representation vector. The
sparse vector is reconstructed according to the corresponding dictionary to obtain the
separated image components.

Therefore, in this paper, we propose a method combining the sparse decomposition-
multi-scale MCA method and CNN for remote sensing image fusion, with optimal scale
determined by information entropy. We use MCA to sparsely decompose the original
images and acquire the texture components and cartoon components at multi-scale. Con-
sidering the variability of the different components of the image, we use information
entropy to calculate the threshold of the decomposition parameters. This facilitates the
extraction of the different components at the optimal scale and effectively acquires more
detail from the image. We use the spectral and spatial information of the LRMS and
PAN images, respectively, to input the cartoon component of the LRMS remote sensing
image and the texture component of the PAN image into an attentional CNN for fusion.
The remainder of this paper is organized as follows. Section 2 describes the multi-scale
MCA method. Section 3 details the fusion network and displays multi-scale fusion re-
sults. Section 4 provides the overall experimental results and analysis. Finally, Section 5
concludes this research.

2. Multi-Scale MCA Algorithm
2.1. Image Decomposition via MCA

We represent an image as f = u + v, where u is the cartoon component of f , which
is smooth and contains the geometric feature information of the image. v represents the
texture component of the image and is the high-frequency part of the image. Decomposing
an image into cartoon and texture components is essential for many applications. MCA
joins two transform bases to sparsely decompose the image, and the joint local discrete
cosine transform (LDCT) and curvelet transform (CT) are used as MCA decomposition
dictionary: D = [D1, D2]. This enables the extraction of the texture components and cartoon
components of the image, where D1 represents the LDCT dictionary and D2 represents the
CT dictionary.

Assuming that the remote sensing image contains only the texture component XT , the
LDCT dictionary D1 can sparsely represent the texture image. The Equation for solving the
texture sparse coefficient is as follows:

αT
PAN = Arg min

αT
‖αT‖0 subject to : XT = D1αT (1)

where ‖u‖0 denotes the l0 norm that effectively calculates the number of non-zero entries
in the vector XT and αT is the coefficient for the dictionary representation. The LDCT
dictionary D1 represents the non-texture components in the image as zeros, maximizing the
sparseness. The dictionary D1 is sparse with respect to the texture components of the image
but not sparse to the cartoon components of the image. Thus, the texture components of
the remote sensing image are obtained using the above model.
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Similarly, for a remote sensing image XC that contains only cartoon components, the
image is represented by the CT dictionary D2, which is sparse only with respect to cartoon
components. The equation is as follows:

αC
MS = Arg min

αC
‖αC‖0 subject to : XC = D2αC (2)

where αC is the coefficient for the dictionary. Using the CT dictionary D2, the non-cartoon
elements in the image are represented as zeros. Because the CT dictionary only repre-
sents sparse cartoon components, this model extracts the cartoon components in a remote
sensing image.

According to the above model, for any remote sensing image X containing both
texture and cartoon components, it is necessary to decompose the components with the
joint decomposition dictionary D containing both dictionary D1 and dictionary D2, posing
the following regularization problem:{

αT
PAN , αC

MS

}
= Arg min
{αT ,αC}

‖αT‖0 + ‖αC‖0 subject to : X = D1αT + D2αC (3)

To better retain fused image information, we analysis the morphological components
of the PAN image with a single channel and the MS image with three channels, obtain-
ing the texture components of the PAN image and cartoon components of the MS image.
Equations (4) and (5) show the sparse decomposition of the PAN image and MS
image, respectively:

XPAN = XT
PAN + XC

PAN = D1αT
PAN + D2αC

PAN = D(αT
PAN + αC

PAN) (4)

XMS = XT
MS + XC

MS = D1αT
MS + D2αC

MS = D(αT
MS + αC

MS) (5)

where αT
PAN , αC

PAN , αT
MS, and αC

MS represent the corresponding decomposition coefficients.
XT

PAN and XC
PAN are texture and cartoon components of the PAN image, respectively. XT

MS
and XC

MS are texture and cartoon components of the MS image, respectively.

