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Abstract: The body size of pigs is a vital evaluation indicator for growth monitoring and selective
breeding. The detection of joint points is critical for accurately estimating pig body size. However,
most joint point detection methods focus on improving detection accuracy while neglecting detection
speed and model parameters. In this study, we propose an HRNet with Swin Transformer block
(HRST) based on HRNet for detecting the joint points of pigs. It can improve model accuracy while
significantly reducing model parameters by replacing the fourth stage of parameter redundancy in
HRNet with a Swin Transformer block. Moreover, we implemented joint point detection for multiple
pigs following two steps: first, CenterNet was used to detect pig posture (lying or standing); then,
HRST was used for joint point detection for standing pigs. The results indicated that CenterNet
achieved an average precision (AP) of 86.5%, and HRST achieved an AP of 77.4% and a real-time
detection speed of 40 images per second. Compared with HRNet, the AP of HRST improved by
6.8%, while the number of model parameters and the calculated amount reduced by 72.8% and 41.7%,
respectively. The study provides technical support for the accurate and rapid detection of pig joint
points, which can be used for contact-free body size estimation of pigs.

Keywords: deep learning; object detection; keypoint detection; transformer; CNN

1. Introduction

Livestock body size is an important indicator for growth status assessment, body
weight estimation, and selective breeding of pigs [1–3]. Therefore, the accurate measure-
ment of pig body size is of great significance to the scientific management of farms. Tradi-
tional measurement methods require close contact between humans and animals, which is
inefficient, inaccurate, and often causes stress to pigs. With the advance of deep learning
and machine vision, non-contact, fast, accurate, and non-stressful measurement methods
are emerging in the livestock industry. Pezzuolo et al. [4] used an image-processing al-
gorithm to extract measurement points to estimate the body size of pigs. Zhang et al. [5]
extracted feature points based on the concavity and convexity of the contour to estimate the
sheep body size. Wang et al. [6] used the target contour extracted by the U-net segmentation
model combined with the binocular ranging to estimate the yak body size. However, these
methods are complicated because their successful implementation depends on two steps:
first, the extraction of the target contour, and then, the location of measurement points. In
addition, they are only suitable for a single target in a specific scene, and the measurement
accuracy is easily affected by illumination, which significantly limits its application to
large farms. By contrast, multi-target keypoint detection methods based on deep learning
can directly locate the joint points and has stronger robustness and generalization ability,
providing new insights to the detection of measurement points.

Multi-target keypoint detection methods can be divided into top-down and bottom-up.
The top-down approach first detects a series of object instances with bounding boxes and
then performs keypoint detection on each object instance. On the contrary, the bottom-up
method directly identifies the key points of all object instances in the image and then
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groups them into different objects [7]. Compared with the bottom-up method, the top-
down method can normalize the objects to the same size according to the detected object
bounding box, so it is generally insensitive to the scale variation and has higher detection
accuracy [8]. Currently, the implementation of top-down keypoint detection methods relies
on object detection and keypoint detection methods.

Object detection is the first step in top-down keypoint detection methods. It can be
divided into one-stage and two-stage according to whether to generate region proposals.
The one-stage target detection algorithm directly generated object bounding boxes with
class labels. By contrast, the two-stage model first generated a series of region proposals
containing the target and then classified and regressed each region proposal to obtain a
more accurate bounding box [9]. The one-stage detection model can be divided into the
anchor-free and anchor-based detectors based on whether the anchor needs to be preset.
YOLOv4 [10] is an anchor-based detector, which uses CSDarknet53 as the feature extraction
network, and introduces the SPP module and PAN module based on YOLOv3 [11] to
increase the receptive field and learn rich semantic information. An anchor-free detector,
named CenterNet [12], converts the object detection into the center point estimation and
obtains the object bounding box by predicting the offset, width, and height of the object’s
center point. FCOS [13] is a fully convolutional anchor-free detector, which utilizes all
points in a ground truth bounding box to predict the bounding boxes and adds a center-
ness branch to suppress the generation of low-quality prediction bounding boxes. In
two-stage detection models, Faster-RCNN [14] is the most representative algorithm. It
introduces Region Proposal Network (RPN) based on Fast R-CNN [15] and realizes end-
to-end training, which can significantly improve the detection speed of the model while
maintaining accuracy. In addition, the oriented detectors can more accurately represent the
target position, which has also received extensive attention from researchers. For example,
RoI Transformer [16] combines RRoI Learner and RRoI Warping to implement oriented
object detection. Cheng et al. [17] proposed an Anchor-free Oriented Proposal Generator
(AOPG) to generate high-quality oriented proposals.

