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Abstract: In industrial processes, the composition of raw material and the production environment
are complex and changeable, which makes the production process have multiple steady states. In
this situation, it is difficult for the traditional single-mode monitoring methods to accurately detect
the process abnormalities. To this end, a multimode monitoring method based on the factor dynamic
autoregressive hidden variable model (FDALM) for industrial processes is proposed in this paper.
First, an improved affine propagation clustering algorithm to learn the model modal factors is
adopted, and the FDALM is constructed by combining multiple high-order hidden state Markov
chains through the factor modeling technology. Secondly, a fusion algorithm based on Bayesian
filtering, smoothing, and expectation-maximization is adopted to identify model parameters. The
Lagrange multiplier formula is additionally constructed to update the factor coefficients by using
the factor constraints in the solving. Moreover, the online Bayesian inference is adopted to fuse the
information of different factor modes and obtain the fault posterior probability, which can improve
the overall monitoring effect of the model. Finally, the proposed method is applied in the sintering
process of ternary cathode material. The results show that the fault detection rate and false alarm rate
of this method are improved obviously compared with the traditional methods.

Keywords: multimodality; factor modeling; process monitoring; FDALM

1. Introduction

Process monitoring plays an important role in ensuring product safety, improving
product quality, and reducing production costs. Therefore, it is an important way to ensure
the safe and efficient operation of the production process [1–3]. Multivariate statistical
process monitoring (MSPM) has become increasingly popular with the proliferation of
digital factories and the massive collection of production process data. The traditional
representative techniques include Principal Component Analysis (PCA) and Partial Least
Squares (PLS), which are used to monitor chemical production processes and achieve
results [4–6].

However, the dynamics information contained in sequence data has been greatly
ignored by most process monitoring [7]. Scholars have proposed dynamic augmented ma-
trix [8], autoregressive [9], and linear dynamic systems [10] to monitor the dynamic process.
However, the augmented matrix increases the curse of dimensionality. Moreover, the order
of the autoregressive model and the dimension of the latent state is difficult to determine,
resulting in limited monitoring performance [11]. Fortunately, linear dynamic systems, as a
dynamic latent variable model, are good at describing the interaction between first-order
dynamic process states. Aiming at the high-order dynamic process [12], Chen et al. [13]
proposed a monitoring method of the dynamic autoregressive latent variable model to
monitor the preparation process of ternary cathode material. However, the model assumes
that the system operates stably under a single operating condition and fails for multimodal
processes [14].
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Researchers have made several contributions to addressing the multimodal prob-
lem [15,16]. A traditional approach is to build different monitoring models for various
operating modes. Zhao et al. [17] proposed a mixed principal component analysis model
for monitoring multimodal processes. It established PCA models for multiple data sets to
distinguish different modal information. At the same time, Zhao et al. [18,19] proposed
methods of PCA and multiple PLS models to handle multimodal processes. This type of
method has several drawbacks: not fusing the correlation information between different
models; splitting the useful information hidden between the data sequences; and being
highly dependent on the similarity measurement algorithm. To address such problems,
Bayesian frameworks and combinatorial strategies have been adopted. Yu et al. [20,21]
proposed a monitoring method for the Gaussian mixture model and used the Bayesian
inference method to fuse various model indicators. Ge et al. [22] proposed a hybrid PPCA
model combined with Bayesian inference technology for process monitoring. The above
methods attempt to construct a unified mathematical model, and then use Bayesian infer-
ence techniques to fuse the difference information between the models. However, they do
not consider the information between the data sequences in the transition period. To this
end, Wang et al. [23] proposed a Hidden Markov Model-based fault monitoring method
for multi-mode processes, which relies on the accuracy of the partitioning algorithm for
steady-state and transition-state data sets.