2.2. Decomposition with Different Scales

The existing MCA method uses a single scale [15], while humans analyze remote
sensing images with complex components at multi-scale. This inspires the analysis of the
image at multi-scale for morphological components, and the decomposition of the remote
sensing image into texture and cartoon components at multi-scale.

Different MCA decomposition parameters represent different scales, and different
scales also represent different resolutions. As shown in Figures 1 and 2, we decom-
pose the MS and PAN images into cartoon and texture components at different scales,
and we set five decomposition parameters with 16/512, 32/512, 64/512, 128/512, and
256/512. Figures 1 and 2 show that the cartoon component of the MS image and the tex-
ture component of the PAN image are decomposed at different scales (resolutions) with
different parameters.

As shown in Figures 1 and 2, the image components at different scales are not the same.
Figure 1 indicates that a small threshold value removes too many edge details from the
MS image, resulting in side effects such as noise, ultimately causing spectral distortion of
the fused image. Figure 2 indicates that a large threshold value removes too many texture
details from the PAN image, resulting in insufficient component information, ultimately
causing noise in the fused image. Our target is to preserve details, remove redundant
information and noise, and effectively retain texture and cartoon components. Therefore,
controlling the parameter thresholds to construct a multi-scale dictionary is essential to
achieve sparse multi-scale component decomposition.
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Figure 1. Cartoon components of the MS image at different scales.

Figure 2. Cartoon components of the PAN image at different scales.

2.3. Information Entropy Metric

Information entropy reflects the amount of information contained in an image at a
certain position [16,17]. The threshold value of the control parameter is calculated using
information entropy to retain the rich amount of information contained in the image while
eliminating irrelevant information. This facilitates morphological component decomposi-
tion at multi-scale and selects the fusion results at the optimal scale.

In our previous work [18], we assume that T and C are the two images to be fused, the
joint information entropy of the fused images can be expressed as H(T, C). The conditional
information entropy can be expressed as H(T/C) and H(C/T), and the mutual information
entropy is M(T; C), representing the redundant information (repeated content) between
T and C. Then, the relationship between them can be expressed as Equation (6) [19].
The relationship between the information entropy of the two input source images is also
described in Figure 3.

H(T, C) = H
(

T
C

)
+H

(
C
T

)
+M(T; C) (6)
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Figure 3. The relationship of information entropy between images T and C.

The ideal fusion goal of image T and image C is that the information entropy of the
fused image is H(T, C). However, in the actual fusion process, in addition to the redundant
information M(T; C), other noise and interference may also exist, affecting the fusion
results. Figure 4 expresses the relationship between noisy image T and noisy image C.
Thus, considering noise, the remote sensing image fusion process ideally maintains the
maximum joint information entropy of the input source image.

Figure 4. The relationship between noised image T and noised image C.

Based on the above analysis, assuming that F ⊆ RN×N represents the fused image of
size N × N pixels, we first average the RGB values of the three channels in the same pixel
position and convert the color image into a gray image. Then, the image is classified into L
gray levels. fi denotes the gray value of the pixel with spatial index i in the image, where
fi ∈ GL = {0, 1, . . . , L− 1}. Based on the theory of information entropy, f̃i is the mean
gray value over the neighborhood of the fused image. The neighborhood mean gray value
composes the spatial feature vector of the gray distribution and can form a feature binary
group with the pixel gray values of the image ( fi, f̃i). The comprehensive feature X fi , f̃i

of
the gray value and the gray distribution of surrounding pixels is expressed as:

X fi , f̃i
=

g( fi, f̃i)

N2 (7)

where g( fi, f̃i) represents the number of occurrences of a single pixel feature binary group
at a certain position. Combined with the two-dimensional information entropy of the
image, Equation (8) calculates the entropy value of the final fused image F.

HF = −
L−1

∑
i=0

X fi , f̃i
log X fi , f̃i

(8)

The information entropy HF of the image at different fusion scales is calculated by
Equation (8) to gain the amount of the information of the fused image and utilize to
determine the optimal fusion threshold.
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2.4. Multi-Scale Spatial Attention Module

Selective visual attention enables humans to quickly locate salient objects in com-
plex visual scenes, inspiring the development of algorithms based on human attention
mechanisms [20]. In the field of deep learning, the attention mechanism can be seen as
a weighted combination of input feature mappings, where the weights depend on the
similarity between the input elements. Spatial attention is used to determine the location
salient information in a target image. For the remote sensing image with complex structures,
the lack of spatial structure leads to inaccurate positioning, with different weights between
different regions of the same channel. Spatial attention is calculated using Equation (9).

