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Abstract: Harmful cyanobacterial bloom (HCB) is problematic for drinking water treatment, and
some of its strains can produce toxins that significantly affect human health. To better control
eutrophication and HCB, catchment managers need to continuously keep track of nitrogen (N)
and phosphorus (P) in the water bodies. However, the high-frequency monitoring of these water
quality indicators is not economical. In these cases, machine learning techniques may serve as viable
alternatives since they can learn directly from the available surrogate data. In the present work, a
random forest, extremely randomized trees (ET), extreme gradient boosting, k-nearest neighbors, a
light gradient boosting machine, and bagging regressor-based virtual sensors were used to predict N
and P in two catchments with contrasting land uses. The effect of data scaling and missing value
imputation were also assessed, while the Shapley additive explanations were used to rank feature
importance. A specification book, sensitivity analysis, and best practices for developing virtual
sensors are discussed. Results show that ET, MinMax scaler, and a multivariate imputer were the best
predictive model, scaler, and imputer, respectively. The highest predictive performance, reported in
terms of R2, was 97% in the rural catchment and 82% in an urban catchment.

Keywords: water quality monitoring; specification book; baseline model; accuracy benchmark; data
scaling; missing values handling; surrogate parameters; soft-sensor; machine learning

1. Introduction
1.1. Background and Motivation

Eutrophication (Eutro) and harmful cyanobacterial bloom (HCB) are causes of concern
around the world, with vital water bodies frequently experiencing increasingly toxic blooms
in the past few decades [1]. Eutro refers to the nutrient enrichment of water mainly from
agricultural sources, wastewater discharges, industrial wastes, and urban runoff [2], while
HCB is one of the most severe symptoms of Eutro [3]. HCB is problematic for the drinking
water treatment process [4], and some strains can produce toxins (cyanotoxins) that have
significant health effects on humans, animals, and other organisms [5].

In addition, the severity of Eutro and HCB has significant ecological and socio-
economic costs due to the (i) increase in costs associated with water treatment, (ii) adverse
effects on waterfront real estate, (iii) tourism and recreational losses due to the negative
perceptions of water quality (WQ), (iv) animal fatalities, and (v) fish mortality [6]. Africa is
particularly vulnerable to these economic losses due to its lag in socio-economic develop-
ment. This assertion is substantiated by the fact that the combined costs of eutrophication
in England and Wales and the USA were about US$160 million per year in 2003 [7] and
US$2.2 billion per year in 2009 [8], respectively.

Therefore, water bodies need to maintain an acceptable chemical, physical, and bio-
logical status in order to preserve raw water supply, protect human and animal health, and
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safeguard the natural ecosystems and biodiversity. To achieve this, catchment managers
need to continuously keep track of key WQ indicators. Nitrogen (N) and phosphorus (P)
are the two major nutrient drivers of surface water Eutro [3]. Thus, efficient control and
monitoring of these nutrients, in the context of reducing the risk of Eutro, depends on
the cost, accuracy, reliability, and capability of the corresponding measurement process to
collect continuous in-situ data in real-time [9,10].

During the pre-industrial era, nutrient (primarily N and P) concentrations in water
bodies were generally low [11]; hence infrequent (i.e., weekly or monthly) monitoring
through discrete sampling campaigns was sufficient [12]. However, recent increases in
municipal and industrial wastewater releases, which in some cases are only partially
treated, and the increased production of nutrients to support agricultural fertilization have
dramatically increased their presence in water bodies [11]. Consequently, the commonly
applied monitoring approach that relies on analyzing grab samples in laboratories is no
longer effective, particularly in terms of analysis costs and delays in data acquisition [13].
These drawbacks highlight the need for cost-effective, reliable, and accurate sensors for
continuous in-situ monitoring of these nutrients.

Commercially, several sensor technologies are available for measuring nutrient concen-
trations. These technologies can be classified into nonchemical optical sensors, ion-selective
electrodes (ISE), and wet-chemical analyzers. While ISE (commonly used for measuring N)
are relatively cheaper, they are inaccurate and susceptible to interferences and significant
drifting over shorter periods [14], making their frequent calibration necessary for data
reliability. In contrast, optical sensors and wet-chemical analyzers (commonly used for
measuring P) show higher resolution, accuracy, and precision, but are more expensive and
have high power requirements and maintenance costs [14]. These shortcomings may limit
their long-term deployment for continuous (or high-frequency) outdoor monitoring.

In these cases, machine learning (ML) techniques may serve as viable alternatives
since they can learn directly from the available WQ data. These techniques can enable the
prediction of target variables (e.g., N and P) using other easily and continuously measurable
WQ variables as surrogates. The model that exploits available surrogate data to infer the
target (or hard-to-measure) variables is called a virtual (or soft) sensor. Figure 1 shows a
conceptual representation of the virtual sensing system.
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Some key factors that affect the operation of these virtual sensors include the complex-
ity of the model, acceptable predictive accuracy, the type and number of surrogate sensors,
and the availability of high-quality training data [9]. Thus, the core issue is to develop
robust and inexpensive virtual sensors with excellent performance.

1.2. Literature Review

We are aware of only three studies that have assessed the feasibility of ML techniques
for predicting nutrient concentrations, particularly for WQ monitoring purposes. Castrillo
and García [9] used multiple linear regression (MLR) and random forest (RF) models to
estimate nutrient concentrations in the rural and urban catchments of the River Thames in
the UK. They considered only the variables most commonly measured in real-time (in-situ)
as predictors (or surrogates). However, the modeling accuracy, reported in terms of the
root mean squared error (RMSE) and the normalized RMSE (nRMSE), is not state-of-the-art
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(except for nitrate). For instance, the average nRMSE for both catchments is 21% and
increases to 24% when excluding nitrate prediction in the rural catchment.

Elsewhere, Ha et al. [3] also used RF and MLR models to estimate nutrient concentra-
tions in the Tri An reservoir in Vietnam. Amongst the predictors, they included chemical
and biochemical oxygen demand. However, high-frequency monitoring of both these
variables is not feasible due to their sensors’ reliability and prohibitive cost [15,16]. Al-
though the predictive performance (reported in terms of the RMSE and the coefficient of
determination (R2)) in the validation phase was tolerable (average R2 was 0.858), the results
may be biased since the dataset is relatively small, in which case, the results depend on
which data was used for model training vs. validation. The performance assessment based
on the data split randomly over the entire dataset (as opposed to the year-based split) may
have enabled a more robust conclusion.

Recently, Harrison et al. [12] employed RF to estimate nutrient concentrations within a
forested area (Lake George) in New York, USA. They mainly used the variables with high-
frequency sensor data (except for fluorescent dissolved organic matter and soil moisture) as
surrogates. However, the predictive performance, reported in terms of the Nash-Sutcliffe
Efficiency (NSE), was not state-of-the-art, especially for phosphorus fractions. For instance,
the NSE was 32% for soluble reactive P, 47% for total soluble P, 74% for total P, and 76% for
particulate P.

