
Citation: Kim, M.; Kim, J.-S.; Choi,

M.-S.; Park, J.-H. Adaptive Discount

Factor for Deep Reinforcement

Learning in Continuing Tasks with

Uncertainty. Sensors 2022, 22, 7266.

https://doi.org/10.3390/s22197266

Academic Editors: Gianni D’Angelo

and Arcangelo Castiglione

Received: 27 July 2022

Accepted: 21 September 2022

Published: 25 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Adaptive Discount Factor for Deep Reinforcement Learning in
Continuing Tasks with Uncertainty
MyeongSeop Kim 1,2 , Jung-Su Kim 1,∗ , Myoung-Su Choi 2 and Jae-Han Park 2

1 Research Center for Electrical and Information Technology, Department of Electrical and Information
Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea

2 Applied Robot R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea
* Correspondence: jungsu@seoultech.ac.kr; Tel.: +82-2-970-6547

Abstract: Reinforcement learning (RL) trains an agent by maximizing the sum of a discounted
reward. Since the discount factor has a critical effect on the learning performance of the RL agent, it
is important to choose the discount factor properly. When uncertainties are involved in the training,
the learning performance with a constant discount factor can be limited. For the purpose of obtaining
acceptable learning performance consistently, this paper proposes an adaptive rule for the discount
factor based on the advantage function. Additionally, how to use the advantage function in both
on-policy and off-policy algorithms is presented. To demonstrate the performance of the proposed
adaptive rule, it is applied to PPO (Proximal Policy Optimization) for Tetris in order to validate
the on-policy case, and to SAC (Soft Actor-Critic) for the motion planning of a robot manipulator
to validate the off-policy case. In both cases, the proposed method results in a better or similar
performance compared with cases using the best constant discount factors found by exhaustive
search. Hence, the proposed adaptive discount factor automatically finds a discount factor that leads
to comparable training performance, and that can be applied to representative deep reinforcement
learning problems.

Keywords: reinforcement learning; discount factor; uncertainty; path planning; Tetris

1. Introduction

Reinforcement learning (RL) is a branch of machine learning in which an agent in-
teracts with a given environment and learns the optimal policy to achieve the predefined
goal. Deep RL is a method that uses neural networks to estimate the value function or
the policy in reinforcement learning. In RL, an agent makes a decision, called action, at a
state according to the policy, and the action is applied to the environment. Then, the agent
obtains the next state and reward from the environment. In order to compute the next
action, the agent maximizes the expectation of the sum of the discounted reward signals
over a finite or infinite horizon. Since the future reward is unknown, the deep RL employs
neural networks to estimate the expectation, called the value function, for the future [1,2].

In real-world problems, it may be difficult to predict the value function by receiving
unseen reward signals or state information, due to unexpected situations [3,4]. These
problems make it difficult to estimate the value in reinforcement learning. Since the value
function is computed by the reward and discount factor, it is of utmost importance to
decide them properly. In particular, the focus of this paper is placed on the discount factor,
which is mostly constant in the existing literature.

If the discount factor is large in an environment with high uncertainty, it may be risky
to estimate the value function by considering the rewards in the distant future. Estimating
the sum of rewards over a longer period of time can lead to unexpected situations due to
the high uncertainty. For instance, agents can overestimate rewards in the distant future,
or the convergence of the value function may not be guaranteed [5–8]. On the other hand,

Sensors 2022, 22, 7266. https://doi.org/10.3390/s22197266 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3451-4029
https://orcid.org/0000-0002-5952-2917
https://orcid.org/0000-0002-5015-4214
https://orcid.org/0000-0001-5837-3131
https://doi.org/10.3390/s22197266
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197266?type=check_update&version=3

Sensors 2022, 22, 7266 2 of 22

if the discount factor is too small, it can lead to a better generalization performance [9–11]
but hinder the convergence speed of learning [12]. Furthermore, with the small discount
factor, the reward only in the near future is taken into account in evaluating the value
function, which can make short-sighted or aggressive actions. This observation motivates
us to devise an adaptive rule to update the discount factor, rather than a constant.

This paper especially focuses on developing an adaptive rule for the discount factor in
the policy gradient algorithms that use advantage functions [13,14]. To this end, the initial
low and upper bounds of the discount factor are defined in the proposed method, and the
bounds are shrunk towards a higher advantage function as the training goes on. Since it is
different to computing the advantage function in on-policy and off-policy algorithms, how
to apply the proposed method to both on-policy and off-policy algorithms is presented.

The discount factor by the proposed method converges to the optimal constant dis-
count factor. Note that it is a nontrivial task to find the optimal constant discount factor
when the MDP is high dimensional and the environment contains uncertainties. Moreover,
the resulting training performance using the proposed method is comparable with that
via the optimal constant discount factor. This means that the proposed adaptive method
enables the agent to counteract the overestimation of an uncertain reward sum. To ver-
ify the performance of the proposed method, two environments are used: Tetris for the
on-policy and robot motion planning for the off-policy algorithms. It is shown that the
proposed adaptive discount factor outperforms the cases with constant discount factors
when the environment has uncertainty. Furthermore, another adjustable algorithm in [15]
gradually increases the discount factor, which means that the algorithm can get into trouble
when the optimal discount factor is small. On the contrary, compared with the adjustable
algorithm in [15], the proposed method can adjust the discount factor adaptively for any
case, i.e., either a small or large optimal discount factor.

2. Related Work

Various methods are known to prevent an overestimation in reinforcement learn-
ing. Among them, the method of taking the minimum value using two or more value
estimators is known to work well in various environments, and to produce good per-
formance [5,6,16,17]. In this paper, similarly, two value estimators are used to deal with
overestimation. In an environment where uncertainty exists, an agent can be trained in-
sensitive to the uncertainty if the experience of obtaining a high reward sum is evaluated
without considering uncertainty. Therefore, distributional reinforcement learning methods
for estimating the distribution of the reward sum have been introduced [18–20]. When
evaluating the value function, these methods estimate a distribution rather than a scalar
value, and suppress the variance of the estimated distribution. Therefore, they do not
overestimate the sum of rewards with a high-risk distribution. However, sometimes these
methods may perform poorly compared to the methods for estimating the value function
of a scalar value [10,21]. In this paper, we present a method to cope with uncertainty by
using the discount factor so that it can be applied to the method that does not estimate
the distribution.

The discount factor is a constant to reflect the value of the reward signal over time in
reinforcement learning, and is generally fixed to a high value [2,21]. However, sometimes a
lower discount factor leads to better learning outcomes. A high discount factor is useful
if the given environment has a sparse reward problem. However, if the environment
does not have the problem, a low discount factor may be considered [9]. It is also known
that a low discount factor can increase the generalization performance [11,12]. However,
the appropriate value for the discount factor is different depending on the environment,
and several trials and errors are required to find the optimal value. To compensate for
this, the discount factor can be tuned gradually from a low value to a high value [15,22].
In addition, the method of increasing the discount factor may obtain a higher performance
than when a fixed discount factor is used. In this paper, similar to the above method,
the discount factor is increased from a low value to a high value. At the same time,

Sensors 2022, 22, 7266 3 of 22

the proposed method can find an appropriate discount factor according to the given
environment during the agent’s training. Additionally, we confirm that the discount factor
found during training can achieve higher performance than the commonly used value.

