
Citation: Feng, Y.; Zhong, M.; Dong,

F. Research on Monocular-Vision-Based

Finger-Joint-Angle-Measurement

System. Sensors 2022, 22, 7276.

https://doi.org/10.3390/s22197276

Academic Editor: Salvatore Pirozzi

Received: 21 August 2022

Accepted: 21 September 2022

Published: 26 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Research on Monocular-Vision-Based
Finger-Joint-Angle-Measurement System
Yongfei Feng, Mingwei Zhong and Fangyan Dong *

Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China
* Correspondence: dongfangyan@nbu.edu.cn

Abstract: The quantitative measurement of finger-joint range of motion plays an important role in
assessing the level of hand disability and intervening in the treatment of patients. An industrial
monocular-vision-based knuckle-joint-activity-measurement system is proposed with short mea-
surement time and the simultaneous measurement of multiple joints. In terms of hardware, the
system can adjust the light-irradiation angle and the light-irradiation intensity of the marker by
actively adjusting the height of the light source to enhance the difference between the marker and the
background and reduce the difficulty of segmenting the target marker and the background. In terms
of algorithms, a combination of multiple-vision algorithms is used to compare the image-threshold
segmentation and Hough outer- and inner linear detection as the knuckle-activity-range detection
method of the system. To verify the accuracy of the visual-detection method, nine healthy volunteers
were recruited for experimental validation, and the experimental results showed that the average
angular deviation in the flexion/extension of the knuckle was 0.43◦ at the minimum and 0.59◦ at the
maximum, and the average angular deviation in the adduction/abduction of the knuckle was 0.30◦ at
the minimum and 0.81◦ at the maximum, which were all less than 1◦. In the multi-angle velocimetry
experiment, the time taken by the system was much less than that taken by the conventional method.

Keywords: monocular vision; human joint angle measurement; visual detection method; hand disability

1. Introduction

The quantitative measurement of hand-joint range of motion (ROM) is important
for clinicians to assess a patient’s level of hand disability and the effectiveness of inter-
vention therapy. In the clinical setting, knuckle goniometers are often used to measure
ROM due to their ease of use, portability, and affordability. However, these devices
are time-consuming for single-joint angle measurements and do not allow simultaneous
multi-joint angle measurements. Many experts and scholars have conducted in-depth
research in the field of knuckle-angle measurement, including wearable-sensor-based
knuckle-angle-measurement methods and vision-based knuckle-angle-measurement meth-
ods. Okuyama et al. developed a finger-joint-angle-measurement system based on flexible
polymer sensors [1]. The system measures the flexion/extension movement of fingers by
installing flexible polymer sensors on the surfaces of fingers, which can realize the detec-
tion of joint-angle changes during daily grasping movements. A three-dimensional (3-D)
finger-motion-measurement system based on a soft sensor was proposed by Park et al. [2].
Changcheng et al. designed an integrated mechanical-sensor detection system, consisting
of an angle-measurement device and a measurement circuit in order to achieve finger-joint
measurement [3]. The effectiveness of the system was verified by joint-angle measurement,
motion-law evaluation and object-grasping experiments, and the experimental results
showed that the root mean square (RMS) of the DIP, PIP, and MCP angle-measurement
errors were 0.36, 0.59, and 0.32 degrees, respectively [3]. It has been found that these
wearable-sensor-based finger-joint-angle measurement methods have high accuracy in
measuring finger joint angles, but the difficulty in wearing them has not been effectively
solved in clinical applications for patients with hand motor dysfunction [4–10].
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Vision-based knuckle-angle-measurement systems could realize the dynamic measure-
ment of multi-joint angles without involving direct physical contact between the doctor
and the patient’s hand. Vision-based measurement systems work by first capturing an
image of the entire hand and then using computer-vision techniques to estimate the hand
posture [11–15]. Commercial devices (such as Leap Motion) are currently used for hand-
angle measurement [16,17] and, recently, they have been used in virtual-reality headsets
(such as Facebook’s OculusQuest and Microsoft’s HoloLens2) equipped with hand tracking
for human–computer interaction. The two main problems faced by current vision-based
hand-posture estimation systems are the low accuracy of the knuckle-angle measurement
and the high level of restriction on the camera view [18]. Lee J.W. et al. proposed a method
of measuring finger-joint angles and finger forces in the process of maximum cylindrical
grip using a multi-camera photogrammetric method with markers and a pressure-sensitive
film, respectively [19]. The experimental results showed that this method can be used to
judge the extension/flexion direction of the knuckle.