Therefore, despite the recognition of the urgent need for accurate, reliable, and cost-
effective monitoring programs [17], scientific progress has been rather sluggish. Further-
more, two of the three studies [3,12] build their predictive models using the data from
one watershed of interest. Thus, even though the authors reported the accuracies better
than [9] (who used two watersheds with contrasting land uses), the conclusions from
their studies are not adequately substantiated since the robustness of their models may be
limited [18]. Additionally, apart from applying the same ML algorithm (RF) across different
study areas, all studies failed to achieve the target accuracy (defined in Section 3.1.3) for
most variables, particularly P fractions. This drawback may impede the uptake of virtual
sensing for operational purposes. However, the success of other ensemble techniques such
as the extremely randomized trees algorithm [19], which has been tremendous in various
application domains in recent years, is yet to be explored for N and P prediction.

In addition, there is also a lack of (i) effective baseline models and (ii) established
datasets and accuracy benchmarks. For instance, MLR is not an appropriate baseline
since WQ data often exhibit multicollinearity, nonlinear relationships, and skewed distri-
butions [12]. Additionally, each work used different datasets since there is no standard
benchmark, and the accuracy is reported using different performance metrics. In the ab-
sence of open-source implementations, these inconsistencies make it difficult to compare
and critically assess the models’ performance, and this impedes the research progress.
Further, it is unclear what predictive accuracy would be desired to trigger management
actions when nutrient concentrations exceed the regulatory thresholds. Accordingly, there
is a need for a specification book that would form a basis for a robust and rigorous virtual
sensor development process. Such a specification book, including the provision of adequate
modeling details, would also make the experiments repeatable and results reproducible;
the two issues essential for advancing the research field [20].

The other common issue with WQ data is the high number of outliers [21]. For
example, except for temperature, all the variables in the present work have outliers (values
outside the whiskers of a boxplot). A common procedure is to use either the three-sigma
rule [22] or the interquartile range method [23] to identify and delete the outliers. However,
because of the multivariate nature and seasonal variability of WQ data [21,24], removing
these outliers may not be the most effective procedure since they may be legitimate, and we
do not want to lose their impact. Consequently, this directly impacts the method used for
data scaling since some scalers are very sensitive to the presence of outliers. Although the
performance of metric and gradient-based ML algorithms depends on appropriately scaled
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data [25], the effect of various scalers and transformers on the predictive performance of N
and P concentrations is yet to be assessed.

Another prevalent issue is the presence of many missing values (MVs) in WQ data.
For instance, the raw data in the present work (described in Section 2.1) have a missing
rate as high as 41% (total reactive P) in one catchment. How these missing data are
handled remains crucial since many ML algorithms do not support data with MVs. A
commonly applied basic strategy is to discard the entire columns and/or rows containing
MVs. For example, Castrillo and García [9] managed the MVs by deleting the rows that
contained such values. However, this has the drawbacks of (i) losing data which may be
valuable even though incomplete and (ii) reducing the size of the datasets, which on many
occasions are already small. For instance, the four-year dataset used by Ha et al. [3] had
only 1047 observations. Therefore, a better strategy may be to impute these MVs, i.e., to
infer them from the non-missing part of the data [26]. Consequently, there is a need to
explore the effect of imputation algorithms on the predictive performance of N and P.

1.3. Work Objectives

In addressing the limitations mentioned above, the present work aims to formalize the
virtual sensing concept for nutrient monitoring. In particular, the study seeks to achieve
the following objectives:

1. To present a specification book for virtual sensor-based N and P monitoring. The
specification book (i) proposes more effective baseline models, (ii) recommends perfor-
mance metrics to enable adequate model comparison, (iii) recommends the different
levels of predictive accuracy benchmarks based on the requirements of data quality
objectives, and (iv) proposes the benchmark datasets;

2. To assess the effect of different scalers (Standard, MinMax, MaxAbs, and Robust
Scaler) and transformers (Quantile and Power Transformer) on ML algorithms and
virtual sensor performance on WQ data with outliers;

3. To assess the effect of univariate, multivariate, and nearest neighbor imputation
methods in the prediction of N and P concentrations.

The remainder of this article is structured as follows. Section 2 (i) introduces the study
areas and water quality data, (ii) discusses exploratory data analysis and preprocessing,
and (iii) highlights some of the best practices when developing the virtual sensors while
the results and discussion are presented in Section 3.

2. Materials and Methods
2.1. Description of Study Areas and Water Quality Data

The open dataset employed in this work was obtained from the UK Centre for Ecology
and Hydrology’s Environmental Information Data Centre, available at https://catalogue.
ceh.ac.uk/documents/db695881-eabe-416c-b128-76691b2104d8 (accessed on 17 September
2022). The hourly chemical and physical monitoring data for The Cut (a highly urbanized
catchment) and the River Enborne (a relatively rural catchment) were taken between 2010
and 2012 and 2009 and 2012, respectively. Regarding land use statistics, 39% of the River
Enborne catchment is designated as ‘Arable and Horticulture’ and 21% as ‘Broadleaf
Woodland’ [27]. On the other hand, 30% of The Cut catchment is designated as improved
grassland, 26% as arable land, and 15% as woodland [28].

These two tributaries with contrasting land-use receive sewage effluent from a small
waste treatment plant (River Enborne) and major towns (The Cut) [29]. Detailed documen-
tation of the catchments, such as maps, satellite view photos, sampling locations, and infor-
mation concerning monitoring methodology and instrumentation characteristics, comes
with the datasets as supporting documentation and is also provided in Wade et al. [29]. For
ground-truthing the data, the two rivers were monitored using identical (i) infrastructure,
(ii) chemical analysis methodologies, and (iii) monitoring sondes, and the data were vali-
dated with weekly grab sampling and laboratory analysis [29]. The parameters measured
in each catchment are listed in Table 1.

https://catalogue.ceh.ac.uk/documents/db695881-eabe-416c-b128-76691b2104d8
https://catalogue.ceh.ac.uk/documents/db695881-eabe-416c-b128-76691b2104d8
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Table 1. Datasets used for virtual sensor development: parameters measured in each catchment, their
chemical formulas, and descriptions where N/A denotes the absence of standard formulas and •
indicates the catchment where the variable was measured.

Predictors Formula The Cut Enborne Description

pH N/A • • A measure of water’s acidity or basicity. A changing
stream pH indicates an increase in water pollution.

Flow rate N/A • •

The volume of water flowing past a point per unit time.
Streamflow and runoff drive the generation and

delivery of various diffuse (non-point) pollutants;
therefore, the knowledge of streamflow enables the

determination of pollutant loads.

Turbidity N/A • •
A measure of water’s relative clarity. It is an optical
characteristic that indicates the presence of bacteria,

pathogens, and other harmful contaminants.

Chlorophyll C55H72O5N4Mg • •
A measure of how much algae is growing in a water
body. It is usually used to classify the water body’s

trophic condition.

Temperature N/A • •
A property that expresses how cold or hot the water is.

It influences various other variables and can alter
water’s chemical and physical properties.

Conductivity N/A • •
A measure of water’s ability to conduct electricity. Its
increase may indicate that a discharge has decreased

the water body’s relative health or condition.

Dissolved oxygen O2 • •
A measure of how much non-compound oxygen is
available in the water. It is a direct indicator of the

water body’s ability to support aquatic life.