3. Discount Factor in Reinforcement Learning

In this section, for the purpose of presenting the main results clearly, the reinforcement
learning is reviewed and the role of the discount factor is investigated for the different en-
vironments.

3.1. Reinforcement Learning

The Markov Decision Process (MDP) in reinforcement learning is described by the
state st ∈ S at time step t, the reward rt ∈ R, and the action at ∈ A. When the state
st is given, the agent computes the action at and the computed action is applied to the
environment. Afterward, the environment generates the next state st+1 and reward rt+1.
Then, this procedure is repeated. One iteration of the procedure is called an episode.

When the MDP is stochastic, the next state st+1 is determined through the state
transition probability model. When the current state is st and the action at = a is performed,
the probability of st+1 = s′ is defined as Ts′

s,a = Pr[st+1 = s′|st = s, at = a], where Pr[·]
means the probability of a given event. The reward rt+1 is determined by the predefined
reward function r(st, at), i.e., rt+1 = r(st, at) ∈ R. The action at is determined by the policy
π(at|st) learned by the agent. The policy π(a|s) is the probability of the event that the
action becomes a when the state s is given, i.e., π(a|s) = Pr[at = a|st = s].

The optimal policy π∗ is the policy that maximizes the expected reward sum up to
time tend, and is defined as (1).

π∗ = argmaxπEst ,at [
tend

∑
t=0

γt−1 · r(st, at)] (1)

where γ ∈ [0, 1] means the discount factor, and E[·] means the expectation. The sum of
rewards ∑tend

k=t γk−1 · r(sk, ak) is the cumulative sum of the reward signals obtained up to
the end of the last episode, and is called a return Gt. The actual return can be calculated
at the end of the agent’s episode. Therefore, a value function is used to estimate the sum
of the discounted rewards that the agent can obtain at the present time. In RL, there
are two kinds of value functions: the state value function and the action value function.
The state value function V(st) at the state st represents the expected return value obtained
from the current state, i.e., V(st) = E[Gt|st]. The action value function or Q-function
denoted by Q(st, at) represents the expected return when the action at is taken at the
current state st. In other words, it is defined as Q(st, at) = r(st, at) + γV(st+1). The optimal
state value function is denoted by V∗(st), and the optimal action value function by Q-
function Q∗(st, at), respectively. Rigorously, the two optimal value functions are defined as
(2) and (3), respectively, according to the Bellman optimal equation.

V∗(s) = max
a

E[r(st, at) + γV∗(st+1)|st = s, at = a] (2)

Q∗(s, a) = E[r(st, at) + γ max
a′

Q∗(st+1, a′)|st = s, at = a] (3)

A method of performing a greedy policy based on the optimal value function is called
value-based reinforcement learning. Greedy policy deterministically selects the action that
leads to the maximum value function. In other words, the optimal policy is found from
π∗(s) = argmaxaQ∗(s, a). The value function is generally learned by temporal difference
learning, and its value is approximated through a neural network. When the state value

Sensors 2022, 22, 7266 4 of 22

function is modeled through the neural network with parameter ψ and is denoted by Vψ,
the objective function JV(ψ) for training the neural network is given by

JV(ψ) = Est [
1
2
(rt + γVψ(st+1)−Vψ(st))

2]. (4)

Temporal difference learning eliminates the need to find an actual return in learning
the value function. In other words, learning can proceed without completing the episode.
Most of the deep reinforcement learning methods using temporal difference learning
implement an experience replay memory to store the agent’s experiences, and uses them
during training through random sampling [2,16,21].

On the other hand, a method of directly learning a stochastic optimal policy is called
policy-based reinforcement learning. Policy-based reinforcement learning can also model a
policy through a neural network, and a policy modeled by the network parameter with
parameter φ is denoted by πφ. The method of finding the optimal policy by tuning the
parameter φ is called the policy gradient. The objective function Jπ(φ) for training the
neural network modeling the policy gradient method is given by

Jπ(φ) = Eπφ [Gt] = Est [∑
at

πφ(st, at)Gt]. (5)

In Equation (5), the return is obtained only after the episode is finished, and the
expected return is estimated through the Monte Carlo method.

Therefore, there is a disadvantage that the variance of the sampling is high and the
policy cannot be learned in the middle of an episode. To alleviate this problem, the return
can be estimated through a value function, and this method is called the Actor-Critic
algorithm [14,23]. An actor-critic’s actor refers to the model of the policy, and the critic
performs the model of the value function. The critic can be approximated by the objective
function (4).

3.2. Role of the Discount Factor in Reinforcement Learning

In computing the return Gt, the discount factor γ plays a key role in obtaining the
value function, and also the optimal policy. In order to describe the motivation of the paper
in detail, this section explains how the discount factor affects the optimal policy according
to the environment using numerical examples.

If the discount factor is set to 1, the effect of the reward signal over time on the return
is constant. Figure 1 shows how the value function is computed when a reward signal is
obtained deterministically. The value inside the circle indicates the reward rt at the time
t. When the reward signal rT1 = 1 is received at the end of the episode at time T1, in the
case of γ = 1, the resulting Q function is 1, which is the same for any time step. That is,
Q(st, at) = 1 (t = 1, 2, · · · , T1 − 1). However, depending on the task goal, it may be better
for the agent to obtain the reward within a faster time. Let the action value function be Qπ

when the policy is π. Assume that the time step T1 is greater than T2. If the agent follows
the policy π1 as in Figure 1, the agent obtains a reward at the time T1. If the agent follows
the policy π2, a reward is given at T2. Hence, if the discount factor is set to 0 < γ < 1,
then Qπ1(st, at) < Qπ2(s

′
t, a′t). Therefore, with a discount factor of less than 1, the closer

the time point the reward signal is, the higher it is evaluated. However, if the end of the
episode exists (i.e., episodic task), the optimal policy does not change according to changes
of the the discount factor. As long as the discount factor is between 0 and 1, π2 is always
the optimal policy because γT1−t−1 · 1 < γT2−t−1 · 1.

On the other hand, in the case of a continuing task where the end of the episode
does not exist, the optimal policy may change depending on the discount factor [11,24].
Unlike the episodic task, a continuing task is not limited to the endpoint of the episode.
A continuing task does not finish the episode until the agent makes a big mistake, and the
agent can receive numerous reward signals within an episode. Figure 2 illustrates an
example of obtaining a reward signal from a continuing task. When the policy is π1,

Sensors 2022, 22, 7266 5 of 22

the agent receives 1 for the reward signal every two steps. If the policy π2 is followed,
the agent receives 2 for the reward signal every three steps. With these policies, if γ = 0.5,
it follows that Qπ1 > Qπ2 . Hence, π1 becomes the optimal policy. On the other hand,
if γ = 0.9, π2 is the optimal policy. If the discount factor is set to 1, the maximum value
function cannot be distinguished. This is because the value functions Qπ1 or Qπ2 are
close to infinity when an agent continuously obtains reward signals. In view of these, it
is observed that the optimal policy can vary according to the discount factor. In such a
situation, we must redesign the reward function according to the importance of the reward
signal (reward shaping). Note that rewards in the near future are more important than
rewards in the distant future. By increasing the value of the reward signal in accordance
with the importance, the agent may learn properly.

