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Abstract: This paper introduces a new dataset of a surgical knot-tying task, and a multi-modal deep
learning model that achieves comparable performance to expert human raters on this skill assessment
task. Seventy-two surgical trainees and faculty were recruited for the knot-tying task, and were
recorded using video, kinematic, and image data. Three expert human raters conducted the skills
assessment using the Objective Structured Assessment of Technical Skill (OSATS) Global Rating
Scale (GRS). We also designed and developed three deep learning models: a ResNet-based image
model, a ResNet-LSTM kinematic model, and a multi-modal model leveraging the image and time-
series kinematic data. All three models demonstrate performance comparable to the expert human
raters on most GRS domains. The multi-modal model demonstrates the best overall performance,
as measured using the mean squared error (MSE) and intraclass correlation coefficient (ICC). This
work is significant since it demonstrates that multi-modal deep learning has the potential to replicate
human raters on a challenging human-performed knot-tying task. The study demonstrates an
algorithm with state-of-the-art performance in surgical skill assessment. As objective assessment of
technical skill continues to be a growing, but resource-heavy, element of surgical education, this study
is an important step towards automated surgical skill assessment, ultimately leading to reduced
burden on training faculty and institutes.

Keywords: deep learning; surgical skills assessment; machine learning; computer vision; surgical
education; biomedical engineering; multi-modal; human activity recognition

1. Introduction

There has been a gradual evolution in surgical education towards objective assessment
of competence as a requirement for trainee advancement and an increased reliance on
simulation-based training [1]. This paradigm responds to mounting pressures to shorten the
surgical trainee workweek, and improve operating room efficiency and safety at teaching
institutions. However, competency-based medical education (CBME) can increase the
burden on supervising surgical faculty and increase program reliance on the objectivity
and validity of their CBME assessments [2].

Machine learning techniques, along with increased data-collection abilities across a
variety of settings may offer the ability to tackle these challenges by automating some
surgical skills assessments, potentially improving their objectivity and reducing the burden
of CBME on training faculty and institutes. Deep learning in particular is well suited
for tackling technical skills assessment due to its robustness to noise and flexibility to
learn an optimal feature set representative of task performance from large, unstructured,
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and multi-modal data sources. Further, new innovations allow for the collection of large-
scale multi-modal data in previously unwelcoming environments, such as the operating
room [3].

However, existing work on surgical skills assessment has yet to fully exploit deep
learning networks and large-scale data availability to automate skills assessment. Instead,
previous research relies on classical machine learning algorithms [4], only classify high-level
categories of performance [5], and rely on small datasets [6].

In this study, we investigate a unique multi-modal model to automate surgical skills
assessment across multiple categories and evaluate its performance on a novel dataset.
Specifically, our main contributions are as follows:

• Development of a multi-modal deep learning model that combines data from both
images of the final surgical product and kinematic data of the procedure. We demon-
strate that this model can assess surgical performance with comparable performance
to the expert human raters on several assessment domains. This is significant since
existing approaches are limited in scope and predominately focus on predicting solely
high-level categories.

• Ablation studies comparing the image-based, kinematic-based, and combined multi-
modal networks. We show that the multi-modal network demonstrates the best overall
performance.

• A new dataset of seventy-two surgical trainees and surgeons collected during a
University of Toronto Department of Surgery Prep Camp and Orthopaedics Bootcamp.
This consists of image, video, and kinematic data of the simulated surgical task, as well
as skills assessment evaluations performed by three expert raters. This large dataset
will present new and challenging opportunities for data-driven approaches to surgical
skills assessment and gesture recognition tasks. (The dataset can be downloaded here:
https://osf.io/rg35w/ ).

In the following section we provide a brief synopsis of previous works related to
surgical skills assessment and activity recognition. In Section 2 we describe the details
of our data-collection, processing, and deep learning model development. We present
the experimental results in Section 3, with a discussion of the results, comparisons with
existing studies, and motivations behind the methodologies presented in Section 4. Finally,
we summarize our main findings and discuss the broad impact of this work in Section 5.

Related Work

Successful CBME is dependent on domain-specific assessment and feedback for
trainees, as is currently provided by faculty members. Previous research in automat-
ing surgical skills assessment has shown promising results in effectively assessing global
performance. For example, several recent studies [4,7–9] use machine learning techniques
to classify surgical performance into “novice” or “expert” categories from kinematic time-
series data. Other studies employ standard assessment frameworks, such as the Objective
Structured Assessment of Technical Skills (OSATS) [10], to assess skill on various domains.
However, many of these studies only classify performance in each domain into high-level
categories (beginner, intermediate, advanced) [5,11,12]. Some studies do predict OSATS
scores in a regression framework [11,13], however, the score prediction is only a small part
of their work, and limited performance metrics are presented.