Nitrogen as nitrate NO3 •

Nitrates are one form of nitrogen found in aquatic
environments. Although nitrates are vital plant

nutrients, their excess amounts can
accelerate eutrophication.

Nitrogen as
ammonium NH4 •

Ammonium is another form of nitrogen found in water
bodies. It has toxic effects on aquatic life at

elevated concentrations.

Total phosphorus P •

Total phosphorus is more stable and, therefore, a more
reliable index of the phosphorus status in water bodies.
Similar to nitrates, excess amounts of phosphorus lead

to eutrophication and harmful algal growth.

Total reactive
phosphorus PO4

3− • •

Total reactive phosphorus (orthophosphate) is
regarded as the best indicator of the nutrient status of

water bodies. It has similar effects to nitrates and
ammonium in excess amounts.

As seen in Table 1, most of the parameters are common in both catchments except for
nitrogen, measured as nitrate (NO3) in the River Enborne and ammonium (NH4) in The
Cut. Additionally, total phosphorus was only measured in The Cut.

2.2. Data Analysis Frameworks

Data analysis and statistical operations were performed using the following open-
source libraries (where version numbers are given in brackets) [26]:

1. Pandas (1.0.5): Used for data analysis and manipulation;
2. NumPy (1.18.5): Used for array computations;
3. SciPy (1.5.0): Used for statistical tests;
4. XGBoost (2.0.0): An optimized distributed gradient boosting library that implements

ML algorithms under the gradient boosting framework;
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5. LightGBM (3.3.2): A gradient boosting ML framework that uses tree-based learning algorithms;
6. SHAP (0.41.0): Used to explain individual predictions;
7. Scikit-Learn (1.1.0): A library for ML in Python programming language;
8. Python (3.8.3): Chosen because of its growing usage in academic and industrial

settings [26].

2.3. Exploratory Data Analysis and Preprocessing

The available data, 15,636 records for The Cut and 20,412 records for the River Enborne,
are provided in Comma-Separated Values (CSV) format. Data preprocessing transforms
input data into a form appropriate for modeling. In this work, exploratory analysis de-
tected the outliers while preprocessing included data transformation, scaling, and missing
values handling.

2.3.1. Box and Whisker Plot Analysis: Outlier Detection

A box and whisker plot (or boxplot) was chosen for outlier detection because it
provides an insightful visualization of how spread out the data are. As seen in Figure 2 (as
an example), a considerable number of data points are outside the whiskers of the box plot,
demeaning these outliers as normal.
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2.3.2. Data Transformation

To improve the predictive performance, some ML models, such as random forest
and linear regression, require features to be as close as possible to normal (or Gaussian)
distribution [30]. To minimize skewness and stabilize variance in variables not normally
distributed, the transformation is performed by mapping the variable of interest x into the
target variable y = f (x), with the common mapping function f as one of the following:
the cubic root f (x) = 3

√
x, the square root f (x) =

√
x, the reciprocal f (x) = 1/x, the

logarithm f (x) = ln x, the Yeo-Johnson [31], and Box-Cox transforms [11]. In the present
work, normality was checked by computing the Fisher-Pearson coefficient of skewness
using the SciPy library. Contrary to applying the same transformation based on whether
the features are positively or negatively skewed, as was the case in [9], each variable was
transformed using all the mentioned mapping functions, and the one that resulted in the
lowest skewness was then chosen for that particular variable, as shown in Table 2.
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Table 2. Transformation of variables in each catchment.

Variable
Transformation

The Cut River Enborne

Flow rate (Flow) Reciprocal Logarithm
Chlorophyll (Chl) Logarithm Logarithm

Dissolved oxygen (DO) Square root Logarithm
Nitrate (as NH4 or NO3) Cube root Cube root

Turbidity (Turb) Reciprocal Reciprocal
Total Reactive Phosphorus (TRP) None Cube root

pH None Reciprocal
Conductivity (EC) None None

Temperature (Temp) None None
Total Phosphorus (TP) Square root

Importantly, all these are simple transformations that do not use any learnable param-
eters and therefore do not risk data leakage (discussed in Section 2.4.4) when performed
before data splitting. As seen in Table 2, the appropriate mapping function for flow rate in
The Cut and turbidity in both catchments is the reciprocal function, although Castrillo and
García [9] applied the logarithmic function. This contradiction demonstrates the importance
of data analysis (or visualization) before and after each transformation.

2.3.3. Data Scaling

Features such as conductivity and total reactive phosphorus in both catchments have
very different scales and contain many outliers. These two characteristics can degrade
the predictive performance of many ML algorithms [26]. Additionally, unscaled data
can slow (or even prevent) the convergence of several gradient-based algorithms like
neural networks and support vector machines. We compared the effect of MinMaxScaler,
MaxAbsScaler, StandardScaler, RobustScaler, QuantileTransformer, and PowerTransformer
on ML algorithms and virtual sensor performance on WQ data with outliers.

2.4. Virtual Sensor Development: Best Practices

The limited number of studies concerning the application of virtual sensing for nutrient
monitoring indicates that the research field is still in its infancy. Therefore, this section
discusses some of the best practices that will aid in interpretability and improved trust in
ML models for regulatory purposes.

2.4.1. Selection of Input Variables

Good practice in any ML model development is to select a subset of relevant input
variables. This is to avoid overfitting and therefore improve model generalization. For
virtual sensing, the requirement is also to have the minimum best subset of these predictors
since it determines the surrogate sensors that will be involved in the continuous monitoring
program. Industrially, most of the current real-time or near real-time monitoring appli-
cations rely on one or more of the following WQ parameters: turbidity (Turb), dissolved
oxygen (DO), temperature (Temp), pH, conductivity (EC), and chlorophyll (Chl) [29,32].
Due to advances in material science and sensor technologies, it is relatively easy to measure
these parameters [32]; therefore, their high-frequency monitoring provides vital WQ data
required to best manage the water bodies. However, none of these parameters can identify
a specific pollutant but only serve as a screening method [32]. That is, their sudden and
uncharacteristic change serves as a warning against water contamination.

In the virtual sensing context, using these variables as N and P surrogates makes
financial and operational sense since they are easily and economically monitored in real-
time. However, this real-time monitoring is only prevalent in developed countries due to
the adoption of the Water Framework Directive [33]. In less developed countries, where
monitoring cost is the main barrier [13], real-time monitoring of the six predictor variables
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may still be expensive considering the required number of sampling points in water bodies.
In such cases, the objective would be to monitor fewer variables since that would reduce
the cost of purchasing and operating the surrogate sensors. A drastic deviation of the
predicted N and P concentrations from baseline conditions can then be used as an early
warning to trigger additional testing or initiate preventive measures.