The multi-mode process monitoring method proposed above highly depends on the
similarity measurement algorithm to categorize the data samples into a certain group,
while ignoring the state action relationship between sequences. Due to the above reasons,
the samples during the mode switching cannot be effectively considered, which may
increase the error detection rate caused by misclassification [24]. To make full use of the
information between sequences and preserve the interaction between multimodal states, a
multimodal process monitoring method based on the factor dynamic autoregressive latent
variable model is proposed in this paper. First, from a data perspective, a factor dynamic
autoregressive latent variable model, which is obtained by combining multiple high-order
hidden state Markov chains through factor modeling technology, is constructed. Then,
the state output of the sample in each mode is fused to the posterior failure probability of
the sample through Bayesian inference online, so as to take into the overall monitoring
effect of the multimodal model. The main contributions can be summarized as: (1) with
the help of factor modeling technology, multiple high-order Markov state chains are
combined to obtain FDALM to simulate the dynamic evolution of multimodal processes;
(2) a parameter identification algorithm is proposed to learn the FDALM parameters;
(3) Bayesian technology is used to fuse different sub-modal features into sample posterior
failure probability to achieve process monitoring tasks and reduce the false alarm rate;
(4) focuses on solving the multimodal problems in the sintering process of ternary cathode
materials. The proposed method is applied to the sintering process of ternary cathode
material manufacturing. The results have practical guiding significance.

The main structure of the paper is arranged as follows. Section 2 introduces the
difficulties in monitoring the preparation process of ternary cathode material. Section 3
presents the modeling method of the factor dynamic autoregressive latent variable model
and introduces the parameter identification algorithm of the model in detail. A monitoring
method based on FDALM is proposed in Section 4. Section 5 applies the monitoring method
to monitor the sintering process of ternary cathode material to verify the effectiveness of
the proposed method. The last section provides the conclusion.

2. Description of the Problem in Monitoring the Preparation Process of Ternary
Cathode Material

The roller kiln, which has a total length of more than 40 m and consists of 21 temper-
ature zones, is a device used for the sintering reaction of ternary cathode material. It is
divided into three temperature sections according to the temperature trend: the heating
section, the constant temperature section, and the cooling section. Each temperature section
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is spliced together by several temperature zones, and its cross-sectional view is shown in
Figure 1. The material is loaded into the saggar, enters the replacement chamber at the
entrance of the roller kiln, and starts a series of chemical reactions. The qualified product
relies on the temperature of the internal temperature zone of the roller kiln, the transmission
power, and the supply of oxygen. The heating system adjusts the temperature field distri-
bution in the temperature zone by controlling the current flowing on the silicon carbide
rod, so as to ensure the uniform heat conduction of the material during the transmission
process. The transmission system is driven by the rollers moving at a constant speed to
help the saggars placed on the rollers to move forward smoothly and slowly at a certain
speed. Oxygen is introduced into the air inlet to provide oxygen for the compound reaction,
and the exhaust gas is extracted from the reaction. This system further ensures the stable
air pressure condition in the roller kiln. In the ternary cathode material roller kiln, the
temperature is mainly measured by thermocouples. Two thermocouples are at the top and
bottom of each temperature zone, close to the upper and lower silicon carbon rods.
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Figure 1. Sectional view of a roller kiln.

Due to the limitation of the production environment, there is a certain hysteresis
relationship between the control parameters and the sintering state, so it is impossible
to directly evaluate the quality of the production and preparation process by controlling
variables such as silicon carbide rod current and oxygen concentration. At the same time,
the quality of the ternary material is related to the temperature of the entire process, and the
collected temperature variables have high dimensions, so it is difficult to measure whether
the process state is in a normal state through a simple weighted average index. In addition,
in order to compensate for the influence of environmental factors, there is more than
one optimal sintering system for the sintering preparation process [25]. For example, the
operating parameters in winter and summer are different, so a single evaluation criterion
cannot be applied to the preparation process of ternary material. These problems make
it difficult for operators to accurately grasp the state of on-site sintering preparation in
real-time, resulting in side effects such as lag in operation and fluctuations in product
quality. Therefore, it is very important to study the process monitoring technology to fully
analyze the data collected by the process sensor to guide the operator to grasp and adjust
the operating parameters in time, so that the process can return to its normal state.