An industrial monocular-vision-based knuckle-angle-measurement system based on
the existing computer-vision detection system is proposed in this paper [20]. This knuckle-
angle-measurement system consists of a hardware system, a vision system, and a control
system. The hand visual markers in the hardware system can simplify the difficulty of
knuckle identification, and the use of high-resolution cameras can greatly improve the
accuracy of the knuckle-angle detection. The active multi-angle light-detection system
consisting of the control system, hardware system, and specified light source can adjust
the light-irradiation angle and light-source-irradiation intensity to the marker by adjusting
the height of the light source, thus enhancing the difference between the marker and the
background, making the marker easy to the segment from the background and simplifying
the marker-segmentation process.

2. Biological Structure of Human Fingers and Their Movement Characteristics
2.1. Structural Composition of the Human Hand

The human hand consists of the index finger (IF), middle finger (MF), ring finger
(RF), little finger (LF), and thumb (TUM). The IF, MF, RF, and LF consist of one degree of
freedom (DOF) distal phalangeal (DIP), one DOF proximal phalangeal (PIP), and two-DOF
metacarpophalangeal (MCP) and two-DOF carpometacarpal (CMC) joints, respectively. The
thumb consists of a one-DOF distal phalangeal joint (IP), a two-DOF metacarpophalangeal
joint (MCP), and a two-DOF carpometacarpal joint (TM) [21], as shown in Figure 1.
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2.2. Finger-Movement Characteristics

The movement of hand joints is mainly manifested by the abduction/adduction and
flexion/extension movements of the four fingers and the thumb. The movement of human
fingers has the following characteristics: (1) the DIP and PIP joints of the four fingers other
than the thumb are bound to each other and meet; (2) when the MCP joint of the four
fingers other than the thumb is flexed, the adjacent MCP joint is also flexed. According to
the Evaluation of Rehabilitation Therapy, the ROM of the human finger joint and traditional
measurement methods can be determined, as shown in Figure 2.
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3. Experimental-Platform Construction

Machine-vision technology has been developed, including hardware and software,
but in the computer-vision measurement system, the design and layout of the lighting
system is still a pivotal link, which can often significantly affect the performance of the
vision-measurement system. A good illumination system can greatly enhance the difference
between the measurement target and the measurement background, improve the system
imaging, and make the target easier to identify and segment, thus simplifying the time
and hardware cost required for program calculation. The different arrangements of light-
source systems in the field of defect detection are often divided into passive multi-angle
illumination-detection methods and active multi-angle illumination-detection methods.
Considering the different characteristics of the two lighting methods, the active multi-angle
lighting-detection method was selected as the light source arrangement method in the
experimental platform.

3.1. Design of Experimental Platform

The core of the active multi-angle light-source detection method is the machine-vision-
detection part; therefore, the quality of the acquired images and the speed of the image
processing have a greater impact on the visual-detection effect. The quality of the camera
hardware determines the quality of the image acquisition, and a high-performance, high-
resolution camera can produce image data containing clear features under the irradiation of
a highly stable light source, while a clear image is the basis for ensuring the stable operation
of the image-processing algorithm and the detection effect of the system, which shows
that the selection and design of the detection hardware are also particularly important.
Based on the finger-joint-angle-measurement-system scheme, the actual system built in
this study is shown in Figure 3. In Figure 3, Figure 3a represents the angle detection in
the finger flexion/extension state, and Figure 3b represents the angle detection in the
finger abduction/adduction state. Through this platform, high-quality multi-angle light-
source-irradiated multivariate images can be acquired; subsequently, through the PC
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image-processing algorithm, these can be processed to segment the finger-joint identifiers
in the image for the subsequent calculation of the finger-joint angle and length.
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3.2. Light-Source Selection and Solution of the Single-Reflection Matrix

Industrial cameras are at the core of the vision-inspection system, and their main role
is to convert the optical signal into an electrical signal and transmit it to the processing
unit. As the most important part of the industrial camera, the light-sensitive element is of
two main types: CCD (charge-coupled element) and CMOS (complementary metal oxide
semiconductor). Furthermore, CCD technology is more widely used. Industrial cameras
have many important parameters, such as resolution, shutter time, external trigger, frame
rate, etc. Therefore, the vision-inspection system should take into account the needs of
the inspection task to select the most appropriate camera. Depending on the interface
type of the camera, it can be divided into USB, GigE, and camera link. Considering the
advantages of the data-transmission speed, ease of use, and data-transmission distance, the
GigE interface camera in Basler ace was selected.