As the second step of top-down keypoint detection, several keypoint detection frame-
works have been proposed. For example, Chen et al. [18] proposed a Cascaded Pyramid
Network (CPN) to locate difficult joint points by fusing feature representations of different
resolutions with online hard keypoint mining loss. To simplify the model structure and
improve the detection accuracy, Xiao et al. [19] presented a Simple Baseline by adding
several transposed convolution layers behind ResNet [20]. However, this recovering high
resolution from low resolution tends to lose position information and cannot obtain opti-
mal detection accuracy. To learn feature representations with strong location sensitivity,
a High-Resolution Network (HRNet) [21] was designed by maintaining high resolution
throughout the entire model structure and continuous cross-feature fusion. Since HRNet
only considers features at the highest resolution, HRNetv2 and HRNetv2p [22] were de-
veloped based on HRNet to learn richer representations. Nevertheless, this convolutional
neural network-based method can learn visual representations well but cannot accurately
capture the constrained relationship between key points. To better learn the constraint
relationship between joints, Li et al. [23] proposed Tokenpose by introducing a Transformer
block based on HRNet. These joint point detection methods take a big step towards achiev-
ing state-of-the-art detection accuracy. However, two problems remain to be addressed:
detection speed needs to be increased and model parameters have to be reduced.

Therefore, in this study, we proposed HRNet with Swin Transformer block (HRST)
based on HRNet, aiming to increase detection speed, reduce the model parameters, but
maintain high detection accuracy. HRST inherits the multi-scale fusion and high-resolution
representation of HRNet, and the shifted window-based self-attention mechanism of the
Swin Transformer, which makes it possible to reduce model parameters at the same time as
possessing high detection accuracy. Beyond that, we implemented joint points detection
of multiple pigs based on a top-down approach. Firstly, CenterNet with DLA-34 [24] as a
feature extraction network was used to detect the posture of the pig (standing or lying).
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Then, HRST was used to detect the joint points of the pig in a standing state. Finally,
we validate our method on the pig joint points test dataset and demonstrate superior
detection performance. Specifically, HRST achieves an average precision (AP) of 77.4%.
Compared with HRNet, the AP improved by 6.8%, while the number of model parameters
and the calculated amount reduced by 72.8% and 41.7%, respectively. It also indicates
that HRST can accurately and quickly locate the joint points of pigs, which can be applied
to achieve non-contact, stress-free, and rapid body size estimation of multiple pigs on
large-scale farms.

2. Materials and Methods

This section introduces the data used in the experiment and the multi-pig joint points
detection method. As we know, the back of the pig in the lying posture is easily occluded,
which affects the detection of joint points. To solve this problem, the multi-pig joint
point detection method follows a top-down framework. Likewise, we introduce our
work following the top-down framework in Section 2. We first introduce the pig posture
detection method based on the object detection algorithm and then describe our improved
joint detection model HRST. Finally, we combine the posture detection algorithm with
HRST to locate the joint points of multiple pigs.

2.1. Datasets Collection and Dataset Annotation

The video surveillance data were collected from the Breeding Swine Quality Supervi-
sion and Testing Center, Wuhan, China from July to November 2021. The video acquisition
equipment was Hikvision DS-2CD3346FWDA3-1 cameras. Each video had a resolution
of 2560 × 1440 and was captured at a frame rate of 25 frames per second. Three pig pens
were selected for the experiment, each with about ten live pigs.