That is to say, a qualified battery product requires that the distribution of the internal
temperature field of the roller kiln conforms to a certain curve, that is, the temperature trend
is shown in Figure 2. In Figure 2, 1 is the furnace exhaust port, 2 is the upper silicon-carbon
rod, 3 is the furnace air inlet, and 4 is the lower heated silicon-carbon rod. Since the process
conditions are directly determined by the sintering temperature, the temperatures in every
section and product quality need to be modeled and monitored. The product quality
is related to the temperatures of the entire section, and the front and rear temperature
zones affect each other, so the monitoring of a single temperature zone cannot achieve
the overall monitoring goal. However, thermocouples are installed at the top and bottom
of each temperature zone inside the sintering device as temperature measuring elements



Sensors 2022, 22, 7203 4 of 18

to measure the temperature of the kiln. These temperatures can indirectly determine the
quality of the products in the current kiln as a whole. At the same time, to monitor the
faults related to product quality, such as the abnormal increase of residual lithium in the
outlet replacement chamber, it is necessary to increase the monitoring of product quality
based on monitoring temperature variables. The indicator that can best reflect product
performance is surface free radicals. When the free lithium content increases, the material
easily absorbs carbon dioxide and moisture in the air to generate lithium carbonate and
lithium hydroxide, which not only reduces the storage stability of the material in the air but
also hinders the deintercalation and electron conduction of lithium ions in the raw material.
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The curve in Figure 2 records the temperature distribution inside the kiln that needs
to be achieved under the production of qualified products. The actual kiln temperature is
affected by the external environment, and the controller will eliminate these effects to adjust
the temperature profile inside the kiln. Therefore, the sintering regime that deviates from the
curve in Figure 2 is also consistent with the normal production process and cannot be judged
as a faulty working condition. This paper investigates the use of mathematical models
to track these normal operating conditions, and the models themselves are trained using
normal data to obtain them. For abnormal data, the state variables of the model deviate
from the normal distribution and the process is determined to be abnormal. However, the
method in this paper will only monitor the abnormalities but not eliminate them, and the
job of eliminating them is left to the fault diagnosis.

After analyzing the data characteristics of the ternary cathode material preparation in-
dustrial system, it is found that the production data has problems such as noise interference,
dynamics, high dimension, and multi-modality [26]. First, in the sintering preparation pro-
cess, the uncertainty of the production process such as the aging of the silicon carbide rod
and the fluctuation of the exhaust pipe flow causes the acquisition device to be randomly
interfered with by factors such as random errors and human errors. Secondly, due to the
mutual coupling between the reactions of the device before and after, the samples at the
current sampling time are affected by the state of the previous time and show strong dy-
namic characteristics. Third, because the sintering process has the characteristics of a long
process and large delay, the sensors installed in the system will collect numerous variables
to obtain the sintering state, resulting in a high dimension of data that is involved. Fourth,
the chemical reaction that occurs during the sintering process is particularly sensitive to
the temperature of the external environment [27]. When there are periodic disturbances in
the external environment, such as seasonal changes, the system will adjust the operating
parameters to compensate for the influence of external disturbances. The system has a
variety of stable working states, that is, the distribution of the collected data will change
periodically with the change in the external environment. To sum up, the sintering process
data of ternary cathode material exhibit randomness, dynamics, high latitude, and multi-
modal characteristics. Traditional monitoring and monitoring methods cannot overcome
these characteristics to satisfy the monitoring effect required by the industry.
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3. Factor Dynamic Autoregressive Latent Variable Model

In view of the multimode characteristics of complex production process data, this
section proposes a factor dynamic autoregressive latent variable model (FDALM) from the
data perspective. The technique generalizes a single higher-order linear dynamic system
to a multimodal-adaptive process for modeling multimodal features. Subsequently, an
improved EM algorithm is proposed for model parameter identification to ensure the
inter-class distances of different models.