Figure 1. Example of trajectory in a deterministic environment.

Figure 2. Example of trajectory in a continuing task.

If there exists uncertainty in the continuing task environment, it may be difficult to
learn the optimal policy with reward shaping. Figure 3 is an example of an environment
with inherent uncertainty due to stochasticity. When the agent follows the policy π1, it is
probabilistically rewarded with r6 ∈ {−1, 4}. If the agent follow the policy π2, then the
agent obtains the deterministic reward r4 = 2. Suppose that G1 denotes the return that the
agent obtains when following the policy π1 at the state s1. Then, it can be expressed as (6)
or (7).

G1 = 0 + γ · 0 + γ2 · 0 + γ3 · 0 + γ4 · 4 + γ5G6 (6)

G1 = 0 + γ · 0 + γ2 · 0 + γ3 · 0 + γ4 · (−1) + γ5G6 (7)

Furthermore, at the state s1, the state value function resulting from following the
policy π1 can be estimated as follows:

Vπ1(s1) ' 0 + γ4E[r6] + γ5Vπ1(s6) (8)

Sensors 2022, 22, 7266 6 of 22

In Equation (8), E[r6] is the average after sampling according to the distribution of
the reward signal r(s5, a5). The reward sum estimated by the value function Vπ1 is always
different from the actual return (6) or (7) received by the agent. Accordingly, when the
value function is approximated by the Equation (4), error (r(s5, a5)− (V(s5)− γV(s6)))

2

occurs whenever the agent visits the state s1. If such a value function is used in the policy
learning, it may be difficult for the policy network to converge because of the variation in
the value function induced by the error. However, if the discount factor is lowered, this
error can be reduced, which means that the magnitude of γ4E[r6] in the value function (8)
also decreases. As a result, the overestimation of the probabilistically determined reward
signal r(s5, a5) is reduced as well.

Figure 3. Example of trajectory in the environment with inherent uncertainty.

There is also a possible problem when the discount factor is too low. Figure 4 describes
an example of a sparse reward environment. A sparse reward environment refers to
an environment in which the agent obtains meaningful reward signals once in a while.
As shown in Figure 4, the reward signal is 0 in most cases. Only when the agent reaches
the state sT does it obtains a meaningful reward signal rT = 1. It is not easy for a less
trained agent to find these reward signals while interacting with the environment. Even if
the reward signal is found by the agent, if the reward sum is estimated through the value
function, it may be difficult to predict the value at a state far away from the reward signal.
The Q function Q(s1, a1) at state s1 can be estimated as Q(s1, a1) = γT−1 · 1 after obtaining
reward rT = 1. This estimated reward sum can be evaluated to be lower when the time
step T is large or the discount factor is low. Therefore, since this makes only very little
difference between Q(s1, a1) and Q(s1, a′1), the agent can not be sure that a1 is indeed a
rewarding action.

Figure 4. Example of trajectory in the environment with sparse reward.

As explained earlier, the discount factor has a great influence on learning the optimal
policy according to the given environment. A high discount factor can be advantageous

Sensors 2022, 22, 7266 7 of 22

for learning when the reward signals are sparse. However, if there is uncertainty in
the environment, a high discount factor may rather hinder the convergence of learning.
Therefore, depending on the given environment, there must be the most appropriate
discount factor for learning. With this observation in mind, in this paper, an adaptive
discount factor method is proposed, such that it can find an appropriate value for the
discount factor during learning.

4. Adaptive Discount Factor in Reinforcement Learning
4.1. Adaptive Discount Factor

The discount factor has to be adjusted in consideration of environmental uncertainty
and the sparsity of the reward [9,11,12]. Without these considerations, the agent can show
lower performance. To this end, we want to define an evaluation function of an agent’s
performance according to the current discount factor. Additionally, based on the evaluation
function, we want to find an update rule for the discount factor that can improve the
agent’s performance.

The definition of the return with a specific discount factor γ1 is defined by the
Equation (9). The return Gt(γ1) is the sum of rewards obtained by the current policy
learned using γ1. However, if the future reward signal is obtained probabilistically or if
there is a risk (probabilistically negative reward) in the future reward signal, then the return
can be overestimated.

Gt(γ1) = rt+1 + γ1 · rt+2 + γ2
1 · rt+3 + · · ·+ γT−1−t

1 · rT (9)

A high discount factor can lead to an overestimation for the reward in the future when
there is uncertainty or stochasticity. By considering uncertainty or risk in the environment
and reward overestimation due to an inappropriate discount factor, the agent has to be
able to measure confidence for the reward or return. If the expectation of the return is
known, it is possible to estimate the sum of the return that is probabilistically determined.
For instance, suppose that the agent obtains the sum of the reward G(γ1) generated by the
current policy and the discount factor γ1. If the sum of the reward (i.e., Gt(γ1)) is larger
than its expectation (i.e., E[Gt(γ1)]), then the positive future rewards for the current policy
is guaranteed. In this case, the high discount factor does not make any overestimation and
it can be increased. On the other hand, if the return yielded by the current policy is less
than or equal to the expected return, the large reward sum in the future is not guaranteed or
a lower reward sum can be made. For this case, since the high discount factor can result in
overestimation, the discount factor needs to be decreased. To this end, the return confidence
corresponding to the current policy is measured by 1

M ∑M(Gt −E[Gt]), where M denotes
the number of data points. However, the expected return does not know its exact value
during training. Hence, the expected return can be replaced by the corresponding value
function as follows:

1
M

M

∑(Gt −E[Gt]) '
1
M

M

∑(Gt −V(st)), (10)

where the right hand side of this equation is called an advantage function and is denoted by
At. The advantage function can be used to evaluate the trained policy using the discount
factor. Similarly, the advantage function can also be expressed as

At =
1
M

M

∑(Q(st, at)−V(st)). (11)

The proposed adaptive discount factor algorithm is devised by evaluating the perfor-
mance of the current discount factor using the advantage function. When the advantage
function is low, it is interpreted that the discount factor can lead to overestimation. Hence,
the discount factor needs to be decreased. Conversely, if the advantage function is high, it
means that the current policy is learning via a high reward sum, which suggests that the
discount factor should be increased.

Sensors 2022, 22, 7266 8 of 22

The proposed adaptive discount factor is assumed to be used during only the transient
time in training. This is because it is also observed that a constant discount factor shows
acceptable performance after the transient period of the training.