To select the relevant predictors, the standard procedure in various water sciences
modeling studies is to apply diverse variable selection methods such as best subset selection,
stepwise selection with bootstrapping, partial mutual information, hierarchical partitioning,
and Pearson correlation [9,12]. From the six predictors commonly measured in real-time,
we sought the minimum best subset based on feature importance (or ranking) in the present
work. This is crucial for interpretability since it reveals how much each predictor contributes
to the observed predictions. We selected suitable surrogates based on Shapley Additive
exPlanations (SHAP) feature importance. SHAP is a unified approach that explains any
ML model’s output (or prediction) by connecting local explanations with coalitional game
theory [34]. We selected ET as an explainer model since it is the best-performing model
(discussed in Section 3). As a sanity check, we compared the chosen features with those
obtained by the RF-based explainer model and observed minor differences in feature
ranking. For instance, the ET-based explainer ranked nitrate predictive features (in the
River Enborne) as EC, Temp, pH, DO, Turb, and Chl, while the RF-based explainer ranked
them as EC, pH, Temp, Turb, Chl, and DO.

Notably, flow rate is not among the most commonly measured variables according
to [29,32]. Considering that it is one of the important predictors in four of the five target
variables (discussed in Section 3.1.4), it may be advisable to include it in monitoring
programs, particularly in rural settings. For instance, it is the second most influential
variable for TRP prediction in the River Enborne and ranks third for nitrate prediction in
the same catchment based on the stepwise forward subset selection method [9]. However,
it is excluded from the predictors in the present work since it is not commonly measured in
real-time [29,32].

2.4.2. Cross Validation

Training and testing a ML model on the same data would produce a perfect predictive
score but fail dismally on yet-unseen data. This is a classic example of a situation called
overfitting. To avoid it, a standard practice in any supervised ML experiment is to randomly
split the data into training and testing (evaluating) sets. However, when evaluating different
estimator settings (also called hyperparameters), the risk of the test set overfitting is still
prevalent since the settings can be tweaked until the model performs optimally. This way,
the test set information can ‘leak’ into the model resulting in the evaluation metrics no
longer reporting on the generalization performance.

Therefore, yet another portion of the dataset (so-called validation set) must be held
out. This is to enable the training to happen on the training set and then the evaluation on
the validation set, after which the final evaluation can be performed on the test set when
the experiment is deemed successful. However, partitioning data into three sets drastically
reduces the number of samples used to train the mode, and the results can depend on
which random pair of train and validation sets were used [26].

This problem is solved by a procedure known as cross-validation (CV). While the test
set is still necessary for final evaluation, the validation set is not required when performing
CV. One type of CV, known as k-fold, splits the training set into k smaller folds or sets
where each one is utilized iteratively for testing the model while the remaining k − 1 folds
are used as training data. The performance reported by k-fold CV is then the average of
values from the loop. In the present work, the datasets were split into train and test sets
using a shuffled k-fold CV with k = 10 and a 20% subset reserved for the final test.
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2.4.3. Hyperparameter Tuning

Hyperparameter tuning (or optimization) is a process of choosing a subset of optimal
hyperparameters for ML algorithms. A Grid Search CV is currently the most widely
used parameter optimization method [26]. It searches for optimal hyperparameters by
exhaustively considering all parameter combinations. In the present work, a five-fold Grid
Search CV was used to find the ideal hyperparameters. Increasing the hyperparameter
search space is computationally very expensive; therefore, we only searched over the
main parameters. For tree-based models, for example, those are the number of trees (or
n_estimators) and the size of the random subsets (or max_features) in the Scikit-Learn
library. The resulting optimal values did not significantly improve the models. That is,
the accuracy rating levels (as proposed in Table 3) did not change. Therefore, we kept the
default hyperparameters in order to speed up the training process.

Table 3. Proposed accuracy requirements for virtual sensor-based nutrient monitoring.

Accuracy Metric
Accuracy Ratings

Target Acceptable Tolerable Poor

R2 95–100% 90–94% 85–89% 80–84%

2.4.4. Avoiding Data Leakage

Data leakage is a common methodological pitfall in ML-based science [26]. It occurs
when the model has access to the test set information before its predictive performance
is evaluated, resulting in overly optimistic results with no value in practice. A common
course of data leakage is not separating the train and test data subsets during all the pre-
processing [26]. Although both train and test sets should receive the same transformation,
the general rule (or best practice) is that these transformations should only be learned from
the training subset, and then the test data be transformed, as done on the training data. A
pipeline class in Scikit-Learn (implemented in this work) makes it easier to chain all the
preprocessing transformations with estimators without risking data leakage.

2.4.5. Imputation of Missing Values

Imputation refers to the process of replacing missing data with plausible estimates
learned from non-missing data. Univariate imputation replaces the MVs in a particular fea-
ture dimension with statistical estimates such as the median, mean, or mode of non-missing
values of the same feature dimension (or variable). In contrast, multivariate imputation
is a more sophisticated approach that models each feature with MVs as a function of
other features and utilizes that approximation for imputation [26]. On the other hand,
k-nearest neighbor (kNN) imputation imputes each missing feature using available values
from the nearest neighbors for the feature and averages these closest points to fill in the
missing value. We assessed the effect of univariate (mean, median, and mode), multivari-
ate (bayesian ridge, RF, extreme gradient boosting, light gradient boosting machine, and
bagging regressor), and kNN imputation techniques on the predictive performance of N
and P concentrations.

3. Results and Discussion
3.1. A Specification Book

To guarantee that hardware sensors can satisfy the requirements of high-quality data
to meet the monitoring requirements, they undergo a rigorous certification process that tests
for acceptable accuracy, precision, and resolution, among others [35]. Virtual sensing should
also be held to the same standards if the model outputs are to be practically meaningful. In
this context, the following requirements are crucial for a robust and rigorous virtual sensor
development process:
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3.1.1. Standard or Benchmark Datasets

The availability of good quality data is crucial for developing ML models [36,37]. In
most established machine or deep learning application areas, the standard practice is to
assess the models over several freely available benchmark datasets [38]. The significance
of this practice is that it (i) enables reproducible research, (ii) facilitates a more rigorous
inter-model evaluation, (iii) has been the basis for some of the most significant algorithmic
developments in ML research, and (iv) guarantees the model’s robustness (or precision),
among other advantages [37]. On the contrary, water quality prediction studies frequently
apply only one private dataset from the studied water bodies [3,12]. To our knowledge,
only one study [9] used two freely available and high-quality data from two tributaries
with contrasting land uses to develop their predictive model (the same data utilized in the
present work). These data are relatively large, and their quality was validated by a weekly
laboratory analysis [29]. Therefore, we propose these data as a benchmark, over and above
the data from the case studies being considered.

3.1.2. Model Performance Evaluation

Model evaluation is the core part of developing an effective ML model. Besides the
need for a reliable evaluation framework for the model to be relied upon, some of the main
reasons for model evaluation include [39]:

1. Estimating the predictive and generalization performance of the model on unseen
(future) data;

2. Providing a basis for evaluating improvements in the predictive performance when
adjusting (or tweaking) model parameter values;

3. Identifying the best ML algorithm for the problem at hand by comparing different
algorithms or current modeling efforts with peer-reviewed literature results.