Instead of directly quantifying surgical performance, previous studies also focus on
capturing proxies indicative of surgical performance, such as detecting surgical instru-
ments [14], tracking instruments [15], or identifying events such as incisions [5]. Our
work directly predicts the OSATS scores across five domains in a continuous regression
framework. This is advantageous as it provides specific fine-grained assessment akin to
that performed by a real faculty member, and eliminates ambiguities caused by broader
discrete categories. Further, we present numerous performance metrics to understand the
model’s performance, including direct comparisons with three expert human raters.

https://osf.io/rg35w/
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Machine learning algorithms have been applied to surgical skills assessment by previ-
ous studies [4,7,9,12,16]. Classical machine learning, combining engineered features with
learned classifiers, as well as deep learning models have shown promising results for both
skills assessment works [17], as well as human activity recognition tasks (HAR) [18–23].
More recent work has focused on deep learning networks because of their ability to better
exploit rich data sources (e.g., images, videos, motion tracking), which has led to improve-
ments in performance. The deep learning models applied generally use fully convolutional
or convolutional-recurrent networks; leveraging one-dimensional convolutional layers as
feature extractors and recurrent layers to capture temporal dependencies. This investigation
expands upon the convolutional-recurrent networks [18,19] by applying a much deeper
ResNet-18 based architecture, combined with a multi-modal approach. To our knowledge,
no other works have reported leveraging deeper ResNet-LSTM based models to analyze
kinematic data for surgical skills assessment tasks. We discuss this approach in more detail
in Sections 2 and 3.

Further, no existing studies use multi-modality approaches in surgical skills assess-
ment. Multiple data sources (i.e., images of the final product, kinematic data of the proce-
dure) can capture different information necessary for good performance across multiple
domains of surgical skills assessment. Similarly to some image-based approaches [24], we
employ a late-fusion approach. Some HAR studies investigate concatenating extracted
features from different gestures for classical machine learning algorithms, and report that
which features were extracted was more important than the fusion technique [23]. Unlike
the studies in [23,24], we investigate fusing features extracted from disparate modalities
(kinematic time-series + images) and not a single modality (images), and fuse learned
features extracted from the raw data by the neural networks, instead of fusing hand-
crafted features.

Previous investigations applying machine learning to surgical skills assessment have
relied on small custom datasets, or the open-source JIGSAWS dataset [6]. The JIGSAWS
dataset consists of video and kinematic data captured using a DaVinci Robotic system [25]
from eight subjects (four beginner, two intermediate, two expert). These small datasets
have presented a large limitation for data-driven methods such as machine learning.
Many previous studies focus solely on data acquired using robotic systems or virtual
simulators [5,11,17], and not on human-performed surgical tasks. In contrast, the dataset
presented in this work larger and encompasses greater participant skill levels, contain-
ing 360 total samples from 72 participants across ten surgical divisions, with experience
levels ranging from first year residents to staff surgeons. This challenging real-world
dataset will enable new opportunities for research into automated surgical skills assess-
ment. The dataset is described further in Section 2.

2. Materials and Methods

This project sought to develop and validate deep learning models for automated
surgical skill assessment, specifically for the assessment of technical skill for a simulated
knot-tying task. To facilitate this, 72 participants performed a knot-tying task, which were
subsequently rated by human experts. Video and kinematic data of the task was recorded,
as well as a photograph of the final product. In this study, the anonymized video recording
was used for assessment by the human raters; the machine learning models used only
image and kinematic data.

2.1. Surgical Task

Seventy-two surgical trainees and surgeons were recruited for participation in this
study during the 2018 University of Toronto Department of Surgery Prep Camp and
Orthopaedics Bootcamp suturing modules. Participants performed a simulated vessel
ligature task using one-handed knot-tying with 0-silk ties on polypropylene tubing. Each
participant performed the task five times consecutively, with each performance as a separate
task. No feedback was provided to participants between executions of the task. The overall
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goal of this task is to determine if the trainees can correctly tie off, or occlude, the simulated
blood vessel using the silk suture.

