
Citation: Chen, H.; Jiang, X.; Dai, Y.

Shift Pose: A Lightweight

Transformer-like Neural Network for

Human Pose Estimation. Sensors

2022, 22, 7264. https://doi.org/

10.3390/s22197264

Academic Editors: Erhan

Ekmekcioglu and Yücel ÇİMTAY

Received: 17 August 2022

Accepted: 21 September 2022

Published: 25 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Shift Pose: A Lightweight Transformer-like Neural Network for
Human Pose Estimation
Haijian Chen 1, Xinyun Jiang 1 and Yonghui Dai 2,*

1 The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University,
Shanghai 201418, China

2 Management School, Shanghai University of International Business and Economics, Shanghai 201620, China
* Correspondence: daiyonghui@suibe.edu.cn

Abstract: High-performing, real-time pose detection and tracking in real-time will enable comput-
ers to develop a finer-grained and more natural understanding of human behavior. However, the
implementation of real-time human pose estimation remains a challenge. On the one hand, the per-
formance of semantic keypoint tracking in live video footage requires high computational resources
and large parameters, which limiting the accuracy of pose estimation. On the other hand, some
transformer-based models were proposed recently with outstanding performance and much fewer
parameters and FLOPs. However, the self-attention module in the transformer is not computationally
friendly, which makes it difficult to apply these excellent models to real-time jobs. To overcome
the above problems, we propose a transformer-like model, named ShiftPose, which is regression-
based approach. The ShiftPose does not contain any self-attention module. Instead, we replace
the self-attention module with a non-parameter operation called the shift operator. Meanwhile, we
adapt the bridge–branch connection, instead of a fully-branched connection, such as HRNet, as our
multi-resolution integration scheme. Specifically, the bottom half of our model adds the previous
output, as well as the output from the top half of our model, corresponding to its resolution. Finally,
the simple, yet promising, disentangled representation (SimDR) was used in our study to make
the training process more stable. The experimental results on the MPII datasets were 86.4 PCKH,
29.1PCKH@0.1. On the COCO dataset, the results were 72.2 mAP and 91.5 AP50, 255 fps on GPU,
with 10.2M parameters, and 1.6 GFLOPs. In addition, we tested our model for single-stage 3D
human pose estimation and draw several useful and exploratory conclusions. The above results show
good performance, and this paper provides a new method for high-performance, real-time attitude
detection and tracking.

Keywords: human-computer interaction; real-time human pose estimation; shift operator;
transformer; residual log-likelihood estimation; regression-based approach

1. Introduction

Human pose estimation (HPE) is a classical computer vision problem, with long-
standing studies, that aims to infer articulated structures of human parts from a single
image. Existing approaches can be divided into two categories: heatmap-based [1–11] and
regression-based [12–18]. The former usually adapts convolution neural networks as deep
features extractor and then generates the heatmap of joints with deconvolution layers. The
latter directly regresses the numerical coordinates of joints with fully connected neural
networks or others.

Recently, more and more human-centered applications with real-time requirements,
such as self-driving and last-mile delivery robots, emerge in large numbers. However,
existing models are either heatmap-based with high accuracy and low speed or regression-
based with high speed and low accuracy. For example, HRNet-W48 [19] archives 75.6 mAP
on the COCO [20] dataset with more than 63M parameters, 15.77 FLOPs, less than 22 fps

Sensors 2022, 22, 7264. https://doi.org/10.3390/s22197264 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197264
https://doi.org/10.3390/s22197264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3307-4968
https://doi.org/10.3390/s22197264
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197264?type=check_update&version=2

Sensors 2022, 22, 7264 2 of 17

on GPU, about 1.46 fps on the CPU. DeepPose (ResNet-50) [21] can run at 135 fps, but only
archives 52.6 mAP on the COCO dataset.

The regression-based approach is simpler and more computationally friendly than
the heatmap-based approach. However, numerical regression tends to lack spatial gen-
eralization and robustness; more importantly, the regression-based approach does not
performer better than the traditional heatmap-based approach. These problems attract lots
of researchers to propose effective and efficient solutions [14,17,18].

Recently, a number of outstanding transformer-based [22] works have emerged and
received excellent performance with less parameters [23–25]. However, the self-attention
module has high computational complexity, which goes against our goal: real-time. For-
tunately, recent works show that the attention-based module in transformers can be re-
placed by some simple modules, and even nonparameterized operations still perform quite
well [26–30].

In this paper, we explore the efficient human pose estimation model for real-time tasks
and propose our lightweight model: ShiftPose. A previous study [19] inspired us to intro-
duce high resolution and multi-branches into our model, which achieves good performance
on human pose estimation. Meanwhile, researchers also found that multi-branch structure
is redundant in lightweight models [31]. Based on above findings, we designed a simple
and efficient model that adapts ShiftViT [29] as the backbone and introduces bridge–branch
structure. On the MPII dataset, we had 86.4 PCKH, 29.1 PCKH@0.1. On COCO dataset, we
had 72.1 mAP, 255 fps on the GPU with 10.2M parameters, and 1.6 GFLOPs.

The contributions of our model can be summarized as follows:

• We propose a simple and efficient transformer-like model, without the self-attention
module for HPE. The proposed model has few parameters, lossless accuracy, and runs
much faster than existing transformer-based models [32,33].

• An improve residual log-likelihood estimation loss is proposed, and we apply it to 3D
human pose estimation.

• Our model is competitive with the heatmap-based model and even better than
heatmap-based model for indicating AP50.

• We first find that, with a restricted number of parameters, the lightweight model tends
to learn the x- and y-coordinates as priority in 3D human pose estimation, which
points toward the direction to improve the performance of future lightweight models
in 3D human pose estimation.

2. Relative Work
2.1. Regression-Based HPE

Before deep learning had a huge impact on vision-based human pose estimation,
traditional 2D HPE algorithms adopted handcraft feature extraction and sophisticated body
models to obtain local representations and global pose structures [34–36].

There are only a few regression-based works, in the context of human pose estimation.
DeepPose firstly uses AlexNet-like convolution neural network to learn joint coordinates
from a single image [21]. Luvizon proposes a soft-argmax function to convert a heatmap
to a numerical joint position, which makes the model differentiable and more robust [12].
Another important work is DSNT, which makes the model differentiable and performs well
on low resolution input [13]. In order to make regression learning easier, some researchers
try to improve the training process, such as an iterative error feedback network [14], and
other researchers adapt a multi-tasking framework as their training paradigm [15,16]. In 3D
HPE, researchers tend to first use a heatmap-based method to learn 2D joints coordinates,
and then learn depth information separately [37–41]. Recently, residual log-likelihood
estimation (RLE), which makes the regression-based approach perform well, or even better,
than heatmap-based approach [18].

Sensors 2022, 22, 7264 3 of 17

2.2. Lightweight Model

Mobilenet [42] proposes the depthwise separable convolutions, and Mobilenetv2 [43]
introduces the inverted residual with linear bottleneck. Both MobileNet and MobileNetv2
improve the computational efficiency of convolution operations. ShuffleNet [44] reduces
computation with pointwise group convolution and channel shuffle operation. Repvgg [45]
converts the multi-branch structure to a single-branch structure with the reparametrization
trick, thus improving the inference efficiency of the model.

Lite-hrnet [46] applies the improved shuffle blocks to HRNet, but it only gets 12 fps
on GPU. Lite pose [31] finds that HRNet’s high-resolution branches are redundant for
models at the low-computation region via gradual shrinking experiments. Additionally,
the bridge–branch structure is inspired by this finding.

2.3. Transformer

With the success of vision (ViT) [24], Swin [23], and data efficient image (DeiT) [25]
transformers in computer vision, more and more scholars adapt the vision transformer as
their backbone and achieve outstanding performance in their tasks.