In the inspection system, the choice of industrial lens directly affects the quality of
the captured image. The industrial-lens parameters, such as interface type and CCD size,
should be matched with the industrial camera. In addition, the aperture of the lens controls
the light intake of the industrial camera, which exerts a direct impact on the brightness
of the image; the focal length directly affects the size of the field of view, representing the
vertical distance from the imaging plane to the center of the lens. Considering these lens
characteristics, the lens selected in this study was TEC-V7X.

The light source is another important component of the visual inspection system,
which is to determine the key to clear and stable imaging. The choice of the light source
should highlight the object to be detected. According to the classification of light-emitting
devices in the light source, the light source can be divided into fluorescent lamps, LED
lamps, halogen lamps, etc., of which LED lamps are the most common. The light source
selected for this paper was the ring light source of model R50-26-13, developed by Huakang
Technology Company.

The transformation of the camera coordinate system, x-y-z, into the two-dimensional
image coordinate system, u-v, is shown in Equation (1). u

v
1

 = s

 fx γ u0
0 fy v0
0 0 1

[ r1 r2 t
]xW

yW
1

 (1)
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where

 fx γ u0
0 fy v0
0 0 1

 is the internal reference matrix of the camera and
[

r1 r2 t
]

is

the external reference matrix of the camera. This leads to the formula for calculating the
single-response matrix of the camera and the conversion formula for converting the pixel
coordinates of the image to world coordinates as:

H = s

 fx γ u0
0 fy v0
0 0 1

[ r1 r2 t
]
= sM

[
r1 r2 t

]
sX = H−1x

(2)

where H is the single-response matrix, x is the pixel coordinate in the image, and X is the
world coordinate.

The above coordinate-system-conversion Equation (2) is used to obtain the single
response matrix H from the pixel-coordinate system to one of the plane-coordinate systems
(W) in space. Using H, two points in the pixel-coordinate system can be converted into W.
The distance s1 between two points in W is calculated, after which a ruler is used to directly
measure the actual distance s2 between the corresponding two points in W. The error result
of comparing s1 and s2 is 0.073 mm. However, when the relative distance between W and
the camera changes, the error between s1 and s2 becomes dramatically larger. Therefore,
during the finger-joint-angle measurement, the position of the detection plane relative to
the camera should always be constant, and H should be updated in time when the distance
of the camera relative to the detection plane changes.

4. Vision-Based Finger-Joint-Angle-and-Length-Detection Method

The finger-joint angle-and-length-detection method proposed in this paper is a joint-
angle-detection method for visual-identifier-segmentation reprocessing. The method
mainly consists of finger-joint-identifier pasting and image acquisition, visual identifier
segmentation, the edge detection of visual identifiers, and joint-angle calculation based on
the different joint identifiers of the finger. In the visual-identifier-segmentation method,
the HSV color-space-conversion method and image-threshold segmentation method were
adopted in this study to segment the finger-joint identifiers in the image. In the finger-joint-
angle-calculation method, the inner and outer edge Hough straight-line-detection method
and the least-squares method of fitting a straight line are used. Therefore, a finger-joint-
angle image produces 2 × 2 joint angles and lengths, and the method that is ultimately
closest to the real joint angle was selected as the finger-angle detection method for this
paper by comparing the four joint angles with the real joint angle.

4.1. Vision-Based Finger-Joint-Angle-and-Length-Detection Method

When detecting the angle of each finger joint, firstly, the position of each finger bone
in the image is identified and, secondly, the position and joint angle of each finger joint
by the intersection point and the angle between each finger bone are identified. A finger-
joint identifier for which it was easy to perform image segmentation was used for the
identification of finger phalanges in the image. The finger-joint identifiers of different
scales are shown in Figure 4a, and the most suitable finger-joint identifier was selected by
comparing the accuracy of the angle detection of the identifiers at different scales. Figure 4b
shows the method of attaching the finger-joint identifiers.
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Since the light-source intensity and light-irradiation angle have a significant impact on
the segmentation and extraction of finger-joint markers, the height of the light source can be
adjusted to alter the light-irradiation angle and the light-source-irradiation intensity of the
markers, enhancing the difference between the markers and the background, making it easy
to segment the markers from the background and simplifying the marker-segmentation
process. The image-acquisition method based on the active multi-angle light-source detec-
tion method is shown in Figure 5: (a) represents high angle lighting; (b) represents medium
angle lighting; (c) represents low angle lighting.
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4.2. Visual Marker Segmentation Methods

To obtain a better finger-joint-angle-detection algorithm, this paper uses the HSV
color-space-conversion method and the image-threshold-segmentation method to extract
the target finger-joint identifier in the image and different edge-detection algorithms to
obtain the identifier edge coordinates and then calculates each finger-joint pinch angle by
two different finger-joint-angle-detection algorithms.