Two datasets were annotated to realize multi-pig joint points detection. One was a
pig posture detection dataset, and the other was a pig joint points detection dataset. For
the pig posture detection dataset, 2033 images were selected by extracting a frame from
surveillance videos every two seconds. Similar frames were removed. Then, we labelled
the posture of those pigs as either standing or lying with the LabelMe annotate tool [25].
The labels included the information of the posture category and position of the pig. After
the dataset was annotated, the training set (1627 images), validation set (203 images), and
test set (203 images) were randomly sampled according to the ratio of 8:1:1. An example
of pig posture labeling is shown in Figure 1, where green stands for lying, and yellow
represents standing. The details of the posture detection dataset are shown in Table 1.

Figure 1. Annotated example for posture detection (the yellow bounding box represents the standing
pig, and the green bounding box represents the lying pig).
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Table 1. Details of posture annotation dataset.

Posture Classes
Number of Individual Postures

Train Dataset Validation Dataset Test Dataset Total

Standing 5499 735 644 6234
Lying 9058 1084 1171 10,412

Total sample 14557 1819 1815 18,191

After posture detection annotating, 1623 standing pig images were selected to locate
the joint points of pigs. For the standing pigs, ten joint points of each were annotated by the
LabelMe annotation tool: left neck, right neck, left shoulder, right shoulder, left abdomen,
right abdomen, left hip, right hip, left tail, and right tail. As can be seen in Figure 2, the
joint points are marked by different colors. After the dataset was annotated, the training set
(1299 images), validation set (162 images), and test set (162 images) were randomly divided
in a ratio of 8:1:1. Next, 1000 images were randomly selected from the annotated training
set for second annotation to calculate the standard deviation. The standard deviation of
each joint point relative to the object scale was computed for subsequent computation of
Object Keypoint Similarity (OKS) [26]. The standard deviation (Table 2) of shoulders and
hips is relatively large because the feature areas are not as prominent as those of the neck,
abdomen, and tail, making it difficult to label.

Figure 2. Pig joint point annotation example. (Black marks indicate left and right neck, blue marks
indicate left and right shoulders, green marks indicate left and right abdomen, red marks indicate left
and right hips, and orange marks indicate left and right tails).

Table 2. Standard deviation of each joint point.

Joint Point σ Joint Point σ

left neck 0.005322321731521584 right abdomen 0.005311422910349784
right neck 0.00546914966592658 left hip 0.010024322728349425

left shoulder 0.009892777323066001 right hip 0.008588638693752731
right shoulder 0.00871434068851134 left tail 0.004319627728346724
left abdomen 0.004523805890671292 right tail 0.00422832022133345

In addition to our annotated pig joint point dataset, we used the publicly available
Amur Tiger Re-identification in the Wild (ATRW) dataset [27] to further verify the gener-
alization and transferability of the model. This dataset collects surveillance videos from
multiple wildlife parks, including more than 8000 video clips from 92 Amur tigers, with
bounding-box, keypoint-based pose, and identity annotations.
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2.2. Pig Posture Detection Based on Object Detection Algorithm

Deep learning has shown its great advantages in various vision tasks such as object
detection [28], crowd counting and localization [29], and keypoint detection [30]. As
the first step of multi-target joint point detection, a deep learning-based object detection
algorithm is used to detect the posture of pigs. In this study, we used a one-stage model
and a two-stage model to detect pig posture. In the one-stage model, we compared anchor-
based (YOLOv4) and anchor-free (FCOS, CenterNet) detectors. In the two-stage model, we
used four different feature extraction networks, ResNet50 [20], MobileNetV3-Large [31],
EfficientNetV2-S [32], and ConvNeXt-T [33] to compare the impact of different feature
extraction networks on the model detection accuracy. ResNet, a residual neural network
proposed by He et al. [20], can effectively alleviate the model degradation problem by
introducing a residual block. MobileNetV3 [31] is a lightweight model designed for mobile
devices. It inherited the depthwise separable convolution (DSC) of MobileNetV1 [34]
and the inverted residual structure of MobileNetV2 [35] and introduced the squeeze-
and-excitation (SE) block and h-swish activation function to improve detection accuracy.
EfficientNetV2 [32] is a convolutional neural network with faster training speed and
higher parameter efficiency, which introduces the Fused-MBConv module and progressive
learning method based on EfficientNetV1 [36]. ConvNeXt [33] is a redesigned model of
ResNet based on the vision transformer structure, which can significantly improve the
model detection accuracy while maintaining the simplicity and efficiency of standard
ConvNets. In addition, Feature Pyramid Network (FPN) [37] was added to the feature
extraction network because it can not only generate a region proposal on multiple feature
layers but also learn richer semantic information by fusing the representations of multiple
feature layers.