2.2. Data Collection

The vessel ligature tasks were recorded using three modalities, which are visualized
in Figure 1:

• High resolution digital photograph of the final product
• Anonymized video recording of the operative field
• 3D kinematic motion tracking of the hands using a Leap Sensor

Figure 1. The trials were recorded using three modalities. The top is an image of the final product,
the middle is a screen capture of the video data with a visualization of the joints tracked by the
Leap sensor. The bottom is an example of the kinematic time series data, representing the temporal
3-dimensional movement of the hand joints during the knot tying task.

2.3. Task Ratings

Three blinded independent raters conducted the technical skills assessment from the
recorded video and photograph of the final product. The raters were senior surgical resi-
dents (PGY4 and above) with expertise in the assessed skill. Performance at the simulated
surgical task was assessed by each rater using the Objective Structured Assessment of
Technical Skill (OSATS) Global Rating Scale (GRS) [10] on the following four domains:

1. Respect for Tissue
2. Time and Motion
3. Quality of Final Product
4. Overall Performance

Each domain was scored on a 5-point scale (1–5). All raters were oriented to the
OSATS GRS and domain specific anchors using example performances and suggested
ratings. An example of the rating scale used by the human raters can be seen in Table 1.
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It was also important to ensure that the dataset was collected from a diverse and
representative set of participants, including diversity in aspects such as surgical divi-
sion, and prior experience level. The plurality of participants were from the division of
orthopaedics, with participants from nine other surgical divisions included. Most partic-
ipants were Post-Graduate Year 1 (PGY1) trainees, with experience levels ranging up to
Fellows and Staff surgeons. A summary of the experience level and surgical division of the
participants can be seen in Figure 2.

Figure 2. Participants came from 10 surgical divisions, with experiences ranging from PGY1 to Fellow.

Table 1. Rating scale used when evaluating surgical skill on the GRS Domains.

Domain Rating Scale

Respect for Tissue
1—Very poor: Frequent or excessive pulling or sawing of tissue
3—Competent: Careful handling of tissue with occasional sawing or pulling
5—Clearly superior: Consistent atraumatic handling of tissue

Time and Motion
1—Very poor: Many unnecessary movements
3—Competent: Efficient time/motion but some unnecessary moves
5—Clearly superior: Clear economy of movement and maximum efficiency

Quality of Final Product
1—Very poor
3—Competent
5—Clearly superior

Overall Performance
1—Very poor
3—Competent
5—Clearly superior

The sequence of tasks was randomized so that the raters were not consecutively
exposed to tasks performed by the same individual. Further, the randomization was seeded
separately for each rater, providing each rater with a different random order of tasks to
assess. Forty random samples were also selected to be rated a second time by each rater for
test-retest reliability assessment.
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2.4. Data Pre-Processing

The three-dimensional position data of each joint in the phalanges from both hands
was extracted from the Leap Motion Sensor’s kinematic data capture. This 120 channel
timeseries data was used as input into the deep learning models. The kinematic models
require a fixed-length input, and the trials were not uniform in length. The Seglearn
library [26] was used to truncate or zero-pad each data sample to a length of 4223 samples,
which represents the 90th percentile of the sample lengths. This means that most samples
were padded instead of truncated, so that as much information as possible was preserved.
With a sampling rate of 110 Hz, this 4223-timestamp sequence is approximately 36 s long.

The Python implementation of OpenCV was used to pre-process the image data.
The images were first temporarily masked to a binary image, isolating the black suture
from the background. A dilating operation was applied to this image to enlarge the knot
center. The OpenCV blob detector was then used to detect the suture knot, and a 512 × 512
bounding box was drawn around the center. The cropped image was then unmasked back
to full RGB color. The kinematic and image data were also normalized between [0,1]. This
is a standard deep learning procedure to speed computation time and avoid local minima
in model optimization.

2.5. Data Augmentation

Although our dataset is not small relative to other relevant datasets, deep learning
almost always benefits from larger quantities of data. Thus, the entire dataset was ran-
domly oversampled to increase the number of training examples. Additionally, the trials
with ratings that were greater or less than one standard deviation from the mean were
further oversampled by a factor of three. By more evenly balancing the score distribution,
the network can better learn to predict these minority classes.

However, increasing the size of the dataset without introducing any variation may
lead to degraded performance, as the network may rely on memorizing specific features of
the training data and fail to generalize to unseen data. Data augmentation may be used
to alter the input instances, thus artificially increasing the variety of training data and the
network’s ability to generalize. To minimize the model overfitting to the training data,
the oversampled data was also augmented prior to input into the networks. The images
were augmented with random 90-degree rotations and reflections about the x- or y-axis,
largely to help mirror the varying knot orientation in the real data. The kinematic data
was augmented based on recommendations in previous literature [27]: random rotations,
reflections, and injection of Gaussian noise.