(1) HSV color-space-marker-segmentation extraction with Canny edge detection

In HSV color space, H denotes color, S denotes shade when S = 0 only grayscale image,
and V denotes light and dark, indicating the brightness of the color [22,23]. The conical
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model of HSV color space can be formed by erecting and flattening the central axis of
the RGB-color-space 3D coordinates. The RGB–HSV color-space-conversion equations are
shown in Equations (3)–(5).

V =max(R, G, B) (3)

S =

{
V−min(R,G,B)

V V 6= 0
0 other

(4)

H =


60(G− B)/(V−min(R, G, B)) V = R

120 + 60(B− R)/(V−min(R, G, B)) V = G
240 + 60(R−G)/(V−min(R, G, B)) V = B

(5)

In Equations (3)–(5), R, G, and B denote the three components of the three-dimensional
coordinate axes in the RGB color space. The setting ranges of the three components of HSV
are H: 100~130, S: 150~255, V: 130~255. The results of the specified color-region extraction
are shown in Figure 6b. Canny edge detection is currently a commonly used edge-detection
algorithm. It was proposed by John Canny in 1986 [23]. It is a multi-stage algorithm
consisting of image-noise reduction, the computation of the image gradient, non-maximal
value suppression, and threshold screening. Its formula for image-gradient calculation for
edge detection is shown in Equation (6).{

G =
√

G2
x + G2

y

θ = atan2
(
Gy, Gx

) (6)

The θ in Equation (6) represents the gradient angle range of −π~π, which can be
approximated as four angles, 0◦, 45◦, 90◦, and 135◦, representing the horizontal, vertical,
and two diagonal directions, respectively. The Canny operator edge-extraction results are
shown in Figure 7c.
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shown in Figure 7c. 
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(2) Image thresholding method with edge-contour extraction

The use of image segmentation to separate the target region from the background
region can prevent the need to conduct a blind search on the image and greatly improve the
processing efficiency of the image [24,25]. Threshold segmentation based on the grayscale
histogram is simple to compute and is suitable for grayscale images where the target and
background are distributed in different grayscale ranges, as shown in Figure 7 for the
histogram of the original image.

The image-segmentation formula based on different thresholds is shown in Equation
(7), where T is the gray threshold; f (xi,yi) is the gray level of the detected image point,
and A and A are the set gray level of the current position image. In this study, the gray
level of the target image was set as 0, and the gray level of the other images was set as
255. The above operation was performed simultaneously by scanning the image by a line
from two directions using a raster scan, which can prevent missing image information for
various reasons, as shown in Figure 8a for the image after threshold segmentation. Next,
the image contours were detected by the fine-contours function in OpenCV and, finally, the
contours of the target identifier were filtered out automatically based on the similarity of
the contour-enclosing area. The results of the target-identifier contour detection are shown
in Figure 8b.

g(xi, yi) =

{
A if f (xi, yi) > T
A if f (xi, yi) 6 T

(7)
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4.3. Joint-Angle-Calculation Method Based on Different Joint Identifiers of the Finger

(1) Hough straight-line detection method for inner and outer edges

The Hough transform was improved by Richard Duda in 1972. The method transforms
a point in the data space into a curve in the ρ-θ parameter space so that points with the
same reference-quantity characteristics intersect in the reference space after transformation.
Subsequently, the detection of the characteristic straight line is completed by judging
the accumulation degree at the intersection point. The expression formula of a straight
line in the data space is shown in Equation (8), where k denotes the slope and b denotes
the intercept.

y = kx + b (8)

The standard straight-line Hough transform uses the following parametric straight-
line formula, as shown in Equation (9), where ρ is the perpendicular distance from the
origin to the line and θ is the angle between ρ and the x-axis.