Several studies have explored suitable evaluation metrics for traditional watershed
models [40,41]. Moriasi et al. [41] synthesized the performance measures and provided
performance evaluation guidelines for widely used watershed-scale models (e.g., Soil and
Water Assessment Tool). Based on their synthesis, personal modeling experiences, and
meta-analysis, they recommended several statistical and graphical performance measures
to evaluate model performance. From the recommended performance measures, the
authors [41] highlight that the most widely used are RMSE, R2, and NSE. The three metrics
are calculated as shown in Equation (1) [9], Equation (2) [26], and Equation (3) [12]:

RMSE =

√
1
n

n

∑
i−1

(yi − ŷi)
2 (1)

R2 = 1− ∑n
i−1(yi − ŷi)

2

∑n
i=1(yi − µ)2 (2)

NSE = 1− ∑n
i−1(ŷi − yi)

2

∑n
i=1(yi − µ)2 (3)

where n is the number of observations, yi is the true value, ŷi is the predicted value, and µ
is the mean of the observed values. As seen in Equations (2) and (3), the computation of
R2 and NSE is very similar. Therefore, since R2 is more common in the general machine
learning community [26], we recommend the consistent use of RMSE and R2 for developing
virtual sensors.

3.1.3. Accuracy Requirements

The rapid measurement of nutrient concentrations at drinking water intakes is essential
for water management, especially when concentrations exceed regulatory limits. Generally,
defining data quality needs and sensor specifications from various potential users (e.g.,
domestic, agriculture, recreation, etc.) is critical to the technology’s evolution [14]. This is
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due to the varying requirements of the potential users that usually lead to design trade-offs
with different data specifications. For instance, commercial sensors for measuring nitrate
analytes in pure water have higher accuracy, precision, and resolution than the same nitrate
sensors developed for other applications. Similarly, the accuracy requirements from virtual
sensors may vary based on the intended use of the predictive data. Since the accuracy
requirements (or benchmarks) for virtual sensor-based nutrient monitoring are currently
unavailable in the literature, we propose the state-of-the-art accuracy ratings reported in
terms of the R2 as shown in Table 3.

The choice of these ratings is motivated by the fact that commercial sensors, as a
reference, attain these accuracies based on the measured WQ variable [13], and nitrate
prediction using several machine learning algorithms in the River Enborne is within these
accuracies (Section 3.1.4). Although these accuracy ratings are given in terms of R2 alone,
the performance comparison of different prediction methods should also consider the
achievable RMSE. Table 3, coupled with the predictors able to predict nutrients within these
accuracy levels, would form a basis for a cost–benefit analysis for monitoring program
managers (further discussed in Section 3.5).

3.1.4. A Baseline Model

One of the first requirements of any measurement process is that there must be a
well-known and commonly accepted standard of comparison [35]. Similarly, a baseline
refers to a simple and well-understood model whose performance is used as a benchmark
for comparing and evaluating other models. Currently, multiple linear regression is the
preferred baseline model [3,9,14]. However, WQ data are characterized by nonlinear
relationships, skewed distributions, and multicollinearity [12], all of which violate the core
assumptions of LR models. Thus, the field currently lacks effective baselines. That is, basic
models with competitive performance for N and P prediction.

To raise the bar of baselines, we performed ‘spot checking’ on a diverse set of com-
monly applied linear, nonlinear, and ensemble algorithms with default hyperparameters
in the Scikit-Learn library. The aim was to identify a set of algorithms that perform well
in this problem domain. We evaluated decision tree (DT), random forest (RF), extreme
gradient boosting (XGB), light gradient boosting machine (LGBM), multi-layer perceptron
(MLP), k-nearest neighbor (kNN), support vector machine (SVM), extremely randomized
trees (ET), gradient boosting regressor (GB), stochastic gradient descent (SGD), linear re-
gression (LR), ridge regression (Ridge), and bagging regressor (BR). In case the reader is
unfamiliar with any of these algorithms, we refer them to the official machine learning
library [26] for details concerning the theoretical backgrounds, mathematical formulations,
implementation strategies, and tips on practical use.

To evaluate the thirteen algorithms, we used Castrillo and García [9]’s experimental
setting as a benchmark. That is, we (i) used the same predictors, (ii) handled the MVs by
listwise deletion, and (iii) scaled the features to zero mean and unit variance. The results of
nitrate spot checking, reported in terms of R2, are presented in Figure 3.

Although Figure 3 presents only the results of nitrate spot checking, the rating of the
best performing algorithms (ET, RF, and kNN) is the same for TRP in both catchments and
TP in The Cut, with RF outperforming kNN in most cases. Notably, (i) linear regression
models (SGD, LR, and ridge) are the least performing algorithms in both catchments, and
(ii) ET performs better than the commonly used RF for all target variables. To further test
the effectiveness of ET compared to RF, we assessed the performance of ET as a function
of changing input variables. We then used the RF results obtained by [9] as a basis for
comparison, as shown in Table 4.
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Figure 3. (a) Spot checking nitrate predictive performance in the River Enborne; (b) Spot checking
nitrate predictive performance in The Cut.

Table 4. Performance comparison of RF and ET models using RMSE ± standard deviation (std).

Predictors in RF and ET Models
RF: [9] ET: Our Work

Improvement (%)
RMSE ± Std RMSE ± Std

NO3 in River Enborne

EC 0.458 ± 0.286 0.062 ± 0.002 86%
EC, pH 0.343 ± 0.229 0.050 ± 0.002 85%

EC, pH, Flow 0.254 ± 0.186 0.027 ± 0.001 89%
EC, pH, Flow, Temp 0.194 ± 0.138 0.017 ± 0.001 91%

TRP in River Enborne

EC 0.061 ± 0.043 0.066 ± 0.002 −8%
EC, Flow 0.043 ± 0.035 0.051 ± 0.001 −19%

EC, Flow, Temp 0.030 ± 0.025 0.027 ± 0.001 10%
EC, Flow, Temp, Turb 0.025 ± 0.021 0.020 ± 0.001 20%

NH4 in The Cut

Chl 0.210 ± 0.144 0.130 ± 0.004 38%
Chl, Temp 0.190 ± 0.123 0.135 ± 0.003 29%

Chl, Temp, Turb 0.150 ± 0.104 0.091 ± 0.004 39%
Chl, Temp, Turb, pH 0.128 ± 0.095 0.067 ± 0.004 48%

Chl, Temp, Turb, pH, EC 0.107 ± 0.077 0.051 ± 0.003 52%

TRP in The Cut

EC 0.199 ± 0.115 0.196 ± 0.005 2%
EC, Turb 0.180 ± 0.112 0.205 ± 0.007 −14%

EC, Turb, Temp 0.141 ± 0.099 0.142 ± 0.003 −1%
EC, Turb, Temp, pH 0.117 ± 0.088 0.107 ± 0.005 9%

EC, Turb, Temp, pH, Flow 0.107 ± 0.078 0.088 ± 0.004 18%

TP in The Cut

EC 0.192 ± 0.114 0.122 ± 0.003 36%
EC, Turb 0.173 ± 0.116 0.128 ± 0.004 26%

EC, Turb, Temp 0.153 ± 0.104 0.088 ± 0.002 42%
EC, Turb, Temp, pH 0.119 ± 0.087 0.067 ± 0.003 44%

EC, Turb, Temp, pH, Flow 0.110 ± 0.081 0.055 ± 0.002 50%

As seen in Table 4, the average improvement provided by ET is 88% for NO3 prediction
in the Enborne, 41% for NH4 prediction in The Cut, and 40% for TP prediction in The
Cut. The average percentage improvement for TRP prediction in both catchments is only
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marginal (1% in the Enborne and 3% in The Cut). Consequently, we propose ET as a
baseline for future studies. Notably, ET (i) does not make linearity assumptions, (ii) is
relatively straightforward conceptually, and (iii) is easily implementable in programming
languages like Python, MATLAB, or R.