Token Pose [33] firstly applied a pure transformer to human pose estimation. HRFormer [32]
replaces the block in HRNet with transformer-like block, which gains higher accuracy,
with less parameters, than DeiT. Without exceptions, all the models mentioned above are
heatmap-based and computationally unfriendly.

The recent research shows that the attention-based module in transformers can be
replaced by some simple modules, and even nonparameterized operations still perform
quite well. What’s more, the self-attention module in transformers costs large computation
and video memory. gMLP [28] replaces the self-attention module in the transformer
with spatial MLPs and still works very well. MetaFormer [30] deliberately replaces the
attention module in the transformers with a pooling operator to conduct only basic token
mixing. Surprisingly, it still achieves competitive performance on multiple computer vision
tasks. ShiftViT [29] is a Swin transformer-like model that simply removes the self-attention
module and uses the shift operator instead, which also gets the competitive results. We
suggest future works should pay more attention to the other modules in transformers, such
as LayerNorm, feed forward networks, and so on.

To the best of our knowledge, this paper is the first to introduce ShiftViT into a
regression-based model; we apply it to 2D HPE and 3D HPE and gain high accuracy and
efficient results.

2.4. Real-Time Human Pose Estimation

Lite pose [31] explores efficient architecture design for real-time, multi-person pose
estimation on resource constrained edge devices and reveals that HRNet’s high-resolution
branches are redundant for models at the low-computation region via the gradual shrink-
ing experiments. OpenPose [47] proposes the part affinity fields (PAF) used to learn
multi-person coordinates via the bottom-up method. Recently, the lightweight bottom-up
model named Lite-Pose [31], for the first time, discovered that HRNet’s high-resolution
branches are redundant for models at the low-computation region, which is also one of
our motivations.

3. Method
3.1. Overall Architecture

An overall architecture of our model is presented in Figure 1. It first splits an input
image into 4× 4 patches by patch partition and linear embedding module, like ViT. Then,
the backbone followed by it can be divide into 5 shift stages. Each shift stage contains
several shift blocks and an after-shift stage; the patch merging module will make the spatial
size of the output half down-sampled, while the channel size is twice the input, and the
patch making module will make the spatial size of output double up-sampled, while the
channel size is half of the input.

Sensors 2022, 22, 7264 4 of 17

Sensors 2022, 22, 7264 4 of 17

and the patch making module will make the spatial size of output double up-sampled,
while the channel size is half of the input.

Figure 1. The architecture for ShiftPose.

After the spatial gate module, if the input image’s shape is denoted as (𝐶 , 𝐻, 𝑊),
the output’s shape should be (𝑛 , ,). The regression head contains two simple lin-
ear layers, with 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = × and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐻 for X’s coordinate and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑊 for Y’s coordinate.

3.2. Bridge–Branch Connection
To fully utilize the benefits of multi-resolution with less computation, we add the

feature from early stage and feature from late stage with a bridge structure. This simple
skip-connection performs quiet well in our model.

Specifically, as shown in Figure 2, the output of the first patch merging module will
be sent to the spatial gate module, and the output of the second patch merging module
will be sent to shift stage 3. This residual-like structure can make full use of the feature
from each stage of the model, which makes up for the disadvantages of a few parameters.

Figure 2. The bridge–branch architecture.

3.3. Shift Operator
As shown in Figure 3, our shift stage is similar to ShiftViT [29]; however, in the HPE

task, the channel of the output is much smaller than ShiftViT. In order to make full use of

256x256

Figure 1. The architecture for ShiftPose.

After the spatial gate module, if the input image’s shape is denoted as (Cin , H, W),
the output’s shape should be (njoints, H

8 , W
8). The regression head contains two simple

linear layers, with channelinput =
H
8 ×

W
8 and channeloutputX = H for X’s coordinate and

channeloutputY = W for Y’s coordinate.

3.2. Bridge–Branch Connection

To fully utilize the benefits of multi-resolution with less computation, we add the
feature from early stage and feature from late stage with a bridge structure. This simple
skip-connection performs quiet well in our model.

Specifically, as shown in Figure 2, the output of the first patch merging module will be
sent to the spatial gate module, and the output of the second patch merging module will be
sent to shift stage 3. This residual-like structure can make full use of the feature from each
stage of the model, which makes up for the disadvantages of a few parameters.

Sensors 2022, 22, 7264 4 of 17

and the patch making module will make the spatial size of output double up-sampled,
while the channel size is half of the input.

Figure 1. The architecture for ShiftPose.

After the spatial gate module, if the input image’s shape is denoted as (𝐶 , 𝐻, 𝑊),
the output’s shape should be (𝑛 , ,). The regression head contains two simple lin-
ear layers, with 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = × and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐻 for X’s coordinate and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑊 for Y’s coordinate.

3.2. Bridge–Branch Connection
To fully utilize the benefits of multi-resolution with less computation, we add the

feature from early stage and feature from late stage with a bridge structure. This simple
skip-connection performs quiet well in our model.

Specifically, as shown in Figure 2, the output of the first patch merging module will
be sent to the spatial gate module, and the output of the second patch merging module
will be sent to shift stage 3. This residual-like structure can make full use of the feature
from each stage of the model, which makes up for the disadvantages of a few parameters.

Figure 2. The bridge–branch architecture.

3.3. Shift Operator
As shown in Figure 3, our shift stage is similar to ShiftViT [29]; however, in the HPE

task, the channel of the output is much smaller than ShiftViT. In order to make full use of

256x256

Figure 2. The bridge–branch architecture.

3.3. Shift Operator

As shown in Figure 3, our shift stage is similar to ShiftViT [29]; however, in the HPE
task, the channel of the output is much smaller than ShiftViT. In order to make full use of
the output feature, we add a SE layer [48] at the end of the shift block. The shift operation
is cheap and effective, which reduces quiet a lot FLOPs in training and testing.

Sensors 2022, 22, 7264 5 of 17

Sensors 2022, 22, 7264 5 of 17

the output feature, we add a SE layer [48] at the end of the shift block. The shift operation
is cheap and effective, which reduces quiet a lot FLOPs in training and testing.

Figure 3. (a) The structure of shift stage; (b) the structure of shift block; (c) the implement of shift
operation.

The shift operator can be formulated as follows: 𝑧 0: 𝐻, 1: 𝑊, 0: 𝛾𝐶 ← 𝑧 0: 𝐻, 0: 𝑊 − 1,0: 𝛾𝐶 , (1) �̂� 0: 𝐻, 0: 𝑊 − 1, 𝛾𝐶: 2𝛾𝐶 ← 𝑧 0: 𝐻, 1: 𝑊, 𝛾𝐶: 2𝛾𝐶 , (2) �̂� 0: 𝐻 − 1,0: 𝑊, 2𝛾𝐶: 3𝛾𝐶 ← 𝑧 1: 𝐻, 0: 𝑊, 2𝛾𝐶: 3𝛾𝐶 , (3) �̂� 0: 𝐻, 0: 𝑊, 3𝛾𝐶: 4𝛾𝐶 ← 𝑧 0: 𝐻 − 1,0: 𝑊, 3𝛾𝐶: 4𝛾𝐶 , (4) �̂� 0: 𝐻, 1: 𝑊, 4𝛾𝐶: 𝐶 ← 𝑧 0: 𝐻, 0: 𝑊, 4𝛾𝐶: 𝐶 (5)

where the input �̂� ∈ 𝑅 × × . In our experiments, γ = 1/12, which is same as [28].

3.4. Patch Merging and Patch Making
The patch merging module merges neighboring patches through the convolution

with a kernel size of 2×2. After patch merging, the spatial size of the output is half down-
sampled, while channel size is twice the input, i.e., from C to 2C.

On the contrary, the patch merging module creates patches through the deconvolu-
tion with a kernel size of 2×2. After patch making, the spatial size of the output is half up-
sampled, while channel size is half of the input, i.e., from 2C to C.