x cos θ + y sin θ = ρ (9)
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When different points on a straight line in the data space are transformed into a family
of sinusoidal curves intersecting at p points in the parameter space, the detection of a
straight line in the data space can be achieved by detecting the local maximum p points
in the parameter space. The results of the detection of the inner and outer Hough straight
lines for the target identifier are shown in Figure 9. Figure 9a represents the detection
results of the Hough line on the outside of the HSV segmentation; Figure 9b represents
the detection results of the Hough line inside the HSV segmentation; Figure 9c represents
the detection results of the Hough line outside the threshold segmentation; and Figure 9d
represents the detection results of the Hough line inside the threshold segmentation. The
inner- and outer-edge Hough straight-line-detection method detects four straight lines on
the inner edge and four straight lines on the outer edge of each identifier, after which the
angle of each knuckle on the inner side of the identifier and the angle of each knuckle on
the outer side are calculated using the finger-joint-angle-calculation method, and finally,
the angle of each knuckle is found as θi =

θiw+θin
2 (i = 1, 2, 3).
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(2) Least-squares fitting of the target identifier profile

The least-squares method was discovered by Legendre in the 19th century and takes
the form shown in Equation (10). In Equation (10), yi is the observed value, i.e., multiple
samples, and y is the theoretical value, i.e., the assumed fit function. Sε2 is the objective
function, i.e., the loss function, and the objective of the least-squares method is to model
the fit function when the objective function is minimized.

Sε2 = ∑(y− yi)
2 (10)

To fit the four joint identifiers in the image as four straight lines, this paper assumes
that the number of contour coordinates of each joint identifier is n. Assume that the
equation of the straight line is y = ax + b, where a is the slope of the line and b is the intercept
of the line. The least-squares method is used to solve for a and b, whose formulas are
shown in Equation (11). The results of the least-squares method for fitting the straight line
to the pixel points of the target identifier are shown in Figure 10. Figure 10a represents the
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line-fitting result of the HSV-segmentation least-squares method. Figure 10b represents the
line-fitting result of the threshold-segmentation least-squares method.

b =

(
N
∑

i=1
x2

i

)(
N
∑

i=1
yi

)
−
(

N
∑

i=1
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)(
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xiyi
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N
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N
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x2

i

)
−
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N
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(3) Finger-joint-angle-calculation method

The relevant lines of finger-joint markers can be obtained by the above linear-detection
methods. According to these lines, the head and tail coordinates of the four relevant lines
of the four joint markers can be obtained, after which the angle between the joints of the
fingers can be calculated by the formula of the angle between the two-dimensional vectors,
as shown in Equation (12).

θi = arccos

 →
a i ·

→
b j

‖ai‖ ·
∥∥aj
∥∥
 (12)

In Equation (12),
→
a i and

→
b j are the vectors of two adjacent phalangeal identifiers and

θi is the knuckle-joint angle. The finger-joint-angle measurements using different methods
are shown in Table 1. The experiments showed better results with high-angle illumination.
The results obtained for the detection of the human-hand model in the case of high-angle
illumination are shown in the Table 1. HSV–HOISLM represents the HSV + Hough outer-
and inner-straight-line method; HSV–LSFLKADM represents HSV + the method of least-
squares-fitting linear-knuckle-angle detection; TS–HOMLDM represents the threshold
segmentation + Hough outer medial linear-detection method; TS–LSFLM represents the
threshold-segmentation + least-squares-fitting-line method; and TKAM represents tradi-
tional knuckle-angle measurement, as shown in Figure 2.

As can be seen from Table 1, the accuracy and reliability of the visual-based finger-
joint-angle measurement method were demonstrated by comparing the measurement
results of multiple visual-finger-joint-angle-measurement methods with those of the con-
ventional finger-joint-angle measurement method, in which the angular deviation between
the visual-based finger-joint-angle-measurement results and the conventional finger-joint-
angle-measurement results were in the range of 0◦ to 2◦. The maximum deviation in
the comparison with the conventional knuckle-angle-measurement method was 2◦, the
knuckle where the maximum deviation was located was the DIP joint, and the visual-angle-
measurement method that caused the maximum deviation was the HSV–LSFLKADM.
The visual-angle-measurement method with the smallest mean value of the deviation of
the finger-joint angle in comparison with the traditional finger-joint-angle measurement
method was the TS–HOMLDM; therefore, this method was selected as the finger-joint-
detection method for this paper.
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Table 1. Finger-joint angles measured by different methods.