The proposed adaptive algorithm has mainly two tuning parameters: γ1 and γ2. γ1
is used as the discount factor for the current policy, its initial condition is 0.5, and the
algorithm increases γ1 to obtain a higher advantage function. γ2 is used as the baseline
and the upper bound of γ1. The initial condition of γ2 is 0.99. Depending on the advantage
function, the proposed adaptive algorithm decreases γ2.

Let At(γ) denote the advantage function with the discount factor γ and time t. The
proposed adaptive algorithm adjusts the discount factor γ1 and γ2, such that it results in
the highest advantage function between the upper and lower limits, and is summarized as

(γ1, γ2) =

γ1 ← γ1 + c · (1/σt) if At(γ1) < At(γ2)

γ2 ← γ2 − c · (1/σt) else if At(γ1) > At(γ2)

do nothing else if γ1 = γ2

(12)

where σt is the correction function defined as

σt = 1 +
|δt−1 − δt|

δt
, (13)

δt = (rt + γVψ(st+1)− Vψ(st))2, and the parameter c is the stepsize. The first line of (12)
means that γ1 is increased when At(γ1) is smaller than the baseline advantage function
At(γ2). On the other hand, the second line of (12) implies that γ2 is decreased when the
baseline advantage function At(γ2) is smaller than At(γ1). Note that At(γ2) < At(γ1) can
imply that the baseline is not good enough, and hence, the baseline needs to be decreased.
By doing this, the baseline can be improved, which can lead to a better discount factor
γ1 afterward. In view of the definition of δt, naturally, it is large at the beginning of
training and its variation becomes smaller as the training goes on. The rationale behind the
definition of σt is that the adaptation rule changes the discount factor during the transient
period of the training since the value function is not reliable in the beginning.

According to the rule of the adaptive discount factor described in (12), the follow-
ing holds.

At(γ1,k) ≤ At(γ1,N), (14)

where k is the number of training epochs and N is the terminal epoch. Hence, γ1,k+1 = γ1,k +
c · (1/σt) when At(γ1) < At(γ2). The discount factor γ1 for training the current policy is
updated according to γ2 and its advantage function. This is because γ1,k ≤ γ1,k+1 ≤ γ2, γ1,k
is always less than or equal to γ1,k+1 because of their update rule (12). Note that 0 < γ < 1,
γ1 is always non-decreasing, and γ2 is always non-increasing. According to the definition
of return (9), (14) can be written as

tend

∑
l=t

γl−1
1,k · rl −E[Gt(γ1,k)]

≤
tend

∑
l=t

γl−1
1,N · rl −E[Gt(γ1,N)].

(15)

In light of (15), the advantage function At(γ1) can be viewed as an (tend − 1)th-order
polynomial in γ1. Figure 5 shows an example of a graph for the advantage function. This
means that γ1 and γ2 have to meet at a point where the maximum of the advantage function
is achieved like the red circle in Figure 5.

Thanks to this, the proposed method can automatically find the maximum advantage
function between the discount factor 0.5 and 0.99. A discount factor of less than 0.5 is
ignored because it is too small to take a long-term reward sum into account. Since the return

Sensors 2022, 22, 7266 9 of 22

∑tend
l=t γl−1

1,N in (15) is proportional to the objective function of policy (5), the update size of
the policy gradient can be larger when γ1,k is updated to γ1,N . In summary, the return and
discount factor are evaluated by the advantage function, the discount factor is determined
according to that evaluation, and the return with a higher advantage function value is
considered further in the training.

Figure 5. Example of discount factor adjustment using the adaptive discount factor.

In the next sections, it is shown how the proposed adaptive rule can be implemented
in both on-policy and off-policy reinforcement learning algorithms. This is necessary
because the advantage function has to be computed differently in on-policy and off-policy
reinforcement learning algorithms.

4.2. Adaptive Discount Factor in On-Policy RL

For the purpose of presenting how to apply the proposed method to an on-policy
algorithm, PPO (Proximal Policy Optimization) is employed in this paper. For other on-
policy algorithms, a similar procedure can be applied. PPO is a representative on-policy
deep reinforcement learning algorithm that is a simplified method of the trust region
method of TRPO (Trust Region Policy Optimization) [13,25].

The objective function for policy approximation in PPO is defined as (16), and the
network parameter φ is tuned to maximize it.

JCLIP(φ) = E[min(ρt(φ) · At, clip(ρt(φ), 1− ε, 1 + ε) · At)], (16)

where At is the advantage function and is defined after defining the value function approxi-

mation, and ρt(φ) denotes the policy conservation ratio and is defined as ρt(φ) =
πφ(st |at)

πφold (st |at)
.

In this way, when the policy πφ(st|at) is learned, it is guaranteed not to degrade its perfor-
mance compared with πφold(st|at).

The adaptive discount factor algorithm (12) needs to compute two advantage (or
value) functions, unlike the original PPO. To this end, two neural networks parameterized
with ψ1 and ψ2 are trained in order to approximate each value function. The objective
function for learning the state value functions Vψ1 and Vψ2 is given by

JV(ψi=1,2) = E[1
2
(rt + γiVψi=1,2(st+1)−Vψi=1,2(st))

2]. (17)

Based on the state value functions Vψ1 and Vψ2 , the advantage function is computed
as follows.

At(γi) = rt+1 + · · ·+ γT−2−t
i · rT−1 + γT−1−t

i ·Vψi (sT)−Vψi (st) (18)

Sensors 2022, 22, 7266 10 of 22

These advantage functions At(γi), i = 1, 2 are used in the proposed adaptive discount
factor. During policy learning, At(γ1) is applied to the objective function (16) and is used
in policy learning. PPO with the proposed adaptive discount factor is summarized in
Algorithm A1.

4.3. Adaptive Discount Factor in Off-Policy RL

This section presents how to implement the proposed algorithm for off-policy deep
reinforcement learning using SAC (Soft Actor-Critic). SAC is a model-free reinforcement
learning algorithm suitable for continuous action tasks [16,26].

Similar to the previous section, two value functions parameterized by ψ1 and ψ2 are
needed for the adaptive algorithm. The objective function for approximating the state value
function of SAC is defined as follows:

JV(ψi=1,2) =
1
2
(Vψi (st)−Eat [Qθi (st, at)− α log πφ(at|st)])

2, (19)

where −α log πφ(at|st) is the entropy of the policy distribution, the constant α is a tuning
parameter and determines the ratio of entropy, and Qθi is the action value function
parameterized by θ1 and θ2. The following objective function is used to approximate the
action value function.

JQ(θi=1,2) =
1
2
(Qθi (st, at)− (r(st, at) + γiVψi (st+1)))

2 (20)

The neural network to approximate the policy is trained using the following objective
function:

Jπ(φ) = log πφ(at|st)−Qθ1(st, at) (21)

where the right hand side is nothing but the difference between the distribution of the
policy and the distribution of the action value function. Hence, the objective function (21)
is the form of a Kullback–Leibler divergence between πφ(at|st) and Qθ1(st, at).