Figure 3. (a) The structure of shift stage; (b) the structure of shift block; (c) the implement of
shift operation.

The shift operator can be formulated as follows:

ẑ[0 : H, 1 : W, 0 : γC]← z[0 : H, 0 : W − 1, 0 : γC], (1)

ẑ[0 : H, 0 : W − 1, γC : 2γC]← z[0 : H, 1 : W, γC : 2γC], (2)

ẑ[0 : H − 1, 0 : W, 2γC : 3γC]← z[1 : H, 0 : W, 2γC : 3γC], (3)

ẑ[0 : H, 0 : W, 3γC : 4γC]← z[0 : H − 1, 0 : W, 3γC : 4γC], (4)

ẑ[0 : H, 1 : W, 4γC : C]← z[0 : H, 0 : W, 4γC : C] (5)

where the input ẑ ∈ RH×W×C. In our experiments, γ = 1/12, which is same as [28].

3.4. Patch Merging and Patch Making

The patch merging module merges neighboring patches through the convolution
with a kernel size of 2 × 2. After patch merging, the spatial size of the output is half
down-sampled, while channel size is twice the input, i.e., from C to 2C.

On the contrary, the patch merging module creates patches through the deconvolution
with a kernel size of 2 × 2. After patch making, the spatial size of the output is half
up-sampled, while channel size is half of the input, i.e., from 2C to C.

3.5. Spatial Gate

At the end of our model, the channel of output is a bit large. It is a waste of time to use
the MLP to reduce the channel, so we introduce the Spatial Gate Unit from [28] to reduce
the channel. The detailed structure is shown in Figure 4.

Sensors 2022, 22, 7264 6 of 17

Sensors 2022, 22, 7264 6 of 17

3.5. Spatial Gate
At the end of our model, the channel of output is a bit large. It is a waste of time to

use the MLP to reduce the channel, so we introduce the Spatial Gate Unit from [28] to
reduce the channel. The detailed structure is shown in Figure 4.

Figure 4. The spatial gate structure in our model. Both proj_in and proj_out are linear layer.

First, we reshape the output (𝐶, 𝐻, 𝑊) to (𝐶, 𝐻 × 𝑊); after the proj_in and split op-
eration, it becomes 𝑋 (, 𝐻 × 𝑊) and 𝑋 (, 𝐻 × 𝑊). The spatial proj module can be for-
mulated as follows: 𝑓 , (𝑋) = 𝑊𝑋 + 𝑏, (6)

where 𝑊 ∈ 𝑅 × is the spatial project matrix.
The final output can be described as: 𝑍 = 𝑋 ⨀𝑓 , (𝑋) (7)

3.6. SimDR
Directly regressing the numerical coordinates lacks spatial generalization and robust-

ness, resulting in inferior predictions in most tough cases. To make it easier for our model
to learn, we apply the SimDR to our model training process. The simple, yet promising,
disentangled representation for keypoint coordinates (SimDR) alleviates the problem of
the regression-based approach from the classification point of view [27].

The coordinate will be expressed as 𝑋 = 𝑥 , 𝑥 ,···, 𝑥 · ∈ 𝑅 · , 𝑥 = 1√2𝜋𝜎 𝑒𝑥 𝑝 − (𝑖 − 𝑥)2𝜎 , (8)

𝑌 = 𝑦 , 𝑦 ,···, 𝑦 · ∈ 𝑅 · , 𝑥 = 1√2𝜋𝜎 𝑒𝑥 𝑝 − (𝑖 − 𝑦)2𝜎 , (9)

where 𝑥 means the probability of appearing in position 𝑖 ∈ (0,1,···, 𝑊 · 𝑘 − 1), 𝑘 is the
scaled ratio, 𝑊 is the width of the image, and the target coordinate representation is gen-
erated by Gaussian distribution. We use Kullback–Leibler divergence as loss function for
model training.

The final predicted absolute joint position (𝑥 , 𝑦) is calculated by: 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑋)𝑘 , 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑌)𝑘 (10)

3.7. Residual Log-Likelihood Estimation
In 3D human pose estimation, depth estimation from one or multiple RGB images is

an ill-posed problem, so it is hard to decide the length of depth representation in SimDR.
Finally, we attempt to directly regress the depth of a single image with improved residual
log-likelihood estimation loss [18].

As shown in Figure 5, the basic model learns the joints’ coordinate, and the flow
model in the gray dotted bordered rectangle will learn the confidence of the output. In

Figure 4. The spatial gate structure in our model. Both proj_in and proj_out are linear layer.

First, we reshape the output (C, H, W) to (C, H ×W); after the proj_in and split
operation, it becomes X1(

C
2 , H ×W) and X2(

C
2 , H ×W). The spatial proj module can be

formulated as follows:
fW,b(X) = WX + b, (6)

where W ∈ RH×W is the spatial project matrix.
The final output can be described as:

Z = X1
⊙

fW,b(X2) (7)

3.6. SimDR

Directly regressing the numerical coordinates lacks spatial generalization and robust-
ness, resulting in inferior predictions in most tough cases. To make it easier for our model
to learn, we apply the SimDR to our model training process. The simple, yet promising,
disentangled representation for keypoint coordinates (SimDR) alleviates the problem of the
regression-based approach from the classification point of view [27].

The coordinate will be expressed as

X = [x0, x1, · · · , xW·k−1] ∈ RW·k, xi =
1√
2πσ

exp

(
− (i− x′)2

2σ2

)
, (8)

Y = [y0, y1, · · · , yH·k−1] ∈ RH·k, xi =
1√
2πσ

exp

(
− (i− y′)2

2σ2

)
, (9)

where xi means the probability of appearing in position i ∈ (0, 1, · · · , W·k− 1), k is the
scaled ratio, W is the width of the image, and the target coordinate representation is
generated by Gaussian distribution. We use Kullback–Leibler divergence as loss function
for model training.

The final predicted absolute joint position (xpred, ypred) is calculated by:

xpred =
argmax(X)

k
, ypred =

argmax(Y)
k

(10)

3.7. Residual Log-Likelihood Estimation

In 3D human pose estimation, depth estimation from one or multiple RGB images is
an ill-posed problem, so it is hard to decide the length of depth representation in SimDR.
Finally, we attempt to directly regress the depth of a single image with improved residual
log-likelihood estimation loss [18].

As shown in Figure 5, the basic model learns the joints’ coordinate, and the flow model
in the gray dotted bordered rectangle will learn the confidence of the output. In order to
reduce the dependency between basic and flow models, the output of flow model will be
log P(x)

s·Q(x) , and the constant s is to make sure this residual term is a distribution.
The original residual log-likelihood estimation is defined as follows:

LossRLE = −logQ
(

µg

)
− log Gφ

(
µg

)
− logs + logσ̂, (11)

where Q(µg) is a Gaussian distribution (N (0, 1)), Gφ(µg) is the distribution learned by the

flow model, s = 1∫
Gφ

(
µg

)
Q
(

µg

)
dµg

, which can be approximated by the Riemann sum, and σ̂

is the prediction confidence. More details can be find in [18].

Sensors 2022, 22, 7264 7 of 17

In our experiments, we find that, if we add a factor before Q(µg),

LossRLE−i = −γlogQ
(

µg

)
− log Gφ

(
µg

)
− logs + logσ̂, (12)

We set the γ = 2.5.

Sensors 2022, 22, 7264 7 of 17

order to reduce the dependency between basic and flow models, the output of flow model
will be log (̅)· (̅), and the constant 𝑠 is to make sure this residual term is a distribution.

Figure 5. The process of residual log-likelihood estimation.