3.2. Selected Models from Spot Checking

Apart from establishing the baseline model, spot checking (Section 3.1.4) effectively
identifies the best-performing models to be optimized for the problem at hand. Using the
80% predictive performance as a threshold, we selected all the models that achieved ≥80%
in both catchments for further analysis. The 80% was chosen because it is the minimum
proposed for virtual sensor-based nutrient monitoring, as shown in Table 3. RF, XGB,
LGBM, kNN, ET, and BR are all the algorithms that fulfilled this requirement and were
subsequently selected.

3.3. The Effect of Different Scalers

Table 5 presents nitrate (as NO3) prediction accuracy for the six modes with different
scaling techniques in the River Enborne. RF and ET showed the highest accuracy with
no scaling, while kNN showed the lowest predictive performance with 71% accuracy.
However, the scaling impact on kNN is significant as the performance improves from 71%
to 95% (equal to RF) with MinMax scaling. Considering that variables like conductivity and
TRP have very different scales (in both catchments), this improvement is explainable since
kNN is a distance-based algorithm that predicts values based on the k closest neighbors
and therefore is sensitive to the scale or magnitudes of the variables. With the rest of
the models, data scaling marginally improves some but also degrades the performance
of others. For instance, the performance of XGB drops from 94% to 90% after Quantile
transformation. This effect may be due to the fact that this transformer changes the original
feature distribution and, therefore, may distort the existence of any linear correlations
between variables [26]. However, this behavior is unusual since scaling is known to have
no effect on tree-based models [9,12]. For instance, scaling has no effect on RF, LGBM, ET,
and the decision tree-based bagging regressor, as seen in Table 5.

Table 5. The effect of different scalers on NO3 prediction in the River Enborne.

Scaling Method
RF XGB LGBM kNN ET BR

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No scaling 0.0211 0.9544 0.0246 0.9382 0.0279 0.9200 0.0534 0.7085 0.0176 0.9682 0.0229 0.9465
Robust scaler 0.0211 0.9547 0.0241 0.9405 0.0280 0.9198 0.0257 0.9322 0.0176 0.9684 0.0226 0.9469

MaxAbs scaler 0.0211 0.9546 0.0246 0.9378 0.0279 0.9200 0.0292 0.9125 0.0176 0.9681 0.0224 0.9466
MinMax scaler 0.0211 0.9548 0.0241 0.9403 0.0279 0.9200 0.0210 0.9548 0.0176 0.9683 0.0226 0.9467
Standard scaler 0.0210 0.9546 0.0243 0.9397 0.0278 0.9207 0.0236 0.9427 0.0176 0.9683 0.0226 0.9459

Power transformer 0.0211 0.9545 0.0242 0.9398 0.0279 0.9200 0.0234 0.9440 0.0176 0.9684 0.0227 0.9494
Quantile transformer 0.0223 0.9487 0.0313 0.8999 0.0315 0.8984 0.0253 0.9344 0.0199 0.9596 0.0236 0.9429

The performance of RF and ET with or without scaling and kNN after scaling is in
the target rating, which is crucial for N monitoring in rural catchments where river water
is sometimes used untreated, and infants are vulnerable to compounds like nitrates in
drinking water [42].

The fact that the MinMax scaler is the best scaling technique suggests that the high
number of outliers in the current datasets should indeed be considered normal since this
scaler uses the minimum and maximum feature values for scaling and, therefore prone to
very large marginal outliers.

Similar behavior is observed for TRP prediction in the same catchment. As seen in
Table 6, the only major difference between NO3 and TRP is that TRP predictive performance
is no longer in the target but in the acceptable rating (as defined in Table 3), although ET’s
performance is relatively close to the target rating. The drop in TRP predictive performance,
which was also observed for P fractions compared to NO3 and total nitrogen in [12], may be
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due to the high nonlinearity and stochastic pattern fluctuations of TRP in water bodies [43].
Additionally, the MinMax scaler is still the best scaling technique, as evidenced by the kNN
performance after scaling.

Table 6. The effect of different scalers on TRP prediction in the River Enborne.

Scaling Method
RF XGB LGBM kNN ET BR

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No scaling 0.0268 0.9386 0.0298 0.9240 0.0322 0.9112 0.0565 0.7268 0.0243 0.9498 0.0284 0.9318
Robust scaler 0.0269 0.9377 0.0299 0.9234 0.0323 0.9108 0.0311 0.9170 0.0243 0.9497 0.0285 0.9282

MaxAbs scaler 0.0268 0.9383 0.0297 0.9244 0.0322 0.9112 0.0331 0.9065 0.0243 0.9495 0.0283 0.9295
MinMax scaler 0.0269 0.9381 0.0299 0.9234 0.0324 0.9103 0.0270 0.9377 0.0242 0.9498 0.0287 0.9302
Standard scaler 0.0268 0.9379 0.0298 0.9242 0.0325 0.9099 0.0294 0.9260 0.0241 0.9498 0.0290 0.9299

Power transformer 0.0269 0.9385 0.0299 0.9237 0.0324 0.9102 0.0294 0.9258 0.0241 0.9490 0.0287 0.9300
Quantile transformer 0.0293 0.9269 0.0354 0.8926 0.0360 0.8892 0.0316 0.9145 0.0276 0.9343 0.0302 0.9222

In contrast to the River Enborne, where the NO3 predictive performance was very high,
nitrate (as NH4) prediction in The Cut, as shown in Table 7, is below 90%, with the highest
accuracy of 89% achieved by ET with or without data scaling. The second best performing
model is kNN, whose accuracy improves from 21% to 88% after MinMax scaling. To explain
this substantial drop in predictive performance between the two catchments, it is essential
to note that the River Enborne is a rural catchment that receives sewage effluent from
smaller wastewater treatment plants, while The Cut is an urban catchment dominated by
treated sewage effluent from major towns and urban runoff. This implies that The Cut’s
water quality dynamics are different and more complex due to various industrial activities
and urban runoff [29]. The various dissolved contaminants make it difficult for ML models
to detect variable relationships.

Table 7. The effect of different scalers on NH4 prediction in The Cut.