MS(F) = σ
{

f 5×5{[AvePool(F); MaxPool(F)]}
}
= σ

{
f 5×5

{[
Fs

avg; Fs
max

]}}
(9)

where σ denotes the sigmoid activation function, F denotes the feature map, and AvePool(·)
and MaxPool(·) denote average pooling and maximum pooling, respectively. f 5×5 denotes
a convolution operation with a 5× 5 pixel kernel. In this paper, we add a spatial attention
module under each scale to enhance the information interaction in space and to strengthen
the focus on valid information along the spatial dimension. The structure of multi-scale
spatial attention is denoted by the dotted box in Figure 5b.

Figure 5. The overall frame diagram of the fusion network and structure details. (a) The overall
frame diagram of the fusion network; (b) The structure details of the network.

3. Methods

The proposed method is mainly composed of three parts, including MCA, feature
extraction and feature fusion respectively. Firstly, the PAN image and the MS image
are decomposed by MCA, the multi-scale texture components of PAN image and the
multi-scale cartoon components of LRMS image are obtained. The spectral and spatial
information are preserved while the redundancy and noise are removed. As shown in
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Figure 5a, the feature extraction network module is composed of two branches cascade
convolution layers, which extract spectral features and spatial features obtained by MCA,
respectively. Then, feature fusion network is used to generate the MS image with high
spatial resolution. Finally, the optimal fusion scale is judged by information entropy theory,
so as to get the high-resolution multispectral (HRMS) image under the optimal scale.

3.1. Network Setup and Multi-Scale Fusion
3.1.1. Algorithm Flow

Figure 6 shows the flow chart of the proposed fusion method; the detailed steps are
as follows:

• A The joint LDCT dictionary D1 and CT dictionary D2 form the decomposition dictio-
nary D = [D1, D2], and MCA is performed on the input source images PAN and MS at
multi-scale to extract the texture component and cartoon components, respectively.

• The threshold values of the parameters are calculated using the information entropy
of the fused image from Step 3 to select the best extraction scale for the cartoon
component XC

MS of the MS image and the texture component XT
PAN of the PAN image.

• The optimal-scale cartoon component XC
MS and texture component XT

PAN are fused by
the attentional CNN to produce the final fused image.

Figure 6. The flow chart of the fusion algorithm.

3.1.2. Network Structure

PAN(i, j) and MS(i, j) are the corresponding pixels of the PAN image and MS image
at position (i, j), respectively. T(i, j) and C(i, j) are the pixels at the corresponding points
of the texture component and the cartoon component, respectively. The fused image
F is obtained by calculating the fused pixels F(i, j). Let NT(i, j) and NC(i, j) be the
neighboring pixel points of T(i, j) and C(i, j), respectively. The texture component and
cartoon component are through a 3× 3 pixel convolution kernel to calculate NT and NC,
respectively. Then, these neighboring pixels pass through a 1× 1 pixel convolution kernel
to obtain the fused image F.

Figure 5 shows the overall network model. The entire fusion network comprises
10 convolutional layers, where six convolutional layers XT

Fusioni and XC
Fusioni (i = 1, 2, 3)

have convolutional kernels of size 3× 3 pixels and the remaining convolutional layers
have convolutional kernels of size 1× 1 pixel. After each linear convolution operation,
we incorporate the Leaky ReLU (LReLU) activation function to further improve the fused
image. The convolution operations are expressed in Equation (10).

F = LReLU(X ∗ w) (10)

where X represents the input to the convolution. w is the convolution kernel and
LReLU(X) = max{0, x} is the nonlinear activation function.