The original residual log-likelihood estimation is defined as follows: 𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔𝑄 �̅� − log 𝐺 �̅� − 𝑙𝑜𝑔𝑠 + 𝑙𝑜𝑔𝜎, (11)

where 𝑄(�̅�) is a Gaussian distribution (𝒩(0,1)), 𝐺 �̅� is the distribution learned by
the flow model, 𝑠 = , which can be approximated by the Riemann sum,

and 𝜎 is the prediction confidence. More details can be find in [18].
In our experiments, we find that, if we add a factor before 𝑄 �̅� , 𝐿𝑜𝑠𝑠 = −𝛾𝑙𝑜𝑔𝑄 �̅� − log 𝐺 �̅� − 𝑙𝑜𝑔𝑠 + 𝑙𝑜𝑔𝜎, (12)

We set the 𝛾 = 2.5.

4. Experiments
4.1. Details and Environment

Implement details
For the basic settings, we chose the Adam optimizer with an initial learning rate

0.001. Additionally, the learning rate was dropped to 10 and 10 at the 190th and
200th epochs, respectively. The batch size was 128, and the training epoch was 210.

On the Human3.6M dataset, we adapted the 2D and 3D mixed data training strategy
for 140 epochs in total. The test procedure is the same as the previous.

The hardware for experiments includes CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30
GHz, GPU: NVIDIA RTX A4000, RAM: 240 GB. The developing environment is Ub-
untu18.04, Python 3.8, CUDA 11.3, cuDNN 8, NVCC, Pytorch 1.11.0, torchvision 0.12.0,
torchaudio 0.11.0.

Notations
Our backbone contains several stages, and each stage consists of several shift blocks,

which are denoted as 𝑀(𝐵 , 𝐵 , 𝐵 ,···, 𝐵), where 𝑀 means the backbone, 𝑛 means the
number of stages, and 𝐵 means the number of shift blocks corresponding to its stage.

We provide two configurations for ShiftPose, as follows:
Shift-Pose-T(tiny) M(2,2,2,2,2) with input channel = 32;
Shift-Pose-M(mid) M(4,4,4,4,4) with input channel = 32;
Shift-Pose-L(large) M(4,4,4,4,4) with input channel = 64.

4.2. Dataset and Metric
MPII Dataset [49]: The MPII Human Pose dataset is a state of the art benchmark for

the evaluation of articulated human pose estimation. The dataset includes around 25K
images containing over 40K people with annotated body joints. The images were system-
atically collected using an established taxonomy of every day human activities. Overall,
the dataset covers 410 human activities, and each image is provided with an activity label.
Each image was extracted from a YouTube video and provided with preceding and

Figure 5. The process of residual log-likelihood estimation.

4. Experiments
4.1. Details and Environment

Implement details
For the basic settings, we chose the Adam optimizer with an initial learning rate 0.001.

Additionally, the learning rate was dropped to 10−4 and 10−5 at the 190th and 200th epochs,
respectively. The batch size was 128, and the training epoch was 210.

On the Human3.6M dataset, we adapted the 2D and 3D mixed data training strategy
for 140 epochs in total. The test procedure is the same as the previous.

The hardware for experiments includes CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @
2.30 GHz, GPU: NVIDIA RTX A4000, RAM: 240 GB. The developing environment is
Ubuntu18.04, Python 3.8, CUDA 11.3, cuDNN 8, NVCC, Pytorch 1.11.0, torchvision 0.12.0,
torchaudio 0.11.0.

Notations
Our backbone contains several stages, and each stage consists of several shift blocks,

which are denoted as M(B1, B2, B3, · · · , Bn), where M means the backbone, n means the
number of stages, and Bi means the number of shift blocks corresponding to its stage.

We provide two configurations for ShiftPose, as follows:
Shift-Pose-T(tiny) M(2,2,2,2,2) with input channel = 32;
Shift-Pose-M(mid) M(4,4,4,4,4) with input channel = 32;
Shift-Pose-L(large) M(4,4,4,4,4) with input channel = 64.

4.2. Dataset and Metric

MPII Dataset [49]: The MPII Human Pose dataset is a state of the art benchmark for the
evaluation of articulated human pose estimation. The dataset includes around 25K images
containing over 40K people with annotated body joints. The images were systematically
collected using an established taxonomy of every day human activities. Overall, the dataset
covers 410 human activities, and each image is provided with an activity label. Each
image was extracted from a YouTube video and provided with preceding and following
un-annotated frames. The training set contained 28,821 images, and the test set contained
11,701 images. Data augmentation on MPII dataset includes random scale [0.75,1.25],
rotation degrees in [−30◦,30◦], and flip

COCO Dataset [20]: The COCO dataset contains more than 200,000 images and
250,000 person instances labeling with 17 keypoints. The COCO dataset consists of three
parts: 57k images for the training set, 5k for the val set, and 20k for the test-dev set. Our
method reported in this paper is trained on the train2017 set and evaluated on the val2017
and test-dev2017 sets. Data augmentation on the COCO dataset includes random scale
[0.75,1.25], rotation degrees in [−30◦,30◦], and flip.

Human3.6M Dataset [50]: The Human3.6m dataset contains 3.6 million 3D human
poses and corresponding images generated by 11 professional actors (6 male, 5 female)

Sensors 2022, 22, 7264 8 of 17

in 17 scenarios (e.g., discussion, smoking, taking photo, talking on the phone). For the
Human3.6M dataset, data augmentation included random scale (±30%), rotation (±30◦),
color (±20%), and flip. Following typical protocols [51,52], we used (S1, S5, S6, S7, and S8)
for training and (S9, S11) for evaluation.

Metric: The percentage of porrect keypoints (PCK) was used for performance evalua-
tion on MPII dataset. PCKh@0.5 defines the matching threshold as 50% of the head segment
length, PCKh@0.1 defines the matching threshold as 10%, and the standard evaluation
metric for COCO dataset is based on object keypoint similarity (OKS):

OKS =
∑i exp

(
− d2

i
2s2k2

i

)
δ(vi > 0)

∑i δ(vi > 0)

where di is the Euclidean distance between the detected keypoint and corresponding
ground truth, vi is the visibility flag of the ground truth, s is the object scale, and ki is a
per-keypoint constant that controls falloff. Additionally, we used the standard average
precision (AP) and recall scores: AP50 (AP at OKS = 0.50), mAP (the mean of AP scores at
10 positions, OKS = 0.50, 0.55, . . . , 0.90, 0.95).

For the Human3.6M dataset, the evaluation metric is mean per joint position error
(MPJPE), and PA-MPJPE. PA-MPJPE is a modification of MPJPE with Procrustes analysis.

4.3. Results
4.3.1. Result on COCO Dataset

The experiment results of our method and several of the latest transformer-based
methods for human pose estimation on the COCO dataset are shown in Table 1. Some
methods have different or special data preprocessing methods, although the difference
between different preprocessing method is not great; for the sake of fairness, we only
compare the time of inference with other methods.

Table 1. The results in COCO dataset.

Model Name Input Size Params GFLOPs 5 AP AP50 Speed
GPU (fps) 4

Heatmap-based

Simba-Res50 [5] 1 256 × 192 34M 8.9 70.4 88.6 48 2

Simba-Res101 [5] 256 × 192 52.6M 9.3 71.4 89.3 -

HRNet-w32 [19] 256 × 192 28.5M 7.1 73.4 89.5 28 2

Lite-HRNet30 [46] 256 × 192 1.8M 0.31 70.4 88.0 12 2

HRFormer-T [32] 256 × 192 2.5M 1.3 70.9 89.0 -

HRFormer-S [32] 256 × 192 7.8M 2.8 74.0 90.2 -

Token-Pose-T [33] 256 × 192 5.8M 1.3 65.6 86.4 42 3

OpenPose [47] 256 × 256 61.8 84.9

Regression-based

DeepPose [21] 256 × 256 23.6M 5.4 52.6 81.6 135 3

Res50+RLE [18] 256 × 256 23.6M 5.4 71.3 88.9 135 3

Res50+SimDR [53] 256 × 192 36.8M 9.0 71.4 - 120 3

Res101+SimDR [53] 256 × 192 55.7M 12.4 72.3 - -

ShifPose-L(ours) 256 × 192 10.2M 1.6 72.1 91.5 255 3

1 Simple baseline ResNet; 2 tested on NVIDIA GTX 1660 SUPER and Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz;
3 tested on NVIDIA RTX A4000 and Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz; 4 our method of computing fps
did not include the data preprocessing. 5 Floating point operations.