2.6. Machine Learning Models

We developed and analyzed three deep learning models. The first uses the RGB
image data of the simulated vessel and ligature as input and the Quality rating as output.
The second model uses the hand kinematic data as input and predicted the three other
domains (Respect for Tissue, Time and Motion, and Overall Performance). The final is a
composite model containing both RGB and kinematic modalities and output all four GRS
rating domains. The video data was not used by the model.

The models were trained in a supervised regression learning framework, with the
mean scores of the three expert raters as the ground truth. We trained the models to
minimize a mean-squared error loss, however the number of output targets varied between
the models since some predicted only one OSATS domain and others multiple.

L =
1
N

N

∑
i=1

K

∑
j=1

(yk
i − ŷk

j ) (1)

Here, N is the number of samples in the training batch, and K is the number of output
targets. For example, the image-only model has a K = 1 since it predicts only the Quality
score, whereas the multi-modal has K = 4 since all four domains are predicted.
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Deep residual models (ResNets) are particularly powerful in training deeper neural
networks with increased capacity to learn and model complicated relationships, achieving
state-of-the-art performance on many image recognition tasks [28]. These improvements
largely stem from the use of “skip connections”, or residual blocks, between layers which
allow for deeper networks without suffering from vanishing gradient problems. This ability
to effectively train very deep networks is the major advantage of the ResNet architecture.
Although ResNet’s are often employed in image related tasks, they can also be implemented
using one-dimensional convolutions for time-series data.

The image model is depicted in the bottom branch of Figure 3, and consists of a ResNet-
50 backbone with pre-trained weights from the ImageNet dataset. Prior to input, the images
were resampled to 1024 × 1024, further cropped 30% tighter, and normalized based on the
ImageNet metrics. Following best-practises, the pre-trained networks were initially frozen
for the first 200 epochs, and only the final dense layer was trained. This is to avoid the
large gradient magnitudes from the new randomly initialized dense layer destroying the
pre-trained weights [29]. Subsequently, the learning rate was reduced and the top layers
of the ResNet model were fine-tuned for another 200 epochs. This freezing/fine-tuning
method was followed for all subsequent pre-trained models and experiments.

Previous works demonstrate that convolutional-recurrent neural networks can been
used to successfully perform human activity recognition from kinematic data [18,19]. In our
work, the network was tasked with scoring surgical skill across multiple domains from a
relatively high-dimensional dataset (120 channels). To ensure the network had the capacity
to perform these tasks, a one-dimensional ResNet-18 model was used as a feature extractor
on the kinematic data. The extracted features were then inputted into two bi-directional
LSTM layers to model the temporal nature of the data. Finally, three dense layers were
used to score the ‘Overall Performance’, ‘Respect for Tissue’, and ‘Time and Motion’ from
the learned features. This model was trained for 200 epochs, and the architecture can be
seen in the top branch of Figure 3.

Figure 3. Images were analyzed using a ResNet-based network, and the kinematic data was analyzed
using a 1D ResNet-18 as a ‘feature extractor’, followed by 2 bidirectional LSTM layers. The com-
bined multi-modal network is concurrently trained on both the image and kinematic data as input,
and predicts all four GRS domains.

The previous two models are combined so that all four GRS domains can be scored.
The time series and image networks are trained concurrently, and the extracted feature sets
are concatenated. These are then inputted into fully-connected layers to perform the final
task scoring for each domain, as seen in Figure 3. The 2D ResNet network also leveraged
pre-trained ImageNet weights and followed a fine-tuning scheme similar to that described
above, where the ResNet layers were initially frozen for 50 epochs and used solely as a
feature extractor, followed by fine-tuning the top layers of the ResNet for another 50 epochs.

The dataset was randomly split into 80%/10%/10% training/validation/testing sets.
This means there were 58 participants (and 290 trials) in the training set, and 7 participants
(35 trials) in the validation and testing sets. Further, the training epochs were tuned
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heuristically; we trained either until we saw substantial overfitting, or our computing
resources were exhausted. Table 2 summarizes the hyper-parameters of the final multi-
modal model.

Table 2. Summary of the hyper-parameters used to train the multi-modal network. Hyper-parameters
were tuned heuristically.