With these definitions in mind, in SAC, the advantage function for the adaptive
algorithm can be defined as

At(γi=1,2) = Qθi (st, at)− α log πφ(at|st)−Vψi (st). (22)

Note that entropy is added to the definition of the advantage function (11). Since the
state value function Vψi (st) approximates the reward sum using the entropy-augmented
reward in SAC, it is also considered in the advantage function. The SAC with the proposed
adaptive algorithm is summarized in Algorithm A2.

5. Experiment in the Environments with Uncertainty

In this section, applications of the proposed adaptive algorithm are shown to validate
the performance. To test the performance of the on-policy and off-policy algorithms, Tetris
game agent and motion planning for a robot manipulator are presented.

The adaptive discount factor algorithm is compared with fixed discount factors and
the progressively increasing discount factor. The method of the progressively increasing
discount factor is adopted from [15]. This increasing rule is described by

γ1,k+1 = 1− 0.98(1− γ1,k). (23)

The discount factor γ1,k denotes a value of γ1 at the kth training epoch. The initial
and final values of γ1,k are set to 0.5 and 0.99, respectively. This increasing discount factor
method shows better policy improvements compared with a constant discount factor [15].

Sensors 2022, 22, 7266 11 of 22

5.1. Tetris

Tetris has been used a lot as a challenge in the field of artificial intelligence, and there
have been efforts to solve it with various machine learning algorithms [27–29]. However,
Tetris is known as an NP-hard problem, and it is a challenging problem with deep reinforce-
ment learning [28]. Additionally, as Tetris is an environment with inherent uncertainty, it is
not easy to estimate the maximum reward sum by approximating the value function [3].
Tetris is a game in which randomly given blocks, called tetrominoes, are stacked on the bot-
tom, and if the blocks are filled without empty spaces, a score proportional to the number
of filled rows is given. Tetris basically amounts to a continuing task, but if the player stacks
up blocks without filling until the top, the game ends there. Thus, an overestimation of a
reward for the time far away from the current time can mislead the game without realizing
the uncertainty. For this, the proposed adaptive discount factor can be a suitable method
for developing an RL-based game agent for Tetris.

Tetris is a discrete action task, and at every step you can move blocks left, right, down,
or rotate 90◦. There are two kinds of drop actions: soft and hard drops. The soft drop
moves the block down by one space, and the hard drop, to the bottom.

In this paper, we redefine the agent’s action space as a compound action, like [30].
Compound action space A = {0, 1, 2, · · · , 35} is defined, which consists of move left/right
(9), rotate a block (4), and a hard drop (1). The compound actions can speed up learning by
limiting the agent’s meaningless actions. The Tetris game screen is 10× 20 in this paper.

The state of MDP is composed of two images of the screen, i.e., 10× 20× 2. One is
the image of the currently stacked blocks without the currently controllable block, and the
other is the images of the controllable blocks without the currently stacked blocks. See
Figure 6. The reward is determined based mainly on the number of lines cleared by the
agent. Table 1 defines the reward.

Figure 6. Schematic of MDP in the game of Tetris.

Table 1. Number of cleared lines and reward.

nr −∞ 0 1 2 3 4

r −1 0 1 3 6 10

Here, nr denotes the number of cleared lines by the current action, and r, the corre-
sponding reward. −∞ in the second column in Table 1 describes that the blocks reach
the top. In other words, the agent loses the game. Figure 6 depicts the structure of MDP
of Tetris.

The PPO algorithm is implemented using a parallel agent method such as A3C (Asyn-
chronous Advantage Actor-Critic) for efficient learning, and is applied to develop a Tetris
game agent for fast performance improvement. The A3C algorithm samples data from
multiple agents in parallel, and uses them for training. When the number of a specific agent
is n, the data obtained from the nth agent in the time step t is (sn

t , an
t , rn

t , sn
t+1). Each agent

decides a policy through the same neural network with parameters φ, and synchronizes

Sensors 2022, 22, 7266 12 of 22

all neural networks whenever policy learning is performed. Figure 7 describes how the
proposed adaptive discount factor is used to devise a PPO-based game agent for Tetris.

The performance of Tetris can be evaluated by the number of lines cleared by the agent
during one episode. Learning performance with the adaptive discount factor is compared
with the performance with fixed discount factors.

Figure 7. PPO with adaptive discount factor for the Tetris environment.

Figure 8 shows training performances by four different fixed discount factors, the pro-
posed adaptive discount factor, and the progressively increasing discount factor. The dis-
count factor of 0.99 is a commonly used value in deep reinforcement learning, and 0.5 is the
low limit of the adaptive discount factor. The horizon axis of the graph indicates the number
of episodes learned by the agent, and the vertical axis indicates the number of lines cleared
by the agent for each episode. The highest discount factor of 0.99 shows a fast performance
improvement at the beginning of learning, but the performance converges to a certain level
as the episode progresses. The lowest discount factor of 0.5 shows the lowest performance
compared to other discount factors. The discount factor of 0.9 shows a faster performance
improvement than 0.99 at the beginning of training. It is confirmed that the discount factor
of 0.7 can reach the highest performance, although the performance improvement is slow
at the beginning of training. The performance of the progressively increasing discount
factor was improved quickly at the beginning, but in the end, it converged to a similar
performance by the fixed discount factor of 0.99. The performance of the agent trained
using the adaptive discount factor is lower than those by the fixed discount factors at the
beginning of training, but the final performance exceeds that of the agent using a discount
factor of 0.7.

Sensors 2022, 22, 7266 13 of 22

Figure 9 shows the used fixed discount factors and the resulting adaptive discount
factor and the increasing discount factor. In the case of the adaptive discount factor,
adjustment is stopped when the discount factor reaches γ1 = γ2. The adaptive discount
factor is stopped at γ1 = 0.7214. At the beginning of the adjustment, γ1 does not change
because At(γ1 = 0.5) > At(γ2). However, when At(γ1 = 0.5) < At(γ2 = 0.7214), γ1 is
increased, as is shown in Figure 9. Note that the adaptive discount factor stops adjusting at
the value near 0.7, which results in a high performance among the fixed discount factors
in Figure 8. Table 2 shows the comparison of the final performance of the fixed discount
factors and the adaptive discount factor.

Figure 8. Performance comparison between fixed and adaptive discount factor in Tetris.

Figure 9. Adjustment of discount factor in Tetris.

Table 2. Score comparison between fixed and adaptive discount factor in Tetris.

Maximum Score Average Score γ1

Adaptive discount factor 318 139.28 0.7214
Increasing discount factor 37 29.94 0.99

Fixed discount factor 1 49 25.98 0.99
Fixed discount factor 2 115 65.03 0.9
Fixed discount factor 3 179 97.94 0.7
Fixed discount factor 4 61 35.87 0.5

Sensors 2022, 22, 7266 14 of 22

In Table 2, the scores in bold mean the highest maximum score or highest average
score along the discount factors and algorithms. Also, the discount factors in bold are the
values corresponding to the maximum score.