3.1. Model Structure

Most of the traditional data modeling methods are based on the assumption of a
single-mode and a static process, which makes the monitoring method not capable of mul-
timode tracking, resulting in false alarms, misdiagnoses, and even failures in monitoring
results. Therefore. for multimode process data modeling, the modal representation is
very important. The division between different modes requires a comprehensive trade-off
between the dispersion and ductility of each mode, that is, the modes cannot overlap exces-
sively, and the description of the modes is effective and sufficient. In order to make full use
of the effective transition information between data series, the adopted factor modeling
method is used to extend the single-modal DALM to obtain the modeling method of factor
dynamic autoregressive latent variable model (FDALM). The probability topology of the
factor dynamic autoregressive latent variable model is shown in Figure 3.
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Multi-modal processes are also generally dynamic. On the one hand, when the system
is stable in a certain mode, the states at different times will interact with each other. In
addition, the switching between different modes is also a dynamic process. Therefore,
whether it is data modeling or modal partitioning, dynamic information cannot be ignored.
It can be seen from the above topology diagram that when there are K modes in the system,
each mode is simulated by a high-order Markov state chain, which fully simulates the
dynamic evolution law of a single mode. At the same time, K modalities exist at each
moment, so the output observation variable is weighted with a weight coefficient, and each
state is weighted with a factor weight P(k) to form the observation variable x at the current
time. The mathematical structure of FDALM is shown in Equation (1).

zt,k = Akht−1,k + ηz
k

xt,k = Bkzt,k + ηx
k

xt =
K
∑

k=1
P(k)xt,k

, (1)

where zt,k ∈ Rd represents the latent variable describing the system at time t in mode k, ht,k
represents the augmented latent variable composed of latent variables in mode k at time
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t and the first L − 1 moments, namely ht−1,k = [zt−1,k
T zt−2,k

T · · · zt−L,k
T ]

T ∈ RdL,
where L is the dynamic order. Then identify the order coefficients learned by the algorithm.
xt,k ∈ Rv represents the process observation variable composed of the process variable and
the quality variable in the mode k at time t, and d and v represent the dimensions of the
latent variable and the observed variable, respectively. Ak ∈ Rd×dL represents the state
transition matrix from the augmented latent variable ht−1,k to the latent variable zt,k at the
current moment. Bk ∈ Rv×d represents the divergence matrix of the latent variable zt,k to the
observed variable xt,k. ηz

k ∈ Rd and ηx
k ∈ Rv are the Gaussian noises of the latent variable

and observed variable in mode k, respectively. P(k) denotes the prior probability of the kth
modality, P(k|xi) denotes the posterior probability of the kth modality under xi conditions;
xt denotes the data collected at moment t, i.e., for the roller kiln temperature variable of this
object. Assuming that the noises are independent of each other, the distributions obeyed
are ηz

k ∼ N(0, Σz,k) and ηx
k ∼ N(0, Σx,k), respectively. The parameter Θ of the whole factor

dynamic autoregressive latent variable model is shown in Equation (2).

Θ =
{

Ak, Bk,µπ ,k, Σπ,k, Σz,k, Σx,k, P(k)
∣∣k = 1, 2, · · · , K

}
. (2)

Among them, µπ ,k and Σπ,k are the mean and variance of the Gaussian distribution of
the augmented latent variable h0,k at the initial time, respectively.

3.2. FDALM Parameter Identification

Compared with DALM parameter identification, the factor modeling method not only
needs to ensure the maximum likelihood function of a single model, but also needs to
ensure that different model structures do not overlap excessively. Due to the existence of
two types of unobservable variables in FDALM structure, which are the latent variables of
the model and the factor coefficients P(k), the traditional maximum likelihood function
cannot be used. In this section, an improved EM algorithm [28] is proposed to identify the
parameters, which shortens the learning time and ensures the inter-class distance. Similar
to each single DALM model, in the kth sub-DALM, the conditional probability distribution
of the latent variable zt,k and the observed variable xt,k is shown in Equation (3).

h0,k ∼ N(µπ,k, Σπ,k)
zt,k
∣∣ht−1,k ∼ N(Akht−1,k, Σz,k)

xt,k
∣∣zt,k ∼ N(Bkzt,k, Σx,k)

(3)

The parameters that the model needs to identify are Θ =
{

Ak, Bk,µπ ,k, Σπ,k, Σz,k, Σx,k,
P(k)|k = 1, 2, · · · , K}, where Ak = [A1,k, A2,k, · · · , AL,k]. The goal of identification is to
obtain the optimal parameter set of the model by giving the observation data matrix data
set x1:T = [x1, x2, · · · , xT ]

T ∈ RT×v, where T is the number of samples in the training
data set. The optimal solution of the model parameters is maximized by solving the
log-likelihood function of the model, as shown in Equation (4).