2.3. HRST (HRNet with Swin Transformer Block)

An excellent model should have high detection accuracy, fast detection speed, and
relatively few model parameters. However, current joint points detection research focuses
on improving the model accuracy and ignores the model parameters and detection speed.
Therefore, we proposed an HRNet with Swin Transformer block (HRST) for the location
of the joint points of pigs. HRST replaced the fourth stage of parameter redundancy in
HRNet with a Swin Transformer block, making it possible to keep high accuracy with fewer
parameters. Figure 3 shows that the HRST model is composed of three parts: HRNet-stage3,
attention layer, and heatmap regression module. The details of each part are described
as follows.

Figure 3. HRST model structure.
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2.3.1. HRNet-Stage3

HRNet is a network that learns strong location-sensitive high-resolution representa-
tion, which has been applied to various vision tasks such as pose estimation [38], object
detection [39], and semantic segmentation [40]. It differs from previous networks that
pass low-resolution features through dilated convolution or up sampling to recover high-
resolution representations. Instead, it maintains high-resolution representations throughout
the model process and continuously performs cross-scale fusion to learn richer representa-
tions. HRNet takes the high-resolution subnetwork as the first stage and then gradually
adds a new subnetwork in parallel to form a new stage, where the resolution of the current
subnetwork is 1/2 the resolution of the previous subnetwork. This process loops many
times, eventually forming four stages. Since the fourth stage of HRNet was proved to
have limited accuracy improvement on the entire model and significantly increased the
model parameters [41]. Therefore, to simplify the model structure and reduce the model
parameters, we only used HRNet-stage3 for image feature extraction.

2.3.2. Attention Layer

Compared with a Convolutional Neural Network (CNN), the Transformer [42] based
on the attention mechanism can obtain stronger global modeling ability, especially when
Swin Transformer [43] was proposed recently. This shifted window-based approach can
significantly reduce model computation and learn richer representations. In this study, to
better capture the constraint relationship between joints, the attention layer was connected
behind HRNet-stage3. The attention layer is mainly composed of Patch Embed and Swin
Transformer block. Patch embed mainly consists of a norm layer and a convolution (the
convolution kernel is 4, the stride is 4, and the output channel is 96), which is used
to convert 2D images into 1D sequences for input into the transformer block. For this
operation, we refer to the processing method of the Vision Transformer [44]. Firstly, the
highest resolution representation from HRNet-stage3 was divided into 24 × 18 patches,
with each patch being the size of 4× 4. Then, each patch was reshaped into a 1D vector and
mapped to 96 dimensions. Finally, normalize each patch. After acquiring the 1D sequence,
the Swin Transformer block is connected to the Patch Embed to learn the joint point
feature representation. Each Swin Transformer is used in pairs, the first block employing
the conventional window partitioning strategy, and the second block using the shifted
window partitioning strategy. The detailed structure of the Swin Transformer block is
shown in Figure 3. It mainly consists of window-based multi-head attention, shift window-
based multi-head attention, multi-perceptron, and layer norm, where LN is layer norm,
W-MSA and SW-MSA are multi-head self-attention using regular and shifted windows,
respectively, MLP is multilayer perceptron, x̂l and xl denote the output features of the
W-MSA module and the MLP module in the lth block. In this operation, Swin Transformer
block is superimposed 4 times, each Swin Transformer block window size is 6, num heads
is 48. Please refer to [43] for detailed information on the Swin Transformer.