5.2. Motion Planning

This section presents an application of the proposed adaptive discount factor to the
path planning of the robot manipulator for the purpose of validating the proposed method
for off-policy RL [31,32]. The joint value of the robot arm is expressed in the configuration
space, and the current state representing the joint value of the robot arm at the current time
step t is denoted by qt ∈ Q [33,34]. The action at is the amount of change in the joint value,
and the action space is given by A = (0, 1). Since the action of the agent is continuous,
the SAC algorithm is employed for motion planning. In general, although path planning
problems are achieved via simulation, which means that there are no uncertainties in the
problem, in order to consider real environments in this paper, two uncertainties are added
to the path planning problem in the simulation. First, noise εt is added to the state evolution.
In other words, the next state is determined by qt+1 = qt + βat + εt, where β is a constant,
at is the amount of change in the joint value, and the noise εt ∼ N (0, 1). Second, a reward
signal is transmitted probabilistically. In general, in the path planning task, the reward
signal is given a positive value when the agent arrives at a goal point, and a negative value
when it collides [35]. In this paper, when the agent arrives at the goal point, one of {1, 2, 3}
is randomly transmitted. Therefore, the agent cannot easily approximate the reward sum
at the current point. Additionally, since there is noise in the environment, the agent cannot
easily determine whether to prioritize collision avoidance or to prioritize goal arrival, even
if collision is considered. In addition, the problem of uncertainty is more pronounced in
continuing the task. In the path planning problem, an episodic task ends when the goal is
reached, but for a continuing task, a new goal is given to the agent [36]. This aspect makes
it difficult for the path planning environment to predict the distant future rewards, and an
overestimation has to be prevented. Therefore, the proposed adaptive discount factor can
handle this difficulty appropriately. Figure 10 describes the MDP for the path planning
based on the reinforcement learning.

Figure 10. Schematic of MDP in robot manipulation task.

In Figure 10, qgoal represents the goal position given to the agent, and the inequality
|qt+1 − qgoal | ≤ β is understood as the goal position is reached. Compared with PPO
from the view point of applying the adaptive discount factor, the difference is in how to
calculate the advantage function. The parameters of all neural networks are needed because
SAC computes the advantage function based on Equation (22). Since SAC is an off-policy
algorithm, it implements the experience replay memory D, randomly samples data during
training, and applies it to each neural network training. Figure 11 describes how SAC with
the adaptive discount factor is applied to the path planning of the robot manipulator.

For the validation of the performance of the path planning by the proposed method,
two environments are considered. One is path planning in the form of an episodic task in
which an episode terminates when the agent reaches the goal. The other is in the form of
a continuing task in which a goal is given again when the agent arrives at the previous

Sensors 2022, 22, 7266 15 of 22

goal, and this is repeated until the agent collides. As explained before, the effect of the
environmental uncertainty is more critical in the continuing task. In the episodic task,
the episode ends when the agent reaches the goal, but in the continuing task, the next goal
is given at a random location when the agent reaches the goal point. Therefore, in the case
of the continuing task, it is not easy to estimate the expected reward sum. In this section,
we test the learning performance of both the adaptive and fixed discount factors. In the
path planning, the performance can be evaluated as the success ratio of the agent’s arrival
at the goal point, that is, the success ratio of path creation. This success ratio is defined as
the ratio of reaching the goal point in the last 10 episodes during training.

Figure 11. SAC with adaptive discount factor for robot manipulation environment.

Figure 12 shows the learning performance of the fixed discount factors 0.5, 0.7, 0.8, and
0.98, the adaptive discount factor, and the increasing discount factor in the episodic task.
The horizontal axis is the number of episodes, and the vertical axis is the success ratio of
path generation. The lowest discount factor of 0.5 results in the lowest success rate. As the
discount factor is increased, the success ratio is also increased. When the adaptive discount
factor is applied, it shows a somewhat low performance at the beginning, but as learning
progresses, it can be seen that the performance is closest to the fixed discount factor of 0.98.

Sensors 2022, 22, 7266 16 of 22

The performance of the increasing discount factor method was also similar and reached a
high performance. Since, in the episodic task, the uncertainty is low and the reward sum is
easy to predict, the fixed discount factor of 0.98 shows a higher performance.

Figure 12. Success rate of path planning in the episodic task.

Figure 13 compares the evolution of the adaptive discount factor with other fixed
discount factors in the episodic work. It can be seen that the adaptive discount factor
converges close to the highest discount factor of 0.98 as the training goes on. A high
discount factor is advantageous for learning for the path planning in episodic tasks, since a
reward signal is given and the episode ends when the final goal is reached. Furthermore,
since the path planning problem is generally regarded as a sparse reward problem, a high
discount factor is helpful. Table 3 shows the success ratio of path creation according to
each discount factor. In Table 3, the success ratio is the average of the past 10 test episodes,
and if the path generation succeeds in all 10 times, it is 1.0. The values of the success rate in
bold are the highest value among them and the discount factors in bold are the optimal
values in the episodic environment.

In the following, the learning performance of the adaptive discount factor, increasing
discount factor, and the fixed discount factor in the path planning is compared in a contin-
uing task environment. When the agent reaches the current goal point, a new goal point
is given, and this is repeated. In other words, in a continuing task, the episode continues
until the agent collides. For this case, the learning performance is evaluated by the number
of paths generated by the agent before collision.

Figure 13. Adjustment of discount factor in episodic path planning task.

Sensors 2022, 22, 7266 17 of 22

Table 3. Comparison of success rate in episodic path planning task.

Success Rate γ1

Adaptive discount factor 0.8846 0.98
Increasing discount factor 0.8915 0.98

Fixed discount factor 1 0.8884 0.98
Fixed discount factor 2 0.8222 0.8
Fixed discount factor 3 0.7833 0.7
Fixed discount factor 4 0.6588 0.5

Figure 14 shows the learning performance of the fixed discount factors of 0.5, 0.75,
0.85, and 0.99, increasing the discount factor and the adaptive discount factor for the
path planning in the continuous episode setting. Three observations can be made. First,
among the fixed discount factors, the resulting performance is not monotone. Namely,
it does not hold that the higher the discount factor is, the better the performance that is
generated. Second, except for a discount factor of 0.99, all of the other cases including the
adaptive discount factor and the increasing discount factor show similar performances
during the transient time, and a performance of 0.99 was not high, even at the end of
training. Third, the adaptive discount factor shows the best performance in the end.

Figure 14. Perforamance of path planning in continuing task.

Figure 15 shows the evolution of the adaptive discount factor and the fixed discount
factors. Note that a fixed discount factor of 0.75 results in the best performance and
the adaptive discount factor converges to a value of near 0.75. Table 4 summarizes the
performance according to each discount factor. The numbers of created paths in bold mean
the highest maximum or the highest average number of paths according to algorithms and
discount factors. Also, the discount factors in bold correspond to the highest performance.