Θopt = argmax
Θ

L(Θ) = arg max
Θ

In(x1:T |Θ) (4)

In the E step of the EM algorithm, the objective cost function is first constructed, that is,
the mathematical expectation of the conditional posterior probability P(z1−L:T , k

∣∣∣x1:T , Θold)

of the complete log-likelihood function InP(x1:T , z1−L:T |Θ) about the latent variable is
calculated, as shown in Equation (5).

Q
(

Θ
∣∣∣Θold

)
= E(L(Θ)) = E

{
InP

(
x1:T

∣∣∣Θold
)}

=
K
∑

k=1
EP(z1−L:T ,k|x1:T ,Θold)

[
In
(

x1:T , z1−L:T , k
∣∣∣Θold

)]
=

K
∑

k=1
P(k|x1:T)EP(z1−L:T |x1:T ,k,Θold)

[
In
(

x1:T , z1−L:T , k
∣∣∣Θold

)] . (5)
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From the Bayesian topology knowledge, combined with the DALM topology, Equation (5)
is expanded.

InP(x1:T , z1−L:T , k) = In{P(k)P(x1:T , z1−L:T |k)}

= InP(k) + InP(h0,k|k) +
T
∑

t=1

{
InP(zt,k|ht−1,k) + InP(xt

∣∣zt,k, k)
} . (6)

Among them, P(k) is the factor coefficient and obeys
K
∑

k=1
P(k) = 1. For the sake of writing

convenience, this section will denote the conditional expectation Ez1−L:T,k |x1:T ,k,Θold
{

f (xt, zt,k)
}

on the latent variable as EZ
{

f (xt, zt,k)
}

. The mathematical analysis formula of the objective
cost function expansion is obtained as Equation (7).

Q
(

Θ|Θold
)
=

K
∑

k=1
P(k|x1:T)× InP(k)

−
K
∑

k=1

P(k|x1:T)
2 ×

{
In
∣∣Σπ,k

∣∣+ EZ

(
h0,kΣ−1

π,khT
0,k

)
− 2EZ

(
h0,k

)
Σ−1

π,kµπ,k + µT
π,kΣ−1

π,kµπ,k

}
−

T
∑

t=1

K
∑

k=1

P(k|xt)
2 ×

 In
∣∣Σz,k

∣∣+ EZ

(
zT

t,kΣ−1
z,k zt,k

)
− 2EZ

(
ht−1,kAT

k Σ−1
z,k zt,k

)
+EZ

(
ht−1,kAT

k Σ−1
z,k AkhT

t−1,k

) 
−

T
∑

t=1

K
∑

k=1

P(k|xt)
2 ×

 In
∣∣∣Σx,k

∣∣∣+xT
t Σ−1

x,k xt − 2EZ

(
zT

t,k

)
BT

k Σ−1
x,k xt,k

+EZ

(
zT

t,kBT
k Σ−1

x,k Bkzt,k

) + cons

. (7)

In the E step of the EM algorithm, given the iterative parameter Θold of the previous
step, the mathematical expectation of the conditional probability of two types of latent vari-
ables is obtained. One is the conditional expectation of the latent variable, namely EZ(zt,k),

Ez

(
zt,kzT

t,k

)
, and EZ

(
zt,kzT

t−i,k

)
, where t = 0, 1, · · · , T, i = 1, 2, · · · , L. The derivation pro-

cess is similar to the E-step of the traditional DALM model, and will not be introduced due
to limited space. The final result is given as Equation (8).