2.3.3. Heatmap Regression

To obtain the final 2D heatmaps predictions, a transposed convolution (the kernel is 4,
the stride is 4, the output channel is 10) was used on the output vector of the Swin Trans-
former block. The size of the heatmap is 1/4 of the input image. The mean squared error
(MSE) is used to calculate the loss between the predicted feature map and the ground truth.

2.4. Joint Point Detection of Pig

In this part, we used the improved joint point detection model HRST to localize the
joint points of pigs and compared the currently popular joint point detection models such
as Simple Baseline [19], HRNet, HRNetv2 [22], and Tokenpose [23] to verify the detection
performance of HRST. All joint point detection models were trained, validated, and tested
on the same dataset. Furthermore, we combined HRST and CenterNet with DLA-34 as the
feature extraction network to detect the joint points of multiple pigs, making it applicable
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to large-scale farming. Multi-pig joint points detection was carried out through two steps.
Firstly, CenterNet with DLA-34 as feature extraction network was used to detect pig posture
(lying or standing). Then, HRST was used to detect pig joint points in a standing state.

3. Result and Discussion
3.1. Posture Detection
3.1.1. Implementation Details

The experimental environment was based on the CentOS7.3 operating system. The
hardware was an Intel(R) Xeon(R) Gold 5120 CPU with a Tesla V100-PCIE-32GB graphics
card. The programming language was Python 3.8; the deep-learning framework was Py-
torch1.8.1. All images were uniformly scaled to 1280× 720 to reduce memory consumption.
In the one-stage object detection algorithm, we used mosaic data augmentation, multi-scale
training, and the SGD optimizer with a momentum of 0.937 and weight decay of 5 × 10−4.
The initial learning rate was set as 1 × 10−2. In the two-stage object detection algorithm,
we used random horizontal flipping and the SGD optimizer with a momentum of 0.9 and
weight decay of 1× 10−4. The initial learning rate was set to 1× 10−2 and then decreased to
1 × 10−3 and 1 × 10−4 at 70 and 120 epochs. All models terminated training at 210 epochs.

3.1.2. Posture Detection Results

Five common evaluation indicators such as AP, average recall (AR), Giga floating-point
operations per second (GFLOPs), model parameters, and frames per second (FPS) were
used for comprehensive evaluation of the model performance. AP and AR are calculated
from intersection over union (IOU) [45] to evaluate model detection performance. GFLOPs
and model parameters are indicators for evaluating algorithm complexity, and FPS is an
indicator for evaluating model inference speed. During model training, we recorded the
training loss of the model and the AP in the validation set. As we can see from Figure 4a,
with the continuous iteration, the loss of the model decreased and converged to a lower
value, indicating that the model has been trained. Faster-RCNN with ResNet50-FPN
as the feature extraction network had the fastest convergence speed and the lowest loss.
Figure 4b shows that the AP of the model in the validation set gradually rose and eventually
converged as the number of iterations increased. CenterNet with DLA-34as the feature
extraction network converged at the highest accuracy.

Figure 4. The training loss curve (a) and AP curve (b) of the posture detection model.

To further verify the effect of model training, the trained model was tested in the same
test set. Table 3 shows the comparison results of various performance indicators.



Sensors 2022, 22, 7215 8 of 13

Table 3. Results of different object detection models on the pig posture test set. GFLOPs represent
the computational effort of the model; Params represent the number of parameters; AP50 and AP75

are the average precision when the intersection over union (IOU) threshold is set to 0.5 and 0.75. AP
and AR are average precision and average recall averaged over 10 IOU threshold (0.50:0.05:0.95); FPS
represents the inference speed. The best results are in bold.