HSV + Hough Outer-
and Inner-Straight-Line

Method

HSV +
Least-Squares-Fitting

Linear-Knuckle-Angle-
Detection
Method

Threshold
Segmentation + Hough

Outer Medial
Linear-Detection

Method

Threshold-
Segmentation +

Least-Squares-Fitting-
Line

Method

Traditional
Knuckle-Angle
Measurement

MCP 145.02◦ 144.76◦ 144.95◦ 144.59◦ 145◦

PIP 111.03◦ 109.38◦ 110.48◦ 111.26◦ 110◦

DIP 111.83◦ 114.07◦ 112.09◦ 112.34◦ 112◦

Length of
proximal
phalanx

26.94 mm 28.24 mm 27.37 mm 27.32 mm 27 mm

Length of
middle phalanx 25.53 mm 25.53 mm 25.64 mm 25.26 mm 26 mm

Mean Angle
deviation 0.407◦ 0.967◦ 0.207◦ 0.670◦

5. Experimental Verification

In this study, nine healthy male volunteers aged between 20 and 25 were recruited
for the experiment, and three different finger-joint angles were detected using the TS–
HOMLDM for visual identifiers with widths of 1.5 mm, 2 mm, and 2.5 mm, respectively, to
verify the monocular vision-based finger-joint-angle measurement system (MVBFJAMS)
proposed in this paper to measure the accuracy of the test in comparison with the traditional
inspection method and to determine the most appropriate visual identifier width. To ensure
the reliability of the experiment, we invited professional physicians to measure different
volunteer knuckle angles using the traditional method first, after which our group members
measured different volunteer knuckle angles using MVBFJAMS. To verify the accuracy of
the MVBFJAMS for finger-joint-angle measurement during finger extension/contraction, a
control experiment was conducted using the conventional measurement method and the
visual measurement method. This paper also verifies the speed of the knuckle detection
by the visual inspection method by comparing the time used to detect and record 30 joint-
angle data by the traditional method and the visual-inspection method. Table 2 shows the
knuckle-joint-retention angles for different volunteers with different markers to verify the
accuracy of the visual-detection method. The finger-bone-length data are not given because
the actual joint position of the finger was uncertain.

Table 2. Knuckle-retention angles under different markers in different volunteers.

MCP (◦) PIP (◦) DIP (◦)

Knuckle-hold angle
under each marker

145 110 115
160 130 110
150 165 130

The detection method in Figure 3a was adopted for the volunteers, and the detection
results for the knuckle accuracy of the different volunteers at different scales of visual
markers were obtained, as shown in Table 3.
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Table 3. Results of different volunteers’ visual-detection angles.

Volunteer Mark on the
Scale MCP (◦) PIP (◦) DIP (◦)

Length of
Proximal

Phalanx (mm)

Length of
Middle

Phalanx (mm)

volunteer 1

1.5 mm
144.72 109.31 115.42 45.52 30.23
160.10 130.12 109.21 44.07 31.45
149.48 165.72 130.31 45.31 30.21

2 mm
145.21 109.10 114.42 46.21 31.03
161.71 132.22 109.71 44.71 30.15
151.31 167.28 130.02 45.49 29.24

2.5 mm
144.72 108.91 115.92 46.71 29.02
160.40 128.93 109.27. 43.93 30.51
147.32 164.89 133.22 46.44 29.91.

volunteer 2

1.5 mm
145.31 110.21 114.71 47.22 33.47
159.27 130.31 111.31 47.31 32.17
150.32 164.44 139.74 46.28 31.95

2 mm
143.31 110.72 116.71 46.93 33.36
160.44 129.10 110.23 47.32 32.78
150.77 165.69 131.21 48.91 34.19

2.5 mm
146.21 110.79 114.49 48.31 35.66
162.99 131.44 111.22 47.76 34.54
150.55 167.21 131.59 47.77 31.22

volunteer 3

1.5 mm
144.81 110.47 115.69 43.17 27.49
160.77 130.21 110.48 44.21 26.36
150.06 165.56 131.81 42.89 28.91

2 mm
144.31 111.81 114.01 44.33 29.36
161.17 130.79 112.58 46.96 27.22
150.97 163.84 130.91 45.89 26.54

2.5 mm
146.79 110.11 115.98 43.22 27.77
160.89 129.33 111.39 45.10 29.99
150.34 166.79 130.44 45.78 26.53

volunteer 4

1.5 mm
145.32 110.17 114.87 45.17 30.24
160.17 130.22 109.97 44.54 29.77
150.27 164.90 131.07 45.98 29.31