In the fusion network, XTC
Fusion1 represents the fused image of the cartoon component

XC
Fusion and the texture component XT

Fusion after weighted averaging. The computation
process involves integrating the cartoon component and the texture component to construct
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the new image XTC
Fusion1 and then applying the convolution operation. Unlike XTC

Fusion1,
the inputs of XTC

Fusion2, XTC
Fusion3, and XTC

Fusion4 all contain three feature maps. For example,
we obtain XTC

Fusion4 by concatenating XT
Fusion3, XC

Fusion3, and XTC
Fusion3 and then convolving

them, where XT
Fusion1, XT

Fusion2, and XT
Fusion3 have the same number of feature maps as

XC
Fusion1, XC

Fusion2, and XC
Fusion3 (32, 64, and 128, respectively). Similarly, XTC

Fusion1, XTC
Fusion2,

and XTC
Fusion3 have 32, 64, and 128 feature maps, respectively.

Let Tk(k = 1, 2, 3) and Ck(k = 1, 2, 3) denote the output of the kth convolutional layer
in the two branches network of the texture component and the cartoon component, respec-
tively. Tk and Ck are calculated using Equations (11) and (12), respectively.

Tk(i, j, ch) = LReLU(Tk−1(i, j, ch) ∗ wk
T(ch)) (11)

Ck(i, j, ch) = LReLU(Ck−1(i, j, ch) ∗ wk
C(ch)) (12)

where ch is the channel index. wk
T(ch) and wk

C(ch) denote the kth layer of convolution kernels
for the texture component and the cartoon component, respectively.

In the fusion network, the fusion results of the previous layer are referred to in the
convolution operation of each layer. For each pixel in the final fused image, we can choose
to increase the size of its convolution kernel or use a deeper network model to expand the
area of its corresponding pixel in the original image to improve the fusion ability of the
network model.

3.1.3. Different Scale Fusion Results

Section 2.3 details the selection of the parameter 128/512 as the optimal fusion scale
of a set of remote sensing data. To corroborate that the fusion scale is optimal, we use
the proposed attentional CNN to fuse the cartoon component extracted from the MS
image and the texture component extracted from the PAN image at different scales, and
Figure 7 shows the corresponding fusion results. The Figure 7 confirms that using the
128/512 decomposition parameter yields the fewest artifacts and superior fusion results.
Furthermore, the information entropy diagram in Figure 8 also proves that the optimal
fusion result is obtained by using the parameter 128/512.

Figure 7. Fusion results at different scales.
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Figure 8. Information entropy line chart of fused images.

Figure 8 and Table 1 show the information entropy of the fused image F calculated by
Equation (8). The details present in the fused results are different at different scales, and
the calculation results show that the effective information contained in the image reaches
saturation using the 128/512 scale parameters, and the spectral and spatial information
of the source image is well preserved while removing part of the redundancy and noise.
This is because small-scale decomposition parameters lose too much information from
the original image, while an overly large scale does not increase the effective amount of
information because of redundancy and noise.

Table 1. Information entropy of fused images at different scales.

Different decomposition
coefficients (fusion scale) 8/512 16/512 32/512 64/512 128/512 256/512

The entropy of the
fused image 6.7898 6.8664 6.8701 6.8713 6.8731 6.8706

4. Results and Discussion
4.1. Model Training

We use a regression model to train the fusion function: f usion = F(PAN, MS), using
the l2 paradigm as the loss function, as expressed in Equation (13).

L(θ) =
1
n

n

∑
i=1
‖I − Fusion(θ; PAN, MS)‖2 (13)

where I is the original image from the training set, PAN represents a PAN image, and MS
is a low-resolution multispectral image. Fusion(θ; PAN, MS) is the fusion function of the
model output and the number of training samples is denoted by n. To solve the fusion
function Fusion, we need to minimize the I. The pixel values of the image range from 0–255
and are normalized to the interval [0, 1] before being input to the model.

Adam’s algorithm [21], an adaptive learning rate optimization algorithm of stochastic
gradient descent, is used as the optimization algorithm of our model. The initial learning
rate of the model was set to 0.001 and divided by 10 at 50% and 75% of the total number of
training phases. The training took 50 min per cycle and we trained for eight cycles. The
final training mean squared deviation of the model was 0.00017.