Class Feature Extractor GFLOPs Params AP AP50 AP75 AR FPS

Faster-RCNN ResNet50-FPN 177.11 41.4M 84.7 99.0 98.6 88.9 18
Faster-RCNN MobileNetV3-Large-FPN 6.62 6.2M 82.3 99.5 97.8 86.6 29
Faster-RCNN EfficientNetV2-S-FPN 59.73 24.3M 84.8 99.0 98.9 88.9 21
Faster-RCNN ConvNeXt-T-FPN 97.98 34.3M 86.1 99.5 99.0 90.0 18

YOLOv4 CSPDarknet53 119.50 63.9M 84.1 98.5 97.8 88.1 52
FCOS ResNet50-FPN 177.47 31.84M 85.7 99.0 98.1 90.2 21

CenterNet (for
posture detection) DLA-34 96.29 20.2M 86.5 99.0 98.9 89.5 26

The results demonstrate that in the one-stage detection model, the anchor-free Cen-
terNet can accurately detect the posture of the pig and obtain the best detection accuracy
(AP of 86.5%). In addition, the anchor-based yolov4 achieved the fastest detection speed
at 52 images per second. In the two-stage detection model, ConvNeXt-T-FPN can better
extract features and achieved the best detection accuracy (AP of 86.1%). Figure 5 shows
the detection results of CenterNet with DLA-34 as the feature extraction network on the
posture test set of pigs. As can be seen from the figure, each pig can be identified and
wrapped with a bounding box, indicating that our model could accurately distinguish the
postures of pigs.

Figure 5. Examples of standing (yellow rectangles) and lying (green rectangles) detected by CenterNet
with DLA-34 as the feature extraction network.

3.2. Joint Points Detection
3.2.1. Implementation Details

In joint point detection experiments, all images of the input model were adjusted
to 384 × 288 by preprocessing. Additionally, the Adam optimizer was used for random
rotation ([−45◦, 45◦]), random scaling ([0.65, 1.35]), and random horizontal flipping. The
initial learning rate was set to 1 × 10−3, and then dropped to 1 × 10−4 and 1 × 10−5 at
600th and 800th epochs, respectively. All models were trained for 1000 epochs.
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3.2.2. Joint Points Experimental Results

Similar to pig posture detection, AP and AR, GFLOPs, model parameters, and FPS
were used for evaluation of the effectiveness of the joint points detection model. AP and AR
were computed from Object Keypoint Similarity (OKS) defined in COCO [46]. To describe
the training process of the model, we recorded model loss and the mean average precision
in the validation set. Figure 6a indicates that the loss gradually decreased and eventually
converged to a lower value as the number of iterations increased. Figure 6b shows that
the AP in the validation set continued to rise and eventually converged as the number of
iterations increased. Finally, our improved joint point detection model HRST converged
with the highest AP.

Figure 6. The training loss curve (a) and AP curve (b) of joint points detection model.

After all joint point model training was completed, the joint point test set of pigs was
used to verify the training effect of the model. The comparison of model performance met-
rics (Table 4) suggested that HRST, our improved joint points detection model, achieved the
highest detection accuracy with an AP of 77.4% while having the fewest model parameters
of 17.3 M. Compared with HRNet, the GFLOPs and model parameters of HRST reduced
by 41.7% and 72.8%, respectively, but the AP increased by 6.8%, indicating that the Swin
Transformer block could replace the fourth stage of HRNet to learn more efficient informa-
tion. Similarly, compared with CenterNet, HRST still has great advantages. It can reduce
model parameters by 16% while increasing AP by 10.2%. In addition, HRST also has great
advantages in detection speed which reached 40 frames per second. To further validate
the generalization performance of HRST, we evaluate it on the public ATRW dataset. The
results are shown in Table 5. As the dataset increases, the gap between the AP of the models
narrows. However, our improved HRST still achieves the best detection performance (AP
of 89.6%) with the fewest model parameters (17.3 M). Figure 7 shows the prediction results
of HRST on the test set, where the joint points of each target can be accurately identified.
Finally, to better apply to large-scale farms, we combined the trained HRST and CenterNet
with DLA-34 as the feature extraction network to detect the joint points of multiple pigs.
Figure 8 shows an example of multi-pig joint point detection prediction. As seen from
the figure, the posture of each pig can be accurately identified, and the joint points of the
standing pig can be detected.
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Table 4. Results of different joint point detection models on the joint point test set of pigs. AP50 and
AP75 are the average precision when Object Keypoint Similarity (OKS) threshold is set to 0.5 and 0.75.
AP and AR are average precision and average recall averaged over 10 OKS threshold (0.50:0.05:0.95).
We calculated the percent difference in params, GFLOPs, and AP between models marked with the
same symbol. ”†” marks the models we compared, and ”↓” and ”↑” indicate the decline and increase
of the comparison results, respectively.