Sensors 2022, 22, 7264 9 of 17

As for the mean average of precision, the ShiftPose archived 72.1 AP, which was
an increase of 1.7, compared to the heatmap-based method ResNet 50, 1.7 compared to
Lite-HRNet30, 1.2 compared to HRFormer-T, and 6.5 compared to Token-Pose-T (pure
transformer sturcture). Compared with regression-based methods, our method was the
best, with the exception of ResNet101.

What’s more, it is worth noting that the AP50 of our method is even the best among all
methods mentioned above. It is not difficult to find that our method occupies the absolute
predominance in the speed test, due to the replacement of the self-attention module with
the efficient and computationally friendly shift operator. What’s more, our model uses less
video memory in Figure 6, which is very important on resource-constrained edge devices.

Sensors 2022, 22, 7264 9 of 17

Simba-Res50 [5] 1 256 × 192 34M 8.9 70.4 88.6 48 2
Simba-Res101 [5] 256 × 192 52.6M 9.3 71.4 89.3 -
HRNet-w32 [19] 256 × 192 28.5M 7.1 73.4 89.5 28 2

Lite-HRNet30 [46] 256 × 192 1.8M 0.31 70.4 88.0 12 2
HRFormer-T [32] 256 × 192 2.5M 1.3 70.9 89.0 -
HRFormer-S [32] 256 × 192 7.8M 2.8 74.0 90.2 -
Token-Pose-T [33] 256 × 192 5.8M 1.3 65.6 86.4 42 3

OpenPose [47] 256 × 256 61.8 84.9
Regression-based

DeepPose [21] 256 × 256 23.6M 5.4 52.6 81.6 135 3
Res50+RLE [18] 256 × 256 23.6M 5.4 71.3 88.9 135 3

Res50+SimDR [53] 256 × 192 36.8M 9.0 71.4 - 120 3
Res101+SimDR [53] 256 × 192 55.7M 12.4 72.3 - -

ShifPose-L(ours) 256 × 192 10.2M 1.6 72.1 91.5 255 3
1 Simple baseline ResNet; 2.tested on NVIDIA GTX 1660 SUPER and Intel(R) Core(TM) i7-8700 CPU
@ 3.20GHz; 3 tested on NVIDIA RTX A4000 and Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz; 4 our
method of computing fps did not include the data preprocessing. 5 Floating point operations.

Figure 6. The video memory per GPU in testing, with batch size = 32.

Therefore, the experiment shows that our method achieves outstanding performance
on the COCO dataset.

4.3.2. Result in MPII Dataset
In Table 2, ShiftPose-T archived 75.5 PCKh, ShiftPose-M archived 83.7 PCKh, Shift-

Pose-L archived 86.4 PCKh. Interestingly, we found that, on the COCO dataset, our
method performed better than simple baseline ResNet50 and 101; however, it was the op-
posite situation on the MPII dataset. We attribute this interesting finding to the overfitting
of ResNet50/101 on the MPII dataset, because the COCO dataset has more images than
MPII. Additionally, this indirectly proves that our method has good robustness and gen-
eralization. And the visual results for MPII dataset are shown in Figure 7.

What’s more, our model provides the fastest speed among the mentioned models.
Speed and accuracy have become our most obvious advantages.

In Figure 8, the ShiftPose-L cost the least time for convergence, and the ShiftPose-M
is very close to the ShiftPose-L in the early stage. The ShiftPose-T takes the most time for
convergence, and the difference between ShiftPose-T and ShiftPose-M is in the numbers
of layer. ShiftPose-T obtains 2×5 = 10 layers and ShiftPose-M obtains 4×5 = 20 layers. There-
fore, we can draw a conclusion: increasing the layers of each stage gains more profits than
increasing the dim of input channels. The ShiftPose-L had 10.2M parameters, with 86.4
PCKh, and ShiftPose-M had only 4.16M parameters, with 83.7 PCKh by comparison.

0
500

1000
1500
2000
2500
3000

ResNet50 HRNet-w32 ShiftPose-L

Video Memory in Test / MB

Figure 6. The video memory per GPU in testing, with batch size = 32.

Therefore, the experiment shows that our method achieves outstanding performance
on the COCO dataset.

4.3.2. Result in MPII Dataset

In Table 2, ShiftPose-T archived 75.5 PCKh, ShiftPose-M archived 83.7 PCKh, ShiftPose-
L archived 86.4 PCKh. Interestingly, we found that, on the COCO dataset, our method
performed better than simple baseline ResNet50 and 101; however, it was the opposite
situation on the MPII dataset. We attribute this interesting finding to the overfitting of
ResNet50/101 on the MPII dataset, because the COCO dataset has more images than MPII.
Additionally, this indirectly proves that our method has good robustness and generalization.
And the visual results for MPII dataset are shown in Figure 7.

Table 2. The results on MPII dataset.

Model Name Input Size Params GFLOPs PCKh PCKh@0.1 Speed
GPU (fps)

DeepPose [21] 256 × 256 23.58M 4.04 82.5 17.4 135 1

Simba-Res50 [5] 256 × 256 34M 8.9 88.5 33.9 48 1

Simba-Res101 [5] 256 × 256 56.7 10.4 89.1 34.0 -
HRNet-w32 [19] 256 × 256 28.5M 17.3 92.3 - -

Lite-HRNet30 [46] 256 × 256 1.8M 0.43 87.0 - -
TokenPose-L/D6 [33] 256 × 256 21.4M - 90.2 - -

OpenPose [47] 256 × 256 - - 75.6 - 200
ShiftPose-T 256 × 256 2.89M 0.69 75.5 17.0 945 2

ShiftPose-M 256 × 256 4.16M 1.00 83.7 25.0 440 2

ShiftPose-L 256 × 256 10.20M 1.63 86.4 29.1 308 2

1 Test with batch size 32. 2 Test with batch size 128. We also performed experiments on MPII dataset, and we used
an extremely simple structure in ShiftPose-T, with mlp_ratio = 1 in FFN module and input channel = 32, which
also obtained a good performance.

Sensors 2022, 22, 7264 10 of 17

Sensors 2022, 22, 7264 10 of 17

Table 2. The results on MPII dataset.

Model Name Input Size Params GFLOPs PCKh PCKh@0.1
Speed

GPU (fps)
DeepPose [21] 256 × 256 23.58M 4.04 82.5 17.4 135 1

Simba-Res50 [5] 256 × 256 34M 8.9 88.5 33.9 48 1
Simba-Res101 [5] 256 × 256 56.7 10.4 89.1 34.0 -
HRNet-w32 [19] 256 × 256 28.5M 17.3 92.3 - -

Lite-HRNet30 [46] 256 × 256 1.8M 0.43 87.0 - -
TokenPose-L/D6 [33] 256 × 256 21.4M - 90.2 - -

OpenPose [47] 256 × 256 - - 75.6 - 200
ShiftPose-T 256 × 256 2.89M 0.69 75.5 17.0 945 2
ShiftPose-M 256 × 256 4.16M 1.00 83.7 25.0 440 2
ShiftPose-L 256 × 256 10.20M 1.63 86.4 29.1 308 2

1 Test with batch size 32. 2 Test with batch size 128. We also performed experiments on MPII dataset,
and we used an extremely simple structure in ShiftPose-T, with mlp_ratio = 1 in FFN module and
input channel = 32, which also obtained a good performance.