Sensors 2022, 22, 7339 10 of 19

4.2. Experimental Data

To assess the effectiveness of the proposed method, we conducted experiments on
four sets of remote sensing images with different topographical areas. The first set of
experimental data (Figure 9a,b) is obtained by the SPOT-6 satellite, which captures PAN
images with a spatial resolution of 1.5 m and MS images with a spatial resolution of 6 m.
Figure 10 shows the histogram of the evaluation indexes of each experimental result of the
first set of experimental data. The second set of experimental data (Figure 11a,b) is obtained
by the WorldView-2 satellite, which captures PAN images with a spatial resolution of 0.5 m
and MS images with a spatial resolution of 2 m. Figure 12 shows the histogram of the
evaluation indexes of each experimental result of the second set of experimental data. The
third set of experimental data (Figure 13a,b) are MS images with a resolution of 19.5 m
from the China-Brazil Earth Resources Satellite (CBERS) image and PAN images with a
resolution of 15 m from the Landsat ETM+ image. The test area is located in Doumen
District, Zhuhai City, Guangdong Province, including agricultural land, water bodies and
forest land. Figure 14 shows the histogram of the evaluation indexes of each experimental
result of the third set of experimental data The last set of experimental data (Figure 15a,b)
are MS images with 4 m resolution and PAN images with 1 m resolution from IKONOS
images. The experimental area is located in Beijing Normal University, and includes a
playground, vegetation, and buildings. Figure 16 shows the histogram of the evaluation
indexes of each experimental result of the last set of experimental data

4.3. Evaluation Indexes

We use Figures 9a and 11a as reference images to objectively verify the perfor-
mance of different fusion methods in the first and second groups of experiments. We
use four objective evaluation indexes to evaluate the experimental results: correlation coef-
ficient (CC) [22], root mean square error (RMSE) [23], relative dimensionless global error
synthesis (ERGAS) [22], and peak signal to noise ratio (PSNR) [24].

CC reflects the correlation between two images, and a larger correlation parameter
indicates more similarity between two images.

CC(IH , IW) =

M
∑

i=1

N
∑

j=1

(
(IH(i, j)− IH

)(
IW(i, j)− IW

)
√

M
∑

i=1

N
∑

j=1
(IH(i, j)− IH)

2 ×
M
∑

i=1

N
∑

j=1
(IW(i, j)− IW)

2
(14)

Among them, IH , IW represent the pixels of the fused image and the ideal reference
image respectively. IH , IW represent the average of pixels. The ideal CC value is 1.

RMSE is the difference between the pixel values of the fused image and the reference
image. The ideal value of RMSE is 0.

RMSE(IH , IW) =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(IH(i, j)− (IW(i, j))2 (15)

The spectral and spatial quality of the fused image is evaluated using the ERGAS algorithm.

ERGAS = 100
h
l

√√√√ 1
L

L

∑
l=1

(
RMSE(l)

u(l)

)2

(16)

where h and l represent the resolution of PAN image and MS image respectively. L is
the number of bands. u(l) is the mean value of the original MS band l. A smaller value
indicates a higher quality fused image, and the ideal value is 0.
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PSNR reflects the degree of noise and distortion level of the image.

PSNR = 10× log10

( (
2N − 1

)2

1
MN ∑M

i=1 ∑N
j=1(IH(i, j)− (IW(i, j))2

)
(17)

The high value of PSNR indicates that the fused image is closer to the reference image
and therefor of higher quality.

For the third and fourth groups of experiments, we use the following three common
objective evaluation indexes to evaluate the experimental results: quality without reference
(QNR) index [25], and two components Dλ and Ds to quantify the spectral distortion and
spatial distortion, respectively [26].

Dλ =

√√√√ 2
C(C− 1)

C

∑
i=1

C

∑
j>1
|Q( Îi, Îj)−Q(ILM

i , ILM
j )| (18)

DS =

√√√√ 1
C

C

∑
i=1
|Q( Îi,P)−Q(ILM

i , PLM)| (19)

where ILM represents the LRMS image and C represents the number of bands. Î indicates
the HRMS image, and P indicates the PAN image. Q denotes the Q-index.