Scaling Method
RF XGB LGBM kNN ET BR

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No scaling 0.0494 0.8552 0.0554 0.8183 0.0560 0.8140 0.1157 0.2085 0.0436 0.8856 0.0538 0.8299
Robust scaler 0.0494 0.8540 0.0548 0.8218 0.0558 0.8157 0.0501 0.8508 0.0438 0.8852 0.0529 0.8275

MaxAbs scaler 0.0497 0.8538 0.0554 0.8183 0.0560 0.8140 0.0536 0.8287 0.0440 0.8850 0.0543 0.8309
MinMax scaler 0.0495 0.8520 0.0540 0.8275 0.0559 0.8151 0.0445 0.8821 0.0438 0.8859 0.0537 0.8298
Standard scaler 0.0496 0.8544 0.0550 0.8208 0.0560 0.8141 0.0463 0.8726 0.0440 0.8842 0.0524 0.8312

Power transformer 0.0567 0.8093 0.0577 0.8024 0.0590 0.7934 0.0549 0.8183 0.0514 0.8385 0.0599 0.7903
Quantile transformer 0.0631 0.7611 0.0732 0.6832 0.0767 0.6524 0.0562 0.8118 0.0627 0.7678 0.0642 0.7670

The negative impact of the Quantile transformer is more pronounced in this case.
For instance, the predictive performance of XGB drastically drops from 82% to 68% after
scaling. The power transformer also degrades the performance of all the models except
for kNN. As mentioned already, the negative effect of these transformers may be due to
the fact that they both change the original feature distribution and, hence, may distort the
existence of any linear correlations between variables [26], which are already complex in
urban catchments.

As with TRP prediction in the River Enborne, TRP prediction accuracy in The Cut is
even lower. As shown in Table 8, only two models (RF and ET) achieve more than 80%
accuracy with or without MinMax scaling. Although consistent with previous studies [12,44],
this performance is in the ‘poor’ rating and thus unsatisfactory. While the reason for
this poor performance is unclear, Harrison et al. [12] suggest that it may be due to the
contrasting importance of particulate vs. dissolved nutrient fractions, including their
respective sources. The other reason could be that TRP has three ‘extra’ electrons and
can easily bond with other positively charged compounds and elements. Consequently,
the formation of these ‘new’ compounds makes it difficult for ML algorithms to establish
strong surrogate—regression relationships.
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Table 8. The effect of different scalers on TRP prediction in The Cut.

Scaling Method
RF XGB LGBM kNN ET BR

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No scaling 0.0954 0.8058 0.1040 0.7675 0.1079 0.7498 0.1723 0.3623 0.0904 0.8229 0.1022 0.7805
Robust scaler 0.0950 0.8059 0.1042 0.7667 0.1080 0.7496 0.1044 0.7660 0.0909 0.8227 0.1019 0.7784

MaxAbs scaler 0.0956 0.8047 0.1045 0.7651 0.1079 0.7498 0.1085 0.7471 0.0904 0.8229 0.1019 0.7782
MinMax scaler 0.0951 0.8041 0.1044 0.7657 0.1079 0.7499 0.0983 0.7926 0.0906 0.8221 0.1009 0.7795
Standard scaler 0.0952 0.8041 0.1037 0.7687 0.1082 0.7486 0.1000 0.7849 0.0909 0.8222 0.1014 0.7798

Power transformer 0.1017 0.7792 0.1054 0.7612 0.1080 0.7493 0.1069 0.7538 0.0974 0.7951 0.1090 0.7529
Quantile transformer 0.1006 0.7820 0.1110 0.7353 0.1133 0.7242 0.1038 0.7684 0.1005 0.7837 0.1051 0.7564

The effect of scaling on total phosphorus prediction in The Cut is the same as that of
TRP in the same catchment. Even the predictive performances of the six models are similar.
This is because TP and TRP concentrations in The Cut are strongly correlated [29]. In fact,
the correlation relationship is very close to 1:1.

3.4. Missing Values Handling

Having established that ET is the best-performing model with or without feature
scaling, we assessed the impact of various imputation methods compared to listwise
deletion on its predictive performance. The results of this assessment are presented in
Table 9.

Table 9. Performance comparison of the ET model using different imputation methods.

Type Method(s)

River Enborne The Cut

NO3 TRP NH4 TRP

RMSE R2 RMSE R2 RMSE R2 RMSE R2

Deletion Listwise 0.0176 0.9683 0.0242 0.9498 0.0438 0.8859 0.0906 0.8221
Univariate Mean 0.0282 0.9018 0.0335 0.8624 0.0427 0.9053 0.0783 0.7794

Mode 0.0285 0.9004 0.0461 0.8141 0.0426 0.9054 0.0781 0.7853
Median 0.0282 0.9010 0.0337 0.8629 0.0424 0.9057 0.0780 0.7775

Multivariate Bayesian ridge 0.0215 0.9463 0.0245 0.9370 0.0430 0.9033 0.0760 0.7957
RF 0.0176 0.9649 0.0208 0.9580 0.0429 0.9058 0.0798 0.7948
BR 0.0178 0.9635 0.0217 0.9542 0.0427 0.9051 0.0819 0.7893

XGB 0.0183 0.9687 0.0217 0.9548 0.0428 0.9040 0.0794 0.7904
LGBM 0.0181 0.9678 0.0212 0.9555 0.0426 0.9098 0.0763 0.8009

Nearest
neighbors kNN 0.0238 0.9328 0.0320 0.8884 0.0436 0.9017 0.0853 0.7949

For NO3 prediction in River Enborne, multivariate imputation with RF, BR, XGB,
or LGBM as estimators produces the best results, although equal to listwise deletion. In
contrast, the impact of all imputation techniques on NH4 prediction in The Cut is more
positive. For instance, the predictive accuracy improves from the tolerable rating with
listwise deletion to the acceptable rating after missing values imputation. Although this
improvement is only marginal, it is crucial since the predictive performance in The Cut is, on
average, unsatisfactory. For TRP prediction, multivariate imputation with RF, BR, XGB, or
LGBM as estimators marginally improves the predictive performance in the River Enborne,
while none of the imputation techniques is effective in The Cut. This comparison suggests
that more advanced imputation techniques, such as generative adversarial imputation
nets, should be explored for TRP prediction, particularly in The Cut, where the predictive
performance is in the poor rating.

3.5. Sensitivity Analysis

Sensitivity analysis determines how the model output changes as input variables
change. It enables model developers and end-users to understand the impact of each
feature on the model output. Since some features can be more important (or more relevant)
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than others, feature importance enables their ranking based on their importance and
contribution to the final model. Table 10 presents the predictive performance of the ET
model on the five target variables as a function of each predictor’s contribution based
on SHAP values. A table of this nature would enable a cost-benefit analysis for water
managers to choose the appropriate number of real-time sensors to install based on the
achievable predictive performance.

Table 10. Predictive performance of the ET model as a function of each predictor’s contribution.