Hyperparameter Value

Learning rate 1 · 10−4

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Batch size 16
Dropout 0.50
Epochs (frozen backbone) 50
Epochs (fine-tuning backbone) 50
Loss function Mean Squared Error
Image dimensions (1024, 1024)
Timeseries length 4223 timestamps

2.7. Statistical Analysis

The collected dataset was analyzed to ensure its reliability and validity prior to being
used for training and evaluating the deep learning models. The analysis of the expert
human raters also serve as a baseline for understanding the model’s best achievable
performance. The Intraclass Correlation Coefficient (ICC) and Standard Error of Measure
(SEM) were used to analyze the human and AI ratings for agreement and consistency.
To assess the interrater reliability on the entire collected dataset, the ICC (2,3), ICC(2,1),
and SEM scores were calculated for each of the GRS domains [30]. The ICC (2,3) model is
selected since our raters are chosen as representative of a larger population, and the mean
of the three raters is used as the ground-truth. The ICC (2,1) was also used to assess the
human raters on their test-retest consistency, using the randomly repeated trials that were
rated twice. Our hypothesis was that the human raters show moderate to good agreement
on the GRS domains and good consistency in their ratings.

In addition to measuring the average human rater reliability on the entire dataset, we
also looked at the ICC score of the raters on the held-out testing subset of the data. Since
the AI models were evaluated on this test set, finding the human rater’s reliability on this
subset alone can allow for a more direct comparison with the network performance.

The experience levels of the participants and their ratings were also investigated to
help establish construct validity. A one-way ANOVA was performed between the beginner
(PGY1 & PGY2, n = 48), intermediate (PGY3, PGY4, & PGY5, n = 18), and expert (Staff
& Fellow, n = 6) level participants. A Tukey–Kramer post hoc test was then done to
determine which groups were different from each other. These tests were all done using
the participants performance on the “Overall Performance” GRS domain.

Several tests were done to evaluate the model’s performance. The point difference be-
tween the model’s predictions and the human ratings with the ground truth was evaluated
using the mean squared error (MSE). The goodness of fit of the model was evaluated using
R2. Finally, the agreement amongst each (human or AI) rater and the ground truth was
determined using the ICC (2,1) score. This means that the ICC between the AI ratings and
the ground truth was determined, as well as the ICC between each human rater and the
ground truth. This allows us to consider how our model performs as a single generalized
rater [30] in terms of its agreement with the ground-truth data, as well as compare the
AI agreement with that exhibited by the humans. Our hypothesis was that the AI would
demonstrate comparable point errors (MSE) and agreement (ICC) with the ground truth
data as the human raters.

Although previous research seeking to directly predict GRS scores is sparse, existing
studies report performance using the mean Spearman Correlation Coefficient ρ across the
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predicted vs. true GRS scores [13]. For consistency in the reported metrics, we also evaluate
the Spearman Coefficient on the multi-modal model.

Finally, some studies that directly predict the GRS domain scores report their perfor-
mance in terms of accuracy [11]. For a comparable metric, we also find the accuracy of our
multi-modal model. Since our predictions are continuous and accuracy deals with discrete
data, we first round the ground-truth and model predictions; for example, a score of 2.7
will get rounded to 3.0, which is necessary to compute the accuracy metric. Our model is
designed to predict continuous scores so this is not a perfect metric, but serves to gain a
general comparison with previous studies.

3. Results
3.1. Dataset Analysis

The human raters showed ICC scores corresponding to moderate agreement on the
four GRS domains, when measured on the entire collected dataset, as summarized in
Table 3.

Table 3. The expert human raters demonstrate moderate to good agreement on their evaluations
when as measured using the mean. The AI model was trained & evaluated on the mean value of
the ratings.

GRS Domain ICC (2,3) SEM (2,3) ICC (2,1) SEM (2,1)

Respect for Tissue 0.71 0.45 0.47 0.62

Time and Motion 0.70 0.47 0.44 0.64

Quality of Final Product 0.83 0.40 0.63 0.61

Overall Performance 0.73 0.39 0.47 0.55

There was some variance in the test-retest performance of the human raters, with ICC
scores ranging from 0.49 to 0.88, and SEM ranging from 0.37 to 0.58. Overall, Rater 1
demonstrated better consistency amongst their ratings than Rater 2 or 3. Although some
raters performed better than others, overall, they all showed moderate to good consistency,
and the results are summarized in Table 4.

Table 4. Test-retest performance of the human raters on the forty repeated trials. Although the raters
performance varies, they all show moderate to good consistency.