QNR = (1− Dλ)
α(1− DS)

β (20)

where α and β are usually set to 1. The ideal value of QNR is 1, and the ideal value of Dλ

and Ds is 0.

4.4. Experimental Results

The experimental results compare our proposed approach with Brovey [27], GS [28],
IHS [29], ATWT [30], PCA [31], DWT [32], PanNet [33], FCNN [34], and PNN [35]. For our
method, we use the calculated optimal fusion threshold to obtain the final experimental
results. Figures 9, 11, 13, and 15, respectively, show the experimental results of different
satellite data.
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Figure 9. Fusion results for the first group of remote sensing image data.

Figure 9 shows the fusion results for the first set of data. As can be seen from Figure 9c–h,
although the fusion images obtained by the traditional methods have high spatial resolution,
the spectral color is too saturated and there is a large area of spectral distortion. Figure 9i,k
show the fusion results of the two deep learning methods, with varying degrees of spectral
distortion and low spatial resolution. The spectral distribution of landmarks and other parts
in Figure 9j and the method in this paper (Figure 9l) are more uniform, and the color effect is
closer to the spectral information of MS images. However, in comparison, our method better
reflects the high-frequency detail features. In addition, in the wheat field and other large areas
where the spectral information is relatively close, the effect of our method is optimal. Table 2
and Figure 10 display the evaluation indexes for the first set of data fusion results, where the
bold numbers indicate the best score for each evaluation indexes. Compared with the other
seven methods, our method achieves better results for all of the evaluation indexes. These
quantitative results, in conjunction with the subjective visual results in Figure 9, show that our
method outperforms existing fusion methods.

Table 2. The first group evaluation indexes of different fusion results.

Fusion Method PSNR ERGAS RMSE CC

Brovey 26.4100 6.1519 20.1044 0.9806
GS 28.7420 5.1143 20.0054 0.9811
IHS 28.7369 5.1160 20.0105 0.9810

ATWT 28.8015 6.8793 19.9130 0.9740
PCA 28.5646 6.0954 20.1777 0.9790
DWT 27.4118 6.9636 19.1508 0.9726

PanNet 28.5425 5.1880 18.2084 0.9908
FusionCNN 27.5199 4.3925 17.7332 0.9916

PNN 27.9194 4.4152 18.8455 0.9815
Ours 28.8136 3.8734 16.2711 0.9934

Figure 10. Cont.
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Figure 10. Histogram results of the first group of evaluation indexes.

Figure 11 shows the fusion results on the second set of data, which mainly contains
mountains and vegetation. The traditional methods (Figure 11c,h) result in different
degrees of distortion in vegetation color with over-brightness or darkness compared with
the original MS image. Compared with the traditional methods, the deep learning methods
used to obtain Figure 11i,k achieve better spectral quality but not high spatial quality.
The spectral information of the vegetation part in Figure 11j does not reflect the obvious
difference between light and dark, the edge of the mountain is not smooth enough, and
the spatial resolution is not as good as that of the method in this paper (Figure 11l). These
results combined with the evaluation indexes in Table 3 and Figure 12 show that our fusion
results are superior.

Figure 11. Fusion results for the second group of remote sensing image data.



Sensors 2022, 22, 7339 14 of 19

Table 3. The second group evaluation indices of different fusion results.

Fusion Method PSNR ERGAS RMSE CC

Brovey 31.9912 5.4425 27.3828 0.8618
GS 32.5129 5.2646 26.6783 0.8663
IHS 32.4823 5.2995 26.7186 0.8664

ATWT 35.8258 2.5560 12.9034 0.9648
PCA 31.9379 5.4145 27.4569 0.9657
DWT 34.3709 2.6027 13.1378 0.9635

PanNet 37.4864 3.1304 14.7722 0.9653
FusionCNN 37.6786 2.5543 12.8365 0.9804

PNN 37.5268 3.1121 14.8292 0.9671
Ours 38.3922 2.5403 12.7677 0.9809

Figure 12. Histogram results of the second group of evaluation indexes.