Figure 7. The predicted results on MPII dataset with ShiftPose-L, ground truth (red) and predic-
tion (green).

Figure 8. The training process.

Figure 7. The predicted results on MPII dataset with ShiftPose-L, ground truth (red) and predic-
tion (green).

What’s more, our model provides the fastest speed among the mentioned models.
Speed and accuracy have become our most obvious advantages.

In Figure 8, the ShiftPose-L cost the least time for convergence, and the ShiftPose-M
is very close to the ShiftPose-L in the early stage. The ShiftPose-T takes the most time for
convergence, and the difference between ShiftPose-T and ShiftPose-M is in the numbers
of layer. ShiftPose-T obtains 2×5 = 10 layers and ShiftPose-M obtains 4×5 = 20 layers.
Therefore, we can draw a conclusion: increasing the layers of each stage gains more profits
than increasing the dim of input channels. The ShiftPose-L had 10.2M parameters, with
86.4 PCKh, and ShiftPose-M had only 4.16M parameters, with 83.7 PCKh by comparison.

Sensors 2022, 22, 7264 10 of 17

Table 2. The results on MPII dataset.

Model Name Input Size Params GFLOPs PCKh PCKh@0.1
Speed

GPU (fps)
DeepPose [21] 256 × 256 23.58M 4.04 82.5 17.4 135 1

Simba-Res50 [5] 256 × 256 34M 8.9 88.5 33.9 48 1
Simba-Res101 [5] 256 × 256 56.7 10.4 89.1 34.0 -
HRNet-w32 [19] 256 × 256 28.5M 17.3 92.3 - -

Lite-HRNet30 [46] 256 × 256 1.8M 0.43 87.0 - -
TokenPose-L/D6 [33] 256 × 256 21.4M - 90.2 - -

OpenPose [47] 256 × 256 - - 75.6 - 200
ShiftPose-T 256 × 256 2.89M 0.69 75.5 17.0 945 2
ShiftPose-M 256 × 256 4.16M 1.00 83.7 25.0 440 2
ShiftPose-L 256 × 256 10.20M 1.63 86.4 29.1 308 2

1 Test with batch size 32. 2 Test with batch size 128. We also performed experiments on MPII dataset,
and we used an extremely simple structure in ShiftPose-T, with mlp_ratio = 1 in FFN module and
input channel = 32, which also obtained a good performance.

Figure 7. The predicted results on MPII dataset with ShiftPose-L, ground truth (red) and predic-
tion (green).

Figure 8. The training process. Figure 8. The training process.

4.3.3. Result on Human3.6M Dataset

The results of the Human3.6M dataset are shown in Table 3. ShiftPose-L contains half
of the parameters of RestNet50 and costs one-third GFLOPs. And the visual results are
shown in Figure 9.

Sensors 2022, 22, 7264 11 of 17

Table 3. The results in Human3.6M dataset.

Model Name Input Size Params GFLOPs MPJPE PA-MPJPE

ResNet50+RLE [18] 256 × 256 23.8M 5.40 48.6 38.5
ShiftPose-L+RLE 256 × 256 10.2M 1.64 73.4 53.3

Sensors 2022, 22, 7264 11 of 17

4.3.3. Result on Human3.6M Dataset
The results of the Human3.6M dataset are shown in Table 3. ShiftPose-L contains half

of the parameters of RestNet50 and costs one-third GFLOPs. And the visual results are
shown in Figure 9.

In Tables 3 and 4, we can find two strange phenomena:
1. Both our model and ResNet50 obtained a lower error in X and Y than Z.
2. Our model performed better than ResNet50 in 2D pose estimation, but the opposite

was true in 3D pose estimation.

Figure 9. The predict results on Human3.6M dataset (red: ground truth; blue: predict).

Table 3. The results in Human3.6M dataset.

Model Name Input Size Params GFLOPs MPJPE PA-MPJPE
ResNet50+RLE [18] 256 × 256 23.8M 5.40 48.6 38.5

ShiftPose-L+RLE 256 × 256 10.2M 1.64 73.4 53.3

Table 4. The detail results on Human3.6M dataset.

Model Name PA-MPJPE MPJPE Error-X Error-Y Error-Z
ResNet50 [18] 38.5 48.6 16.0 16.0 37.1

ShiftPose-L
(dim = 64, patch size

= 2)
42.3 52.1 17.0 17.3 42.0

ShiftPose-L
(dim = 64, patch size

= 4)
53.3 73.4 21.5 24.4 57.7

ShiftPose-L
(dim = 128, patch

size = 4)
44.7 59.1 18.0 19.9 45.0

Figure 9. The predict results on Human3.6M dataset (red: ground truth; blue: predict).

In Tables 3 and 4, we can find two strange phenomena:

1. Both our model and ResNet50 obtained a lower error in X and Y than Z.
2. Our model performed better than ResNet50 in 2D pose estimation, but the opposite

was true in 3D pose estimation.

Table 4. The detail results on Human3.6M dataset.

Model Name PA-MPJPE MPJPE Error-X Error-Y Error-Z

ResNet50 [18] 38.5 48.6 16.0 16.0 37.1
ShiftPose-L

(dim = 64, patch size = 2) 42.3 52.1 17.0 17.3 42.0

ShiftPose-L
(dim = 64, patch size = 4) 53.3 73.4 21.5 24.4 57.7

ShiftPose-L
(dim = 128, patch size = 4) 44.7 59.1 18.0 19.9 45.0

From phenomena 1, we can easily find that the depth estimation was harder than
2D human pose estimation. As for phenomena 2, noticing that our model performed
better than ResNet50 in 2D human pose estimation, while having worse error-x and error-y
in 3D human pose estimation, we conjecture that the lightweight model (ours) tends to
centralize computing resources to exploit effective representation for 2D human poses.

Sensors 2022, 22, 7264 12 of 17

After introducing a 3D pose estimation task, a portion of the computing resources had
to be used for depth estimation, thus resulting in decreased accuracy of the 2D human
pose estimation. We tested our hypothesis by simply changing the patch size of our neural
network from 4 to 2, changing the dimension from 64 to 128, and keeping the structure
the same.

The ShiftPose with more parameters worked as expected, and we can draw three
conclusions from the experiments:

1. The computer resource of ShiftPose-L (dim = 64) has been fully used for 2D pose
estimation.

2. Limited by the number of parameters, the lightweight model’s capacity for 2D pose
estimation began to weaken, while exploiting the depth representation.

3. It is better for the lightweight model to predict 3D poses than 2D poses because,
generally, the model using 2D poses to predict 3D poses, such as Pose Lift [37], are
also lightweight.

In order to keep the model lightweight and single-stage, we should pay more attention
to optimizing the structure or designing a new structure, so that the model can learn a
better representation, without any extra parameters. It will be investigated in more detail
in future work.

4.4. Ablation Study
4.4.1. Plain and Bridge–Branch Structure

To evaluate the effectiveness of the bridge–branch structure, we directly shrunk the
branch in ShiftPose-L and changed it into a single branch architecture (named Plain ar-
chitecture). In Table 5, the bridge–branch architecture obtained an increase of 4.8 PCKH,
which was more than plain architecture.

Table 5. Comparison of the plain and bridge–branch structures.

Model Name GFLOPs PCKh PCKh@0.1

Plain 1.00 81.6 21.5
Bridge 1.63 86.4 29.1

4.4.2. Replacement of Shift Block

In Table 6, after removing the shift operator, the PCKh dropped rapidly; however,
when we replace the shift operator with the W-MSA module, the model stops learning, and
the PCKh remains slightly higher or lower than 17.5. This is quite out of our expectation,
compared with the model with the attention module, so we added the result of the pure
transformer: TokenPose-S in Table 7. We guess that the reason for this is maybe the W-MSA
in the Swin transformer is unsuited to the human pose estimation task.