Hence, it is verified that the proposed adaptive discount factor leads to a good per-
formance, although there are inherent uncertainties in the environment, and the reward
is sparse.

In view of these case studies, it is confirmed that the deep RL with the proposed
adaptive discount factor results in a comparable learning performance with that by the best
and fixed discount factor that has to be determined by exhaustive simulations.

Sensors 2022, 22, 7266 18 of 22

Figure 15. Adjustment of discount factor in continuing path planning task.

Table 4. Comparison of performance in continuing path planning task.

Maximum Averages γ1

Adaptive discount factor 464 287.77 0.7591
Increasing discount factor 409 194.74 0.99

Fixed discount factor 1 256 155.76 0.99
Fixed discount factor 2 351 212.87 0.90
Fixed discount factor 3 421 231.86 0.75
Fixed discount factor 4 388 189.09 0.5

5.3. Analysis and Discussion

In view of the previous case study, it is confirmed that the adaptive discount factor
is indeed effective. In many existing results on reinforcement learning, a large discount
factor is usually used, such as 0.99. However, as seen from the case study, the high discount
factor does not necessarily always guarantee a high performance. In the previous learning
experiment, when a discount factor was randomly selected among values between 0.5
and 0.99 and training was performed, there was a case in which a higher performance
was obtained with a value of lower than 0.99, as shown in Figures 8 and 14. On the other
hand, Figure 12 showed the highest performance, with 0.99. The difference between these
tasks is the existence of an uncertain risk or an unpredictable negative reward among
distant future rewards. In the case of Tetris, the agent might obtain negative rewards
according to future mistakes, but it is impossible to predict this because blocks are randomly
determined. In the case of path planning, it is impossible to predict the failure and collision
of path generation when generating a path to a new randomly generated goal point. These
correspond to the example in Figure 3. On the other hand, in the case of the path planning
problem that is an episodic task, it is relatively easy to predict the success or failure of path
creation for a fixed goal point. This case only matches Figure 4, which is a sparse reward
environment. Therefore, the discount factor of 0.99 showed the highest performance in this
task. The adaptive discount factor algorithm closely finds the discount factor that can give
the best performance in all cases. This saves the effort in finding a suitable discount factor.
Additionally, as shown in Figures 9, 13 and 15, the adjustment of the discount factor is
quickly terminated at the beginning of training. Since the adjusted discount factor is fixed
and learning proceeds with the fixed value, it is not computational expensive. Another
discount factor adjustment algorithm, called progressively increasing discount factor [15],
gradually increases the discount rate to 0.99. It has been suggested that this method
can achieve a higher performance than a fixed discount factor. However, the proposed
adaptive discount factor outperforms in an environment requiring a low discount factor.

Sensors 2022, 22, 7266 19 of 22

This also suggests that a somewhat lower discount factor may be appropriate, depending
on the environment.

6. Conclusions

This paper proposed an adaptive discount factor for the environment with uncertainty.
The discount factor has to be decided differently, according to the distribution of rewards
given in the environment. A commonly used high discount factor places a high value
on future rewards. However, depending on the environment, it can be risky to consider
the distant future rewards too much. In this case, a high discount factor can impair the
performance of the agent. In such an environment, a low discount factor can be an effective
countermeasure. Generally, it is difficult to know what the appropriate discount factor
is before training. Therefore, in this paper, we proposed an adaptive discount factor
algorithm that can find a proper value of the discount factor automatically at the beginning
of learning. The algorithm adjusts the discount factor according to the advantage function
during training, such that the reinforcement learning agent shows good performance in
the end. It is shown that the adaptive discount factor converges to the discount factor that
is manually found via exhaustive search, and that leads to the best performance. Using
Tetris and the path planning problem, we found that, depending on the environment,
a slightly lower discount factor could yield a higher performance than a higher discount
factor. Tetris has difficulty in predicting distant future rewards because of the next block
that appears randomly. For the path planning problem, a high discount factor was suitable
for an episodic task, but a low discount factor showed a high performance in a continuing
task in which the goal point was randomly given. It is very cumbersome to find this from
multiple test training. The proposed algorithm finds the discount factor by comparing the
advantage functions created by different neural networks. In addition, in order to minimize
the computational cost, it is performed quickly to search for the optimal discount factor at
the beginning of learning. The proposed adaptive discount factor results consistently in a
good performance for various environments.

Future research includes how to enhance the performance of the value estimation
when there is a nontrivial gap between the model and the real environment. In this paper,
the algorithm is applied in response to the simulation problem in which uncertainty exists.
However, in real environments, more unpredictable situations may arise. Therefore, we
would like to consider ways to adjust the trade-off between uncertainty and the value of
rewards in real environments.

Author Contributions: M.K. and M.-S.C. surveyed the backgrounds of this research, designed the
preprocessing data, designed the deep learning network, and performed the simulations to show the
merits of the proposed method. J.-S.K. and J.-H.P. supervised and supported this study. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Industrial Fundamental Technology Development
Program (20014786, Development of AI-based Concrete Slab Finishing Automation System) funded
by the Ministry of Trade, Industry & Energy (MOTIE) of Korea, and in part by the Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry
of Education under Grant NRF-2019R1A6A1A03032119.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Algorithms A1 and A2 show the adaptive discount factor algorithms applied to
PPO and SAC. In the algorithms, the advantage function is calculated using two neural
networks, respectively, and the two discount factors γ1 and γ2 are evaluated according

Sensors 2022, 22, 7266 20 of 22

to the advantage functions. γ1 is adjusted in the direction where the advantage function
becomes larger, and when the two discount factors are equal, the adjustment is terminated.

Algorithm A1: Adaptive Discount Factor in PPO

1: Initialize the discount factors : γ1 = 0.5, γ2 = 0.99
2: Initialize the network parameters : φ, ψ1, ψ2
3: while Training N epoch do
4: Samples M data from MDP
5: Gt(γi) = rt+1 + · · ·+ γT−2−t

i · rT−1 + γT−1−t
i ·Vψi (sT)

6: At(γi) = Gt(γi)−Vψi (st)

7: if 1
M ∑M At(γ1) <

1
M ∑M At(γ2) then

8: γ1 ← γ1 + c · (1/σt)
9: else if 1

M ∑M At(γ1) >
1
M ∑M At(γ2) then

10: γ2 ← γ2 − c · (1/σt)
11: else if γ1 = γ2 then
12: do nothing
13: end if
14: train policy parameter φ with γ1
15: φ← argmaxφE[min(ρt(φ) · At(γ1), clip(ρt(φ), 1− ε, 1 + ε) · At(γ1))]
16: end while

Algorithm A2: Adaptive Discount Factor in SAC

1: Initialize the discount factors : γ1 = 0.5, γ2 = 0.99
2: Initialize the network parameters : φ, ψ1, ψ2, θ
3: while Training N epoch do
4: Samples M data from Experience Replay Memory
5: At(γi=1,2) = Qθi (st, at)− α log πφ(at|st)−Vψi (st)

6: if 1
M ∑M At(γ1) <

1
M ∑M At(γ2) then

7: γ1 ← γ1 + c · (1/σt)
8: else if 1

M ∑M At(γ1) >
1
M ∑M At(γ2) then

9: γ2 ← γ2 − c · (1/σt)
10: else if γ1 = γ2 then
11: do nothing
12: end if
13: train policy parameter φ with γ1
14: θi=1,2 ← argminθiE[

1
2 (Qθi (st, at)− (r(st, at) + γiVψi (st+1)))

2]
15: φ← argminφE[log πφ(at|st)−Qθ1(st, at)]
16: end while

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
2. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
3. Berseth, G.; Geng, D.; Devin, C.M.; Rhinehart, N.; Finn, C.; Jayaraman, D.; Levine, S. SMiRL: Surprise Minimizing Reinforcement

Learning in Unstable Environments. In Proceedings of the International Conference on Learning Representations, Addis Ababa,
Ethiopia, 26–30 April 2020.