2 mm
146.32 110.54 115.94 43.33 27.45
159.12 130.84 110.95 44.54 26.79
149.71 165.55 128.77 42.59 26.34

2.5 mm
146.71 110.21 116.19 43.24 28.79
160.77 131.44 108.22 45.77 27.32
151.45 165.99 130.97 43.35 28.23

volunteer 5

1.5 mm
145.21 109.55 115.94 40.22 23.33
160.56 129.53 109.84 41.57 24.35
150.41 165.77 129.92 43.98 23.47

2 mm
145.99 109.21 116.31 42.22 25.22
160.77 131.74 109.55 41.31 24.51
150.22 166.33 130.44 39.45 23.91

2.5 mm
145.97 109.22 115.33 40.58 25.33
161.44 130.55 110.89 41.32 24.56
148.97 165.33 131.75 43.77 22.22
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Table 3. Cont.

Volunteer Mark on the
Scale MCP (◦) PIP (◦) DIP (◦)

Length of
Proximal

Phalanx (mm)

Length of
Middle

Phalanx (mm)

volunteer 6

1.5 mm
145.31 109.12 114.33 40.12 30.21
160.33 130.22 109.22 44.45 29.22
150.22 165.72 130.33 43.43 27.34

2 mm
145.33 110.47 115.33 39.65 28.79
161.43 130.99 109.44 41.76 30.33
150.67 165.33 131.65 42.22 30.67

2.5 mm
146.12 110.22 115.48 45.97 30.15
158.91 130.21 110.77 42.71 31.33
149.23 163.47 131.22 42.45 29.78

volunteer 7

1.5 mm
145.33 110.32 116.12 36.45 27.13
159.31 130.07 110.77 36.84 26.56
150.21 165.22 129.22 37.32 26.32

2 mm
146.71 110.42 113.41 34.78 25.72
160.12 130.65 110.89 37.77 28.23
151.14 164.31 130.22 37.96 27.45

2.5 mm
145.42 110.31 114.21 39.03 29.81
161.31 128.64 109.01 39.76 25.33
152.12 166.21 129.13 38.78 25.91

volunteer 8

1.5 mm
145.32 110.77 114.57 43.15 27.49
160.74 129.22 110.10 41.33 28.27
151.12 165.33 129.38 44.54 27.39

2 mm
145.72 110.31 116.66 42.56 29.72
159.21 131.72 110.07 42.33 27.59
150.56 166.77 130.33 41.12 28.23

2.5 mm
145.32 110.07 115.21 44.45 30.02
157.42 131.72 110.99 41.75 29.67
150.22 166.23 129.25 45.39 28.37

volunteer 9

1.5 mm
145.31 110.23 115.76 35.46 23.57
160.22 130.74 110.55 34.90 24.88
159.31 165.21 130.90 37.04 24.42

2 mm
146.13 111.31 114.31 36.24 25.56
158.91 129.10 110.12 39.35 23.78
149.01 165.12 131.14 37.67 24.33

2.5 mm
143.21 109.22 115.33 38.91 24.89
160.33 131.55 107.32 37.33 26.33
151.33 165.77 129.22 37.57 23.91

From Tables 2 and 3, the deviations from the mean knuckle angle at different scale
markers, shown in Figure 11, can be calculated.

As shown in Figure 11, the minimum-knuckle-angle mean deviation was 0.27◦ and
the maximum-knuckle-angle mean deviation was 1.38◦ for the nine volunteers using visual
identifiers at different scales. The knuckle-angle deviations for the nine volunteers using
visual identifiers at a scale of 1.5 mm were 0.43◦, 0.47◦, 0.58◦, 0.27◦, 0.45◦, 0.5◦, 0.5◦, 0.59◦,
and 0.51◦, which were much smaller than the mean deviation of the knuckle angle when
using other scales of visual identifiers. Therefore, the scale of a 1.5-millimeter visual marker
was chosen as the test condition for the subsequent experiments. To verify the accuracy of
the finger-abduction angle, three different finger-abduction-joint angles were measured
using visual measures on nine volunteers, and the accuracy of the angles was verified using
conventional methods. The results of the measurement of the three different abduction-joint
angles are shown in Table 4.
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151.33 165.77 129.22 37.57 23.91 

From Tables 2 and 3, the deviations from the mean knuckle angle at different scale 
markers, shown in Figure 11, can be calculated. 
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Figure 11. Deviation from the mean value of knuckle angle at different scales.