Table 6. The results for different modules (none, self-attention, and shift) of MPII dataset.

Module PCKh PCKh@0.1

Without shift 25.4 1.4
With W-MSA 17.5 0.8

With shift 86.4 29.1

Table 7. The results of COCO dataset.

Model Name AP Speed
GPU (fps)

TokenPose-S + SimDR [53] 73.6 80
Ours 72.1 308

Sensors 2022, 22, 7264 13 of 17

4.4.3. Improved RLE

Limited by the hardware support, we only test three values of σ = 1, 1.5, 2.5, and
the result is indeed influenced by σ, when σ = 2.5, the model gets the best performance.
The detailed results are shown in Table 8. In addition, the RLE is not robust to wrong
annotations and easily gets crashed without a good initialization and batch normalization.

Table 8. The results for different σ.

σ MPJPE PA-MPJPE

1 71.0 55.3
1.5 70.2 53.9
2.5 66.3 51.4

5. Discussion
5.1. 3D Pose Estimation

Depth estimation is dependent on the features extracted from the backbone and inter-
action between features. So, large models, such ResNet and HRNet, with large parameters
and feature fusion operations, do not worry about this question; however, it is the opposite
situation in the lightweight model. With limited computation resources, the lightweight
model would like to concentrate resources to explore high-level semantic information,
which brings high benefits, instead of wasted computation in multi-branch structure. Fur-
thermore, our experiments confirmed this point of view and drew an expanded conclusion
on 3D human pose estimation.

The experiments showed that our model with bridge–branch structure can handle the
2D human pose estimation task well, but it is not good at 3D human pose estimation. After
exploring the results of 3D human pose estimation in depth, we find that the model has
already performed well on X- and Y-coordinates; therefore, we can infer that the ability
of representation of the model shifts away from 3D human pose estimation towards 2D
human pose estimation, and our model needs a more efficient regression head to generate
more accurate Z-coordinates.

The weakness of 3D human pose estimation inspires us to improve the ability of
extracting a good depth representation from a single image. First, we can increase the
number of parameters and introduce auxiliary supervision, such as ordinal ranking, to
alleviate the difficulty of learning depth information; second, the current regression head is
quite simple, without any explicit or implicit feature interaction between 2D representation
and depth representation. Therefore, redesigning the regression head may help a lot.

5.2. Stable Training on RLE

In our experiments, we found that, when we simply applied the ShiftPose with RLE
to 3D human pose training, the loss became very large and easily crashed. To prevent this
strange error, we added a batch normalization on the final layer, before the regression head;
after that, we never met the same solution. Additionally, RLE loss is not robust for wrong
annotations; so, if your method with RLE crashed in the experiments, this may help you to
solve the problem.

Meanwhile, for stable training, we attempted to make three dimensions (x,y,z) share
the same sigma in the training process, which, indeed, helps training.

5.3. Optimize ShiftPose

Our model’s configuration is maybe not the best, but the validity of our model was
evaluated by the experiments, and future work can focus on the design of the hyper
parameter with neural architecture search technology [54] and deploy the ShiftPose to a
real-time pose estimation system, such as AlphaPose [55].

As for the regression head, we do not design it on purpose in order to prove the
strength of our backbone, and in the experiments, we observed that the ShiftPose cannot

Sensors 2022, 22, 7264 14 of 17

recognize the ankle, keen, and wrist, to enhance the ability of learning these parts, you can
design a new efficient regression head to get a better performance.

5.4. Bottom-Up Method

Although the top-down method has higher accuracy in human pose estimation, but in
multi-person situation, the human detector costs lots of time in detecting humans before
human pose estimation, while the bottom-up method removes the detector and predicts the
coordinates directly, which is much faster than top-down method, theoretically speaking.

Future works can focus on the improvement of the speed and apply the ShiftPose as
a strong backbone to multi-person pose estimation tasks, naturally, we recommend the
bottom-up method, which can archive faster speed and have great potential.

6. Conclusions

Among the regression-based methods, our model, named ShiftPose, obtained excellent
performance, with much higher fps, compared with some of the transformer-based meth-
ods. What’s more, our method was even competitive, compared with the heatmap-based
methods, which proves that the strength of the transformer architecture and self-attention
module has little contribution to the human pose estimation task.

We provide three kinds of ShiftPose: ShiftPose-T, ShiftPose-M, ShiftPose-L, and
ShiftPose-L obtained 86.4 PCKH, 29.1 PCKH@0.1. On the MPII dataset, 72.1 mAP, 255 fps
on the GPU, with 10.2M parameters, and 1.6 GFLOPs on the COCO dataset.

In the experiments, compared with results on the COCO and MPII datasets, our model
was more robust and had better generalization than ResNet50/101. For the model itself,
the bridge–branch structure performed better than the plain structure on all the datasets,
and it gained more profit by increasing the number of layers in each stage than increasing
the channel dimension of each stage, compared with the simplest configuration (ShiftPose-
M). The former (ShiftPose-M) only increased the 1.3M parameters; however, the latter
(ShiftPose-L) increased the 7.3M parameters.

In addition, interestingly, we find that lightweight models tend to learn x- and y-
coordinates as priority in the 3D HPE training process. As a result, in order to improve
performance on 3D HPE, the lightweight model need to increase the number of parameters,
introduce extra auxiliary supervision, or redesign the regression head.

Finally, we discussed some interesting phenomenon during training process. We found
that the RLE loss crashed easily without any normalization and proper initialization, and
the accuracy of the model would stay at a small value. After we added a normalization layer,
before the regression head, the training process became stable. What’s more, if we make
the X-, Y-, and Z-coordinate share a same σ, the training process will also become stable.

In the future, we are going to apply our model to multi-person pose estimation and
deploy it to resource-constrained edge devices, such as Raspberry Pi and mobile phones.
To improve the speed and performance, we will use neural architecture search technology
to optimize the structure and hyper parameters of our model.

Author Contributions: Conceptualization, H.C., X.J. and Y.D.; methodology, H.C. and X.J.; software,
H.C., X.J. and Y.D.; validation, H.C., X.J. and Y.D.; formal analysis, X.J.; investigation, X.J. and Y.D.;
resources, X.J. and H.C.; data curation, X.J. and Y.D.; writing—original draft preparation, X.J. and
Y.D.; writing—review and editing, H.C., X.J. and Y.D.; visualization, X.J.; supervision, H.C.; project
administration, H.C. and Y.D.; funding acquisition, Y.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partially supported by Major Project of Philosophy and Social Science
Research, Ministry of Education of China: 19JZD010.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2022, 22, 7264 15 of 17

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jain, A.; Tompson, J.; Andriluka, M.; Taylor, G.W.; Bregler, C. Learning human pose estimation features with convolutional

networks. arXiv 2013, arXiv:1312.7302.
2. Ramakrishna, V.; Munoz, D.; Hebert, M.; Andrew Bagnell, J.; Sheikh, Y. Pose Machines: Articulated Pose Estimation via Inference

Machines. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 33–47.
3. Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient object localization using convolutional networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 648–656.
4. Bulat, A.; Tzimiropoulos, G. Human pose estimation via convolutional part heatmap regression. In Proceedings of the European

Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 717–732.
5. Xiao, B.; Wu, H.; Wei, Y. Simple baselines for human pose estimation and tracking. In Proceedings of the European Conference on

Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 466–481.
6. Papandreou, G.; Zhu, T.; Kanazawa, N.; Toshev, A.; Tompson, J.; Bregler, C.; Murphy, K. Towards accurate multi-person pose

estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Venice, Italy, 22–29
October 2017; pp. 4903–4911.

7. Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Proceedings of the European Conference
on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 483–499.

8. Wei, S.-E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional pose machines. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4724–4732.

9. Yang, W.; Li, S.; Ouyang, W.; Li, H.; Wang, X. Learning feature pyramids for human pose estimation. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1281–1290.

10. Belagiannis, V.; Zisserman, A. Recurrent human pose estimation. In Proceedings of the 2017 12th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 468–475.

11. Tompson, J.J.; Jain, A.; LeCun, Y.; Bregler, C. Joint training of a convolutional network and a graphical model for human pose
estimation. Adv. Neural Inf. Process. Syst. 2014, 27, 1799–1807.

12. Luvizon, D.C.; Tabia, H.; Picard, D. Human pose regression by combining indirect part detection and contextual information.
Comput. Graph. 2019, 85, 15–22. [CrossRef]

13. Nibali, A.; He, Z.; Morgan, S.; Prendergast, L. Numerical coordinate regression with convolutional neural networks. arXiv 2018,
arXiv:1801.07372.

14. Carreira, J.; Agrawal, P.; Fragkiadaki, K.; Malik, J. Human pose estimation with iterative error feedback. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4733–4742.

15. Li, S.; Liu, Z.-Q.; Chan, A.B. Heterogeneous multi-task learning for human pose estimation with deep convolutional neural
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA,
23–28 June 2014; pp. 482–489.

16. Gkioxari, G.; Hariharan, B.; Girshick, R.; Malik, J. R-cnns for pose estimation and action detection. arXiv 2014, arXiv:1406.5212.
17. Luvizon, D.C.; Picard, D.; Tabia, H. 2d/3d pose estimation and action recognition using multitask deep learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5137–5146.
18. Li, J.; Bian, S.; Zeng, A.; Wang, C.; Pang, B.; Liu, W.; Lu, C. Human pose regression with residual log-likelihood estimation.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11 October 2021;
pp. 11025–11034.

19. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703.

20. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

21. Toshev, A.; Szegedy, C. Deeppose: Human pose estimation via deep neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660.

22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 5998–6008.

23. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11 October
2021; pp. 10012–10022.

24. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

http://doi.org/10.1016/j.cag.2019.09.002

Sensors 2022, 22, 7264 16 of 17

25. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation
through attention. In Proceedings of the International Conference on Machine Learning, Virtually Online, 13–15 December 2021;
pp. 10347–10357.

26. Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. Maxim: Multi-axis mlp for image processing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Louisiana, 19–24 June 2022; pp. 5769–5780.

27. Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.
Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272.

28. Liu, H.; Dai, Z.; So, D.; Le, Q.V. Pay attention to mlps. Adv. Neural Inf. Process. Syst. 2021, 34, 9204–9215.
29. Wang, G.; Zhao, Y.; Tang, C.; Luo, C.; Zeng, W. When shift operation meets vision transformer: An extremely simple alternative

to attention mechanism. arXiv 2022, arXiv:2201.10801. [CrossRef]
30. Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. Metaformer is actually what you need for vision. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Louisiana, 19–24 June
2022; pp. 10819–10829.

31. Wang, Y.; Li, M.; Cai, H.; Chen, W.-M.; Han, S. Lite pose: Efficient architecture design for 2d human pose estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Louisiana, 19–24 June
2022; pp. 1312–13136.

32. Yuan, Y.; Fu, R.; Huang, L.; Lin, W.; Zhang, C.; Chen, X.; Wang, J. Hrformer: High-resolution vision transformer for dense predict.
Adv. Neural Inf. Process. Syst. 2021, 34, 7281–7293.

33. Li, Y.; Zhang, S.; Wang, Z.; Yang, S.; Yang, W.; Xia, S.-T.; Zhou, E. Tokenpose: Learning keypoint tokens for human pose
estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11 October
2021; pp. 11313–11322.

34. Gkioxari, G.; Hariharan, B.; Girshick, R.; Malik, J. Using k-poselets for detecting people and localizing their keypoints. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 23–28 June 2014;
pp. 3582–3589.

35. Chen, X.; Yuille, A.L. Articulated pose estimation by a graphical model with image dependent pairwise relations. Adv. Neural Inf.
Process. Syst. 2014, 27.

36. Dantone, M.; Gall, J.; Leistner, C.; Van Gool, L. Human pose estimation using body parts dependent joint regressors. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3041–3048.

37. Martinez, J.; Hossain, R.; Romero, J.; Little, J.J. A simple yet effective baseline for 3d human pose estimation. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2640–2649.

38. Zhou, X.; Huang, Q.; Sun, X.; Xue, X.; Wei, Y. Towards 3d human pose estimation in the wild: A weakly-supervised approach. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 398–407.

39. Chen, C.-H.; Ramanan, D. 3d human pose estimation = 2d pose estimation + matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7035–7043.

40. Moreno-Noguer, F. 3d human pose estimation from a single image via distance matrix regression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2823–2832.

41. Wang, M.; Chen, X.; Liu, W.; Qian, C.; Lin, L.; Ma, L. Drpose3d: Depth ranking in 3d human pose estimation. arXiv 2018,
arXiv:1805.08973.

42. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

43. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

44. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

45. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; 2021; pp. 13733–13742.

46. Yu, C.; Xiao, B.; Gao, C.; Yuan, L.; Zhang, L.; Sang, N.; Wang, J. Lite-hrnet: A lightweight high-resolution network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 15–19 June 2021; pp. 10440–10450.

47. Cao, Z.; Simon, T.; Wei, S.-E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299.

48. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

49. Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2d human pose estimation: New benchmark and state of the art analysis.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 3686–3693.

50. Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu, C. Human3. 6m: Large scale datasets and predictive methods for 3d human
sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 1325–1339. [CrossRef] [PubMed]

http://doi.org/10.1609/aaai.v36i2.20142
http://doi.org/10.1109/TPAMI.2013.248
http://www.ncbi.nlm.nih.gov/pubmed/26353306

Sensors 2022, 22, 7264 17 of 17

51. Sun, X.; Xiao, B.; Wei, F.; Liang, S.; Wei, Y. Integral human pose regression. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 529–545.

52. Moon, G.; Chang, J.Y.; Lee, K.M. Camera distance-aware top-down approach for 3d multi-person pose estimation from a single
rgb image. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November
2019; pp. 10133–10142.

53. Li, Y.; Yang, S.; Zhang, S.; Wang, Z.; Yang, W.; Xia, S.-T.; Zhou, E. Is 2d heatmap representation even necessary for human pose
estimation? arXiv 2021, arXiv:2107.03332.

54. Cai, H.; Chen, T.; Zhang, W.; Yu, Y.; Wang, J. Efficient architecture search by network transformation. In Proceedings of the AAAI
Conference on Artificial Intelligence, New Orleans, Louisiana, 2–7 February 2018.

55. Fang, H.-S.; Xie, S.; Tai, Y.-W.; Lu, C. Rmpe: Regional multi-person pose estimation. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2334–2343.

	Introduction
	Relative Work
	Regression-Based HPE
	Lightweight Model
	Transformer
	Real-Time Human Pose Estimation

	Method
	Overall Architecture
	Bridge–Branch Connection
	Shift Operator
	Patch Merging and Patch Making
	Spatial Gate
	SimDR
	Residual Log-Likelihood Estimation

	Experiments
	Details and Environment
	Dataset and Metric
	Results
	Result on COCO Dataset
	Result in MPII Dataset
	Result on Human3.6M Dataset

	Ablation Study
	Plain and Bridge–Branch Structure
	Replacement of Shift Block
	Improved RLE

	Discussion
	3D Pose Estimation
	Stable Training on RLE
	Optimize ShiftPose
	Bottom-Up Method

	Conclusions
	References