Class GFLOPs Params AP AP50 AP75 AR FPS

CenterNet (for joint point detection) 13.95 20.6M 67.2 94.4 83.2 73.8 56
HRNet-w48 35.43 † 63.6M † 70.6 † 94.9 86.4 78.0 26
HRNetv2-w48 39.53 65.9M 72.1 96.6 91.7 78.6 24
Simple Baseline-152 28.67 68.6M 69.6 96.0 86.6 76.0 48
Tokenpose-L-D24 23.98 29.9M 70.2 95.6 85.1 77.6 26
HRST 20.65 † (↓41.7%) 17.3 M † (↓72.8%) 77.4 † (↑6.8%) 95.9 90.4 82.8 40

Table 5. Results of different joint point detection models on the ATRW test set. The relevant indicators
of this table are consistent with those in Table 4.

Class GFLOPs Params AP AP50 AP75 AR FPS

CenterNet (for joint point detection) 13.95 20.6M 75.2 95.2 77.0 86.5 56
HRNet-w48 35.43 † 63.6M † 88.8 † 97.2 90.6 91.9 26
HRNetv2-w48 39.53 65.9M 89.0 97.3 90.4 92.2 24
Simple Baseline-152 28.67 68.6M 86.4 96.4 90.3 90.1 48
Tokenpose-L-D24 23.98 29.9M 87.1 97.2 89.3 90.6 26
HRST 20.65 † (↓41.7%) 17.3 M † (↓72.8%) 89.6 † (↑0.8%) 98.4 91.5 92.4 40

Figure 7. Detection results of HRST on pig and ATRW test sets.
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Figure 8. Example of multi-pig joint point detection. The green bounding box represents lying, and
the yellow bounding box shows standing. Joint point detection is only performed on standing pigs.

4. Conclusions

The accurate positioning of joint points is crucial for body size estimation. In this
paper, we employ a top-down approach to detect the joint points of multiple pigs. The
pig’s posture was first detected using the object detection method, and then the joint point
detection was performed on the standing pig. In pig posture detection, to better detect the
posture of pigs, we compared one-stage and two-stage detectors. The results show that
CenterNet withDLA-34 as the feature extraction network can accurately identify different
pig postures and achieve the highest detection accuracy (AP of 86.5%). In pig joint point
detection, since the current joint point detection models focus on improving model accuracy
and ignore model parameters and detection speed, we proposed an improved joint point
detection model HRST. The model can improve model accuracy while significantly reducing
model parameters by replacing the fourth stage of parameter redundancy in HRNet with a
Swin Transformer block. The experiments indicated that HRST achieved an AP of 77.4%,
which is better than other joint point detection methods. In addition, HRST still has
significant advantages in GFLOPs, model parameters, and detection speed compared with
the mainstream joint point detection models. Our research provides technical support for
accurate and rapid positioning of joint points, which can be applied to large-scale farms to
achieve contact-free, stress-free body size estimation of multiple pigs. At the same time,
the research can be further improved. First, multi-pig joint point detection is achieved
by training two models separately, which is usually inefficient. In addition, we did not
investigate whether this joint detection method also performs well in complex scenes
(distortion and occlusion). Therefore, further research will be conducted in the following
aspects: (1) Based on CenterNet, we will integrate posture and joint point detection into a
model to achieve end-to-end training. (2) We will consider augmenting data of pig joints in
complex scenes to improve the robustness of the model.
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