GRS Domains
Rater 1 Rater 2 Rater 3

ICC SEM ICC SEM ICC SEM

Respect for Tissue 0.84 0.43 0.49 0.55 0.55 0.54

Time and Motion 0.83 0.46 0.57 0.58 0.62 0.48

Quality of Final Product 0.88 0.40 0.79 0.47 0.69 0.43

Overall Performance 0.85 0.37 0.60 0.49 0.58 0.48

On the held-out test set, the human raters showed good to excellent agreement, as seen
in Table 5. Greater agreement was seen on this smaller subset of the overall data likely
because there are fewer samples for the human raters to disagree on.

The one-way ANOVA returned a p-value of 0.0038, suggesting there was a signifi-
cant performance difference amongst the surgeon experience groups. The Tukey analysis
resulted in a significant difference between the Beginner (n = 48, mean = 2.31) and Inter-
mediate (n = 36, mean = 2.79) groups (p = 0.003), and no significance between the Expert
group (n = 6, mean = 2.50) and either of the two groups. The lack of significance in the
Expert group may be due to the relatively small sample size compared to the other two.
The results of the ANOVA are depicted in Figure 4.
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Table 5. Human raters show good to excellent agreement on the held-out test set. Determining
agreement on the same test set the AI model is evaluated on can help provide a better baseline for
expected performance.

GRS Domain ICC (2,3) SEM (2,3) ICC (2,1) SEM (2,1)

Respect for Tissue 0.78 0.44 0.54 0.63

Time and Motion 0.81 0.41 0.58 0.61

Quality of Final Product 0.93 0.30 0.82 0.49

Overall Performance 0.86 0.30 0.68 0.30

Figure 4. Participant experience and rating on the ‘Overall Performance’ domain. A significant
difference was found between the Beginner and Intermediate groups.

3.2. Deep Learning Model Performance

The kinematic, image, and multi-modal models were all trained and evaluated inde-
pendently of each other on the same reserved testing set. The model performance was
evaluated by how well it can predict the mean OSATS GRS ratings provided by the raters,
as well as the intrarater reliability between the model predictions and the expert raters.

Table 6 highlights the performance relative to the ground-truth. For a direct compar-
ison with the human performance, the same metrics are presented for each individual
rater’s score compared to their mean scores, for the test-set trials. These metrics serve as
an understanding for how close the model predictions are to the dataset’s ground truth.
The model’s predictions do appear close to the ground-truth, with lower point errors than
two of three human raters, and with the multi-modal model exhibiting the lowest point
error overall.

The error between the ground-truth and the model predictions, as well as human rat-
ings, is also seen in Figure 5. The improvements of the multi-modal model were particularly
noted on the Overall Performance domain.

Table 7 summarizes the agreement between the AI model and the ground truth scores
(i.e., mean of the human ratings). For comparison, we also considered the ICC scores
between each individual rater and their mean score. The AI model demonstrated ICC
scores ranging from 0.3 to 0.90, with the human raters ranging from 0.60 to 0.92. The multi-



Sensors 2022, 22, 7328 11 of 16

modal model demonstrated better agreement based on the ICC and SEM than the kinematic
or image-only models on all domains except for Respect for Tissue. The multi-modal model
also demonstrated better agreement with the ground truth than 2 of the 3 human raters on
the Overall Performance and Quality of Final Product domains, however its performance
was poorer on the remaining two domains.

Table 6. Performance metrics, including mean squared Error (MSE), of the AI predictions and human
ratings, compared to the ground truth (mean of human scores).

Model Metric Respect for Tissue Time and Motion Quality of Final Product Overall Performance

Image Model

MSE - - 0.146 -
RMSE - - 0.392 -
MAE - - 0.293 -

R2 - - 0.778 -

Kinematic Model

MSE 0.336 0.420 - 0.373
RMSE 0.579 0.648 - 0.610
MAE 0.523 0.456 - 0.431

R2 0.337 0.244 - 0.453

Multi-modal Model

MSE 0.480 0.356 0.186 0.194
RMSE 0.693 0.597 0.431 0.440
MAE 0.545 0.459 0.331 0.315

R2 0.136 0.476 0.838 0.618

Rater 1
MSE 0.464 0.348 0.531 0.505

RMSE 0.681 0.590 0.729 0.710
MAE 0.528 0.474 0.449 0.407

Rater 2
MSE 0.546 0.553 0.545 0.466

RMSE 0.739 0.744 0.738 0.683
MAE 0.586 0.483 0.425 0.436

Rater 3
MSE 0.288 0.363 0.193 0.290

RMSE 0.537 0.602 0.439 0.539
MAE 0.409 0.426 0.291 0.336

Figure 5. Graphical comparison of the MSE on the GRS Domains—lower MSE is better.