Table 4. Measurement results of abduction/adduction knuckle angle.

Volunteer Knuckle-Angle
Measurement Measuring Angle (◦) Mean Knuckle-Angle

Deviation (◦)

volunteer 1
Vmm 25.73 39.21 40.39

0.63Tmm 25 40 40

volunteer 2
Vmm 24.32 39.03 40.41

0.68Tmm 25 40 40

volunteer 3
Vmm 23.91 40.71 40.51

0.77Tmm 25 40 40

volunteer 4
Vmm 24.41 39.93 40.33

0.33Tmm 25 40 40

volunteer 5
Vmm 25.22 39.35 40.61

0.49Tmm 25 40 40

volunteer 6
Vmm 24.12 38.77 41.12

0.61Tmm 25 40 40

volunteer 7
Vmm 24.52 39.79 40.22

0.30Tmm 25 40 40

volunteer 8
Vmm 24.91 38.54 40.89

0.81Tmm 25 40 40

volunteer 9
Vmm 24.33 40.95 40.87

0.83Tmm 25 40 40

In Table 4, Vmm represents the visual measurement method and Tmm represent
the traditional measurement method. As shown in Table 4, the maximum and minimum
knuckle-angle deviations of the nine volunteers were 0.81◦ and 0.30◦, respectively. The
mean values of the knuckles were 0.63◦, 0.68◦, 0.77◦, 0.49◦, 0.33◦, 0.61◦, 0.30◦, 0.81◦, and
0.83◦, respectively. Table 5 shows the average time taken to measure and record the angle
data of 30 joints for the 9 volunteers using the traditional method and the visual-detection
method (including the time to paste the visual marker).

Table 5. Time taken to measure and record data for 30 joint angles under different methods.

Method of Knuckle-Angle Detection Time Taken to Measure and Record Knuckle
Angles for 30 Times (s)

TMM 51.75
VMM 421.21
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From Table 5, it can be seen that the time taken by the vision-based knuckle-angle-
detection method is much less than that of the conventional knuckle-angle-detection
method. This result was produced because the vision-based knuckle-angle-detection
method not only enables the simultaneous measurement of multiple knuckles compared
to the conventional knuckle-angle-detection method, but also increases the speed of the
knuckle measurement and the speed at which the knuckle-angle data are recorded.

6. Conclusions

To solve the problems that the joint-angle measuring instrument takes more time to
measure the angle of single joints in clinical medicine, and cannot measure the angles
of multiple joints at the same time, a vision-based finger-joint-angle-measuring system
was designed on the basis of the original visual-inspection system. The system consists
of a hardware system, a control system, and a vision system. The active multi-angle-light-
source-detection system composed of a control system and a hardware system can simplify
the recognition process of visual markers by adjusting the height of the light source. The
vision system is composed of an industrial camera and the knuckle-angle-detection method
proposed in this paper. The knuckle-angle-detection method proposed in this paper is
composed of finger-joint-marker pasting, image acquisition, visual-marker segmentation,
visual-marker edge detection, and joint-angle calculation based on different finger-joint
markers. In this study, each component of the method was analyzed and verified by
experiments. These experiments proved that in the case of high angle illumination, the
TS–HOMLDM should be adopted, and the visual marker with the scale of 1.5 mm was
selected, since it had the highest measurement accuracy. The shortcomings of the current
proposed MVBFJAMS are also very obvious. Firstly, the system requires a Basler ace
camera, a TEC-V7X industrial lens, an R50-26-13 light source, and a computer, which makes
it much more expensive than traditional knuckle-measurement methods and sensor-based
methods; furthermore, the system can only achieve two-dimensional inspection at present.

The system is still in the experimental stage and has high requirements for the detection
environment for light sources. Considering the complexity of the clinical environment,
in order to improve the anti-interference capability of the system, we intend to add an
opaque housing to the exterior of the device in the future in order to maintain the stability
of the testing environment. In the next phase, we intend to add another depth camera
to this system and fuse the texture information from the normal camera with the depth-
camera depth information to build a model of the detector’s hand. Using this approach,
three-dimensional detection can then be achieved to detect the angle of each finger joint of
the hand. In the meantime, we will further validate the accuracy of the system through
clinical trials, as well as the accuracy of the assessment of the level of handicap and the
effectiveness of the intervention treatment.
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