Figure 13 shows the fusion results of different fusion methods on the third group
of remote sensing images. Because of the relatively close resolution of images from this
group of data sources, the optimal fusion scale is also different from the first two groups of
experiments. All of the methods improve the quality of the fused images to some extent
compared with the input PAN images and MS images. However, the fusion results of the
traditional methods all show spectral distortion compared with the deep learning methods.
It is clear from Figure 13c–h that both the mountainous part in the upper left corner and
the vegetation part in the lower right corner exhibit more pronounced spectral distortion
compared with the original multispectral image. Figure 13j and our method both retain
the spectral and spatial information of the input image more completely, but our proposed
fusion method still outperforms FCNN in terms of spatial information retention. Table 4
and Figure 14 list the third set of objective evaluation indexes. The bold numbers in Table 4
indicate the best value for each evaluation index. With the exception of the Dλ metric, our
method obtains the best results.
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Figure 13. Fusion results for the third group of remote sensing image data.

Table 4. The third group evaluation indexes of different fusion results.

Fusion Method QNR Dλ Ds

Brovey 0.7979 0.3343 0.1022
GS 0.8863 0.1717 0.0407
IHS 0.7316 0.3245 0.0503

ATWT 0.7375 0.0843 0.1465
PCA 0.8767 0.2464 0.0562
DWT 0.7886 0.1114 0.1302

PanNet 0.9273 0.0522 0.0373
FusionCNN 0.9041 0.0679 0.0356

PNN 0.9368 0.0530 0.0396
Ours 0.9528 0.0696 0.0348

Figure 14. Histogram result of the third group of evaluation indexes.
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Figure 15 shows the fusion results of different fusion methods on the last set of remote
sensing images. Because one of the two football fields in this geographical location is a real
turf and the other is artificial turf, there are some differences between the two football fields
in the input source images. Figure 15c,h retain better spatial resolution in the building
area, but have more severe spectral distortion, obtaining too dark and too bright spectra,
respectively. Figure 15i,k present the same problems, The Dλ index in Figure 15i also
reached the best value, but its spatial resolution was very low, and the overall image
appeared blurred. Figure 15j has a higher spatial resolution but still has some shortcomings
in terms of spectral preservation compared with our method (Figure 15i). In terms of
subjective visual effects, our method outperforms the other algorithms in terms of spectral
preservation and texture detail. Table 5 and Figure 16 present the evaluation indexes for the
fourth set of data, where the bold numbers indicate the best value for each evaluation index.
Although our method does not obtain the best Dλ metric, combined with the subjective
visual results in Figure 15, our proposed algorithm outperforms the other fusion methods
overall, especially in terms of spatial resolution.

Figure 15. Fusion results for the fourth group of remote sensing image data.

Table 5. The fourth group evaluation indexes of different fusion results.

Fusion Method QNR Dλ Ds

Brovey 0.7200 0.0323 0.1754
GS 0.8673 0.0278 0.4198
IHS 0.7481 0.0399 0.4409

ATWT 0.8777 0.0531 0.2787
PCA 0.7813 0.0365 0.3911
DWT 0.8917 0.0896 0.1870

PanNet 0.9388 0.0253 0.0424
FusionCNN 0.9041 0.0273 0.0427

PNN 0.9385 0.0343 0.0528
Ours 0.9515 0.0262 0.0418
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Figure 16. Histogram result of the fourth group of evaluation indexes.

5. Conclusions

In this paper, we propose a remote sensing image fusion method using morphological
convolutional neural networks with information entropy for optimal scale. Our method
extracts the texture and cartoon components of remote sensing images at multi-scale using
MCA and selects the best scale using information entropy theory. The spectral and spatial
information of the input image is fully utilized while avoiding information loss. In the
network design stage, we obtain the final fusion result using an attentional convolutional
neural network to retain source image information while enhancing the extraction of
the input image details. We provide an experimental analysis on different types of data
acquired from different satellites to demonstrate that our method better maintains the
spectral information and obtains richer spatial details than existing fusion methods.

In future work, we will keep using the idea of MCA combined with deep learning to
apply this work not only to MS image and PAN image fusion. Our scheme can be improved
by continuing to refine the network structure to apply hyperspectral image and MS image
fusion or hyperspectral image and PAN image fusion.
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