The Spearman Correlation Coefficient, ρ, of our multi-modal model is reported in
Table 8. This represents the correlation between the model’s predictions and the ground truth.

The discretized scores are used to evaluate the model’s accuracy, and are summarized
in Table 9. As mentioned, accuracy is not a perfect metric for our continuous data predic-
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tions, however it is indicative of the difference between the predictions and ground-truth
on the datasets.

Overall, the multi-modal model demonstrated comparable results to the humans on
most of the GRS domains. The AI had a lower point error on the ground truth scores than
the human raters on three of the four GRS domains, as exhibited by the lower MSE. The ICC
metrics suggest that in general, the human raters were in better agreement with the ground-
truth scores. The multi-modal model demonstrated the best performance, with higher ICC
on some domains (e.g., Quality of Final Product) than two of the three raters.

Table 7. Intraclass Correlation Coefficient (ICC) and Standard Error of Measurement (SEM) scores
between the ground truth and the AI models & human raters.

Model Metric Respect for Tissue Time and Motion Quality of Final Product Overall Performance

Image Model ICC(2,1) - - 0.888 -
SEM(2,1) - - 0.257 -

Kinematic Model ICC(2,1) 0.477 0.621 - 0.534
SEM(2,1) 0.464 0.441 - 0.416

Multi-modal Model ICC(2,1) 0.301 0.591 0.904 0.746
SEM(2,1) 0.499 0.428 0.309 0.305

Rater 1 ICC(2,1) 0.717 0.779 0.823 0.616
SEM(2,1) 0.476 0.414 0.512 0.502

Rater 2 ICC(2,1) 0.606 0.627 0.758 0.508
SEM(2,1) 0.516 0.524 0.521 0.689

Rater 3 ICC(2,1) 0.797 0.797 0.924 0.789
SEM(2,1) 0.377 0.423 0.308 0.379

Table 8. Spearman Correlation Coefficient between the multi-modal AI predictions and the ground
truth. Best performing model on the JIGSAWS dataset included as reference [13].

GRS Domain
ρ

Multi-Modal Model (Ours) FCN [13]

Respect for Tissue 0.18 -

Time and Motion 0.73 -

Quality of Final Product 0.95 -

Overall Performance 0.82 -

Mean 0.67 0.65

Table 9. Accuracy of the multi-modal model, determined by first rounding the continuous ground-
truth and predicted scores. Best performing model on the JIGSAWS dataset included as reference [11].

GRS Domain
Accuracy

Multi-Modal Model (Ours) Embedding Analysis [11]

Time and Motion 0.54 0.32

Quality of Final Product 0.76 0.51

Overall Performance 0.76 0.41

4. Discussion

This paper presented a new dataset consisting of multi-modal recordings (image, video,
& kinematic) of a simulated surgical knot-tying task, with skill assessment conducted by
expert human raters based on the OSATS GRS framework. A thorough statistical analysis
was conducted to ensure the validity of the dataset. Three deep-learning models were
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trained and evaluated on this dataset: a ResNet-50 image model, a unique “ResLSTM”
kinematic model, and a combined multi-modal model.

All three models were able to successfully perform the skills assessment, with the
multi-modal model performing the best overall. In comparison to previous studies con-
ducted on the JIGSAWS dataset [6], which contains video and kinematic data from eight
surgeons performing three surgical actions (knot tying, needle passing, and suturing) using
the DaVinci Robotic System [25], our multi-modal model achieves better performance.
For comparison, previous literature report a mean Spearman Correlation of ρ = 0.65 on the
knot-tying task in the JIGSAWS dataset [13], as seen in Table 8. This means that on average,
our multi-modal model demonstrates better correlation between its predictions and the
ground-truth on our dataset, than reported on similar datasets in previous literature. Fur-
ther, Khalid et al. [11] present a study that directly predicts the GRS scores in a regression
fashion, using the video data of the JIGSAWS dataset. As seen in Table 9, they report a
mean accuracy of 0.32 for Time and Motion, 0.51 for Quality of Final Product, and 0.41 for
Overall Performance.