Predictors in the ET Model RMSE R2

NO3 in River Enborne

EC 0.0617 0.6107
EC, Temp 0.0559 0.6818

EC, Temp, pH 0.0274 0.9223
EC, Temp, pH, DO 0.0205 0.9566

EC, Temp, pH, DO, Turb 0.0172 0.9695
EC, Temp, pH, DO, Turb, Chl 0.0177 0.9681

TRP in River Enborne

EC 0.0666 0.5637
EC, DO 0.0608 0.6355

EC, DO, Temp 0.0343 0.8848
EC, DO, Temp, Turb 0.0257 0.9345

EC, DO, Temp, Turb, pH 0.0213 0.9559
EC, DO, Temp, Turb, pH, Chl 0.0212 0.9558

NH4 in The Cut

Temp 0.1312 0.1620
Temp, Chl 0.1342 0.1220

Temp, Chl, Turb 0.0907 0.5986
Temp, Chl, Turb, EC 0.0655 0.7895

Temp, Chl, Turb, EC, DO 0.0526 0.8647
Temp, Chl, Turb, EC, DO, pH 0.0429 0.9101

TRP in The Cut

EC 0.1952 0.1820
EC, Turb 0.2037 0.1072

EC, Turb, DO 0.1554 0.4813
EC, Turb, DO, Temp 0.1101 0.7401

EC, Turb, DO, Temp, Chl 0.0999 0.7864
EC, Turb, DO, Temp, Chl, pH 0.0907 0.8219

TP in The Cut

EC 0.1213 0.1697
EC, DO 0.1291 0.0593

EC, DO, Turb 0.0956 0.4853
EC, DO, Turb, Temp 0.0680 0.7382

EC, DO, Turb, Temp, Chl 0.0610 0.7880
EC, DO, Turb, Temp, Chl, pH 0.0556 0.8253

As seen in Table 10, the NO3 predictive performance from only three surrogates in the
River Enborne is in the acceptable rating. In contrast, TRP requires at least four predictors
to achieve the same rating. Notably, a set of four surrogate sensors (EC, DO, Temp, and
Turb) would be able to simultaneously predict NO3 and TRP within the acceptable rating.
Interestingly, the inclusion of Chl results in a marginal drop in performance, implying that
the model considers it noise or irrelevant. In The Cut, a subset of six surrogate sensors
would be able to predict NH4 within the acceptable rating, while TRP and TP would
be within the poor rating. There is a drop in predictive performance at the introduction
of the second predictor in The Cut. This suggests that at least three surrogate sensors
would be necessary for this catchment. In monitoring settings where the flow rate is



Sensors 2022, 22, 7338 17 of 20

already measured in high-frequency, as in the River Enborne and The Cut, its inclusion as a
predictor is worthwhile since it increases TRP and TP predictive performance in The Cut to
more than 85%, which is the tolerable rating.

3.6. Performance Results of Our Approach: A Comparative Analysis

To highlight this work’s contribution, we compared the performance of our approach
with the three most relevant studies [3,9,12] in the same problem domain. Firstly, we
present a comparative analysis in terms of the crucial steps involved in virtual sensor
development, as shown in Table 11.

Table 11. A methodological comparison of our work with the three most related studies, where
N/S = not specified, ML = machine learning, kNN = k-nearest neighbor, RF = random forest,
MLR = multiple linear regression, DT = decision tree, XGB = extreme gradient boosting,
LGBM = light gradient boosting machine, BR = bagging regressor, MLP = multi-layer percep-
tron, SVM = support vector machine, ET = extremely randomized trees, GB = gradient boosting,
SGD = stochastic gradient descent, and SHAP = Shapley additive explanations.

Step [3] [9] [12] Our Work Remark

Data
transformation N/S Cubic

Logarithm N/S

Cubic
Logarithm
Reciprocal
Square root

Even though water quality data is
usually skewed, only [9] performed

feature transformation, although
sub-optimally on three features.

Data scaling N/S Standard scaler N/S

Standard scaler
MinMax scaler
MaxAbs scaler
Robust scaler

Power transformer
Quantile

transformer

Only one study [9] scaled the data
before evaluating the MLR model.

However, MinMax scaler is the best
scaling technique in this case. While
the other two studies did not scale
the data, the impact on their model

(RF) would have been minimal.

Missing values
handling N/S Listwise

deletion
Median

imputation

Listwise deletion
kNN imputation

Univariate
imputation

Multivariate
imputation

Amongst the various missing data
handling methods, our work

showed that multivariate
imputation, which was not

implemented in the three reference
studies, results in best-performing

models on average.

ML models RF, MLR RF, MLR RF

RF, DT, XGB,
LGBM, BR, MLP,

kNN, SVM, ET, GB,
SGD, MLR, Ridge

Although the commonly used RF
performed competitively, the

extensive analysis in our work
showed that ET performs better.

Input variable
selection N/S Stepwise

selection
Stepwise
selection SHAP

Contrary to the commonly used
stepwise selection method, we

applied SHAP in this work because
it satisfies the interpretability

requirements, which are essential
for sensitive applications like

public health.

Secondly, we compared the predictive performance of the three studies with ET (our
work) in terms of the accuracy values reached, as shown in Table 12.
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Table 12. A comparative analysis (in terms of the accuracy values reached) of our work and the three
most related studies. The predictive performance is not reported where there is a hyphen.

Method
NO3 TRP TP

RMSE NSE/R2 RMSE NSE/R2 RMSE NSE/R2

Random forest [3] 0.059 0.89 0.005 0.903 - -
Random forest [9] 0.194 - 0.025 - 0.110 -

Random forest [12] 0.120 0.89 2.000 0.320 11.00 0.740
Extra trees [our work] 0.017 0.97 0.021 0.956 0.056 0.825

As seen in Table 12, our work outperformed the three studies in terms of the RMSE
and NSE or R2 values reached, except for one case when the RMSE was slightly lower,
although R2 was still superior. Since parts of the watershed studied by [12] are relatively
urbanized, the TP predictive performance of 0.74 shows that the complex nature of water
quality data in urban catchments does indeed make it difficult for traditional machine
learning models to establish strong inferences between target variables and surrogates.

4. Conclusions

In the present work, an innovative ML-based virtual sensing concept for continuous
monitoring of N and P is discussed. The effectiveness of the virtual sensors is verified using
two catchments of the River Thames (in the UK) with contrasting land uses. Using only the
predictors most commonly measured in real-time as inputs, the predictive performances of
the ET-based virtual sensors were higher than XGB, LGBM, kNN, BR, and the commonly
applied RF model. A summary of this work’s contributions is as follows:

1. This study presented a specification book and best practices for developing virtual
sensors for nutrient monitoring. These concepts will aid in developing robust and
interpretable virtual sensors whose performance can be independently verified;

2. The effect of various scalers and transformers on WQ data with outliers is assessed.
Although this is usually overlooked in WQ monitoring studies, the present work
proved its importance. For instance, the most effective scaler was the MinMax scaler
and not the commonly applied standard scaler;

3. Even though missing data is a common problem in WQ data, it is often overlooked
in WQ monitoring studies. Therefore, this study assessed the impact of missing
value imputation in predicting N and P concentrations where RF and LGBM-based
multivariate imputers were the most effective.

Although ET performed satisfactorily in the River Enborne (achieving R2 values as
high as 96% with only four predictors), its limitation is that the predictive performance,
particularly for TRP and TP in The Cut, is still unsatisfactory. The required number of
surrogate sensors (six) to achieve the acceptable accuracy rating for NH4 prediction is too
high. Additionally, the same surrogates can only provide 82% accuracy for TRP and TP.

Notably, the 82% was achieved when missing values were handled by listwise deletion,
which reduced the size of the dataset from 15,636 to 8934. Since none of the applied
imputation methods resulted in better performance in this case, a realistic strategy includes
the exploration of more advanced imputation and predictive techniques for developing
virtual sensors in more urbanized watersheds. Therefore, future works will explore (i) the
effect of data augmentation using generative adversarial networks and (ii) deep learning
models such as deep echo state networks as predictive models.
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