4. Garcıa, J.; Fernández, F. A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res. 2015, 16, 1437–1480.
5. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.
6. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the

International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.
7. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:

Combining improvements in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018.

8. Thrun, S.; Schwartz, A. Issues in using function approximation for reinforcement learning. In Proceedings of the 1993 Connectionist
Models Summer School; Lawrence Erlbaum: Hillsdale, NJ, USA, 1993; Volume 6, pp. 1–9.

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Sensors 2022, 22, 7266 21 of 22

9. Badia, A.P.; Sprechmann, P.; Vitvitskyi, A.; Guo, D.; Piot, B.; Kapturowski, S.; Tieleman, O.; Arjovsky, M.; Pritzel, A.; Bolt, A.;
et al. Never Give Up: Learning Directed Exploration Strategies. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

10. Badia, A.P.; Piot, B.; Kapturowski, S.; Sprechmann, P.; Vitvitskyi, A.; Guo, Z.D.; Blundell, C. Agent57: Outperforming the atari
human benchmark. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020;
pp. 507–517.

11. Amit, R.; Meir, R.; Ciosek, K. Discount factor as a regularizer in reinforcement learning. In Proceedings of the International
Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 269–278.

12. Van Seijen, H.; Fatemi, M.; Tavakoli, A. Using a logarithmic mapping to enable lower discount factors in reinforcement learning.
Adv. Neural Inf. Process. Syst. 2019, 33, 14134–14144.

13. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

14. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June
2016; pp. 1928–1937.

15. François-Lavet, V.; Fonteneau, R.; Ernst, D. How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies.
In Proceedings of the NIPS 2015 Workshop on Deep Reinforcement Learning, Montréal, QC, Canada, 11 December 2015.

16. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

17. Chen, X.; Wang, C.; Zhou, Z.; Ross, K.W. Randomized Ensembled Double Q-Learning: Learning Fast Without a Model. In
Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

18. Dabney, W.; Ostrovski, G.; Silver, D.; Munos, R. Implicit quantile networks for distributional reinforcement learning. In
Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1096–1105.

19. Mavrin, B.; Yao, H.; Kong, L.; Wu, K.; Yu, Y. Distributional reinforcement learning for efficient exploration. In Proceedings of the
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 4424–4434.

20. Yang, D.; Zhao, L.; Lin, Z.; Qin, T.; Bian, J.; Liu, T.Y. Fully parameterized quantile function for distributional reinforcement
learning. Adv. Neural Inf. Process. Syst. 2019, 33, 6193-6202.

21. Kapturowski, S.; Ostrovski, G.; Quan, J.; Munos, R.; Dabney, W. Recurrent experience replay in distributed reinforcement learning.
In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

22. Fedus, W.; Gelada, C.; Bengio, Y.; Bellemare, M.G.; Larochelle, H. Hyperbolic discounting and learning over multiple horizons.
arXiv 2019, arXiv:1902.06865.

23. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approxima-
tion. Adv. Neural Inf. Process. Syst. 1999, 12, 1057-1063.

24. Naik, A.; Shariff, R.; Yasui, N.; Yao, H.; Sutton, R.S. Discounted reinforcement learning is not an optimization problem. arXiv
2019, arXiv:1910.02140.

25. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International
Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1889–1897.

26. Haarnoja, T.; Tang, H.; Abbeel, P.; Levine, S. Reinforcement learning with deep energy-based policies. In Proceedings of the
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1352–1361.

27. Algorta, S.; Şimşek, Ö. The game of tetris in machine learning. arXiv 2019, arXiv:1905.01652.
28. Demaine, E.D.; Hohenberger, S.; Liben-Nowell, D. Tetris is hard, even to approximate. In Proceedings of the International

Computing and Combinatorics Conference, Big Sky, MT, USA, 25–28 July 2003; Springer: New York, NY, USA, 2003; pp. 351–363.
29. Gabillon, V.; Ghavamzadeh, M.; Scherrer, B. Approximate dynamic programming finally performs well in the game of Tetris.

Adv. Neural Inf. Process. Syst. 2013, 26, 1754-1762.
30. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;

et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef] [PubMed]
31. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy

updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3
June 2017; IEEE: Providence, RI, USA, 2017; pp. 3389–3396.

32. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.
Scalable deep reinforcement learning for vision-based robotic manipulation. In Proceedings of the Conference on Robot Learning,
Zurich, Switzerland, 29–31 October 2018 ; pp. 651–673.

33. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; Wiley: New York, NY, USA, 2006; Volume 3.
34. Frank, M.; Leitner, J.; Stollenga, M.; Förster, A.; Schmidhuber, J. Curiosity driven reinforcement learning for motion planning on

humanoids. Front. Neurorobot. 2014, 7, 25. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
http://dx.doi.org/10.3389/fnbot.2013.00025
http://www.ncbi.nlm.nih.gov/pubmed/24432001

Sensors 2022, 22, 7266 22 of 22

35. Prianto, E.; Kim, M.; Park, J.H.; Bae, J.H.; Kim, J.S. Path planning for multi-arm manipulators using deep reinforcement learning:
Soft actor–critic with hindsight experience replay. Sensors 2020, 20, 5911. [CrossRef] [PubMed]

36. Zhu, H.; Yu, J.; Gupta, A.; Shah, D.; Hartikainen, K.; Singh, A.; Kumar, V.; Levine, S. The Ingredients of Real World Robotic
Reinforcement Learning. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA,
6–9 May 2019.

http://dx.doi.org/10.3390/s20205911
http://www.ncbi.nlm.nih.gov/pubmed/33086774

	Introduction
	Related Work
	Discount Factor in Reinforcement Learning
	Reinforcement Learning
	Role of the Discount Factor in Reinforcement Learning

	Adaptive Discount Factor in Reinforcement Learning
	Adaptive Discount Factor
	Adaptive Discount Factor in On-Policy RL
	Adaptive Discount Factor in Off-Policy RL

	Experiment in the Environments with Uncertainty
	Tetris
	Motion Planning
	Analysis and Discussion

	Conclusions
	Appendix A
	References