This is particularly encouraging as assessing surgical skill from human performed
knot-tying is seemingly more challenging than evaluating a robotically operated dataset.
This result means that our model can be used in a wider range of environments and
facilities, where robotic surgery systems are not available for surgical trainees or faculty.
Further, while some studies attempt to indirectly compute performance metrics for surgical
skill [14,15], our model directly predicts performance on the GRS domains and provides
the most pertinent assessment of surgical skill to trainees.

The AI performance was comparable to the human rater on three out of the four
GRS domains. Further experiments are required to determine why the model consistently
struggles on the Respect for Tissue domain. A possible explanation is that since the Leap
Sensor is only tracking the subjects’ hands, important information on the handling of the
“tissue” (or polypropylene tubing) is not captured using this modality. Respect for Tissue
was better assessed on video which was available to raters but not used by the model.
Future analysis will investigate leveraging the video modality within the multimodal
model to improve performance on this domain.

The image-only model was trained solely on the Quality of Final Product domain,
since it is not likely that the images alone contain enough relevant information for this
model to perform well on the other categories (e.g., Time and Motion). Smaller models were
investigated for this task, such as 5- and 7-layer convolutional neural networks, however
these all exhibited poor performance in the rating task and were abandoned. This suggests
that the ResNet’s increased capacity to extract important and meaningful features from the
image data is important in assessing surgical skill. We also explored using a pre-trained
MobileNet as the imaging backbone, however found the performance to be poorer than the
ResNet-50. The ResNet-50 presents a good balance between performance (better ImageNet
performance than VGG [28]), and reasonable computing requirements. Future studies
may investigate the use of alternate backbone networks, including models such as Vision
Transformers [31].

Similarly, shallow recurrent neural networks exhibited poor performance on the
kinematic data and were also discarded. Learning to score various categories of surgical
skill is a complex task and these models likely did not have the capacity to extract the
necessary features from the kinematic data. This justifies the development of a deeper, more
powerful “ResLSTM” model; the one-dimensional ResNet-18 backbone and bi-directional
LSTM layers exhibited far better performance on our dataset than shallower networks.
This outperforms a LSTM-only network for two likely reasons: (1) the ResNet extracts
meaningful features from the raw sensor data, and (2) the convolution operators reduce
the length of the time-series sequences, which are easier for the LSTM layers to learn than
longer sequences.

Leveraging transfer learning was also important to increasing the image model’s
performance. Training a ResNet-50 model without weights pre-trained on ImageNet leads
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to an RMSE of 0.523 (0.274) for the quality of final product score, compared to the RMSE
score of 0.392 (0.146) exhibited with pre-training. Although the ImageNet dataset does
not contain examples of surgical sutures, the low-level features learned on the large-scale
generic dataset are helpful starting points when transitioning to a domain-specific task. Our
results further suggest the need for even larger datasets that can be used for pre-training the
kinematic portion of the model. The image only model performed better than the kinematic
model, likely in part due to the availability of ImageNet pre-trained weights for the image
feature extractor.

Combining both the kinematic and image modalities allows for a single model to
rate all four surgical skill assessment categories. Further, training a single model on both
modalities led to an increase in performance across all the categories, except for Respect
for Tissue. It is unclear why this model sees a degradation in performance in this category
compared to the kinematic-only model; further experiments are required to discern this.
Notably, the Overall Performance category saw a large increase in MSE and R2 scores.
Training on both kinematic and image data allows for the combined model to learn a more
optimal feature set that is better representative of the task performances.

This study is limited in that the AI was trained and evaluated on data collected from a
single training center. It remains to be studied how the model performance is affected by
increased participant diversity, e.g., trainees from different institutes or countries. Future
studies can investigate how the model generalizes to new participants. Further, while the
OSATS was used in this study to evaluate the knot tying performance, improved assess-
ment tools, such as a modified OSATS score which incorporates additional domains [32],
may be more suitable in future studies as more complex tasks are considered in more
physiologically challenging environments.

5. Conclusions

This study demonstrated a multi-modal deep learning model for surgical skill as-
sessment with performance comparable to expert raters. This investigation highlights
the importance of multi-modal data sources (image, kinematic, video) in surgical skill
assessment. Automation of surgical skill assessment has the potential to transform surgical
education, making training more effective, equitable, and efficient; trainees can receive
quicker and more frequent feedback, while surgical faculty will have less of a burden to
evaluate, allowing for greater focus on educational and clinical tasks. Further, with the
addition of data collection systems to the operating room, skill assessment technology has
the potential to lead to greater surgeon skill and improved patient outcomes.
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