EZ
(
zt,k
)
= E

(
zt,k

∣∣∣x1:T , Θold
)
= m1

t,k

EZ

(
zt,kzT

t,k

)
= E

(
zt,kzT

t,k

∣∣∣x1:T , Θold
)
= M11

t,k + m1
t,k

(
m1

t,k

)T

EZ

(
zt,kzT

t−i,k

)
= E

(
zt,kzT

t−i,k

∣∣∣x1:T , Θold
)
= M1(i+1)

t,k + m1
t,k

(
m(i+1)

t,k

)T

EZ

(
zt,kzT

t−L,k

)
= E

(
zt,kzT

t−L,k

∣∣∣x1:T , Θold
)
=

L
∑

i=1
Ai,k

(
MiL

t−1,k + mi
t−1,k

(
mL

t−1,k

)T
) . (8)

Among them, mt,k and Mt,k are the mean and variance of the posterior probability
distribution of the kth sub-modal latent variable ht,k with respect to the observation se-
quence x1:T , respectively. Another type of latent variable is the posterior probability P(k|xt)
of factor k, where t = 0, 1, · · · , T. The mathematical solution is shown in Equation (9).

P(k|xt) =
P(xt|k)P(k)

P(xt)
. (9)

Among them, P(k) is the factor coefficient of the previous iteration. In the M step of
the EM algorithm, the full log-likelihood expectation function Q

(
Θ
∣∣∣Θold

)
is maximized

by using the latent variable expectation and the posterior probability of the factor obtained
in the E step, and a new iterative parameter set Θnew is obtained. First, we maximize the
objective cost function Q

(
Θ
∣∣∣Θold

)
, as shown in Equation (10).

Θnew = argmax
Θ

Q(Θ|Θold ). (10)
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Let the cost function Q
(

Θ|Θold
)

be derived separately from the model parameters
and equal to zero, as shown in Equation (11).

∂Q(Θ|Θold )

∂Θ
= 0. (11)

The detailed update process is shown as the following.

∂{Q(Θ|Θold )}
∂µπ,k

= 0⇒
∂
{

2EZ(h0,k)Σ−1
π,kµπ,k+µT

π,kΣ−1
π,kµπ,k

}
∂µπ,k

= 0

⇒ −2Σ−1
π,kEZ(h0,k) + 2Σ−1

π,kµπ,k = 0⇒ µnew
π,k = Ez(h0,k)

, (12)

∂{Q(Θ|Θold )}
∂Σπ,k

= 0

⇒
∂
{

In|Σπ,k|+EZ

(
h0,kΣ−1

π,khT
0,k

)
−2EZ(h0,k)Σ−1

π,kµπ,k+µT
π,kΣ−1

π,kµπ,k

}
∂Σπ,k

= 0

⇒ Σ−1
π,k − Σ−1

π,kEz

(
h0,khT

0,k

)
Σ−1

π,k + Σ−1
π,kEz(h0,k)E

(
hT

0,k

)
Σ−1

π,k = 0

⇒ Σnew
π,k = Ez

(
h0,khT

0,k

)
− Ez(h0,k)E

(
hT

0,k

)
, (13)

∂{Q(Θ|Θold )}
∂Ak

= 0

⇒ −
T
∑

t=1
P(k|xt)Σ

−1
z,k Ez

(
zt,khT

t−1,k

)
+

T
∑

t=1
P(k|xt)Σ

−1
z,k AkEz

(
ht−1,khT

t−1,k

)
= 0

⇒ Anew
k =

T
∑

t=1
P(k|xt)Ez

(
zt,khT

t−1,k

)[ T
∑

t=1
P(k|xt)Ez

(
ht−1,khT

t−1,k

)]−1
, (14)

∂{Q(Θ|Θold )}
∂Bk

= 0

⇒
∂

{
T
∑

t=1
P(k|xt)

[
−2EZ(zT

t,k)BT
k Σ−1

x,k xt,k+EZ

(
zT

t,kBT
k Σ−1

x,k Bkzt,k

)]}
∂Bk

= 0

⇒ −
T
∑

t=1
P(k|xt)Σ

−1
x,k xt,kEz

(
zT

t,k

)
+

T
∑

t=1
P(k|xt)Σ

−1
x,k BkEz

(
zi,kzT

t,k

)
= 0

⇒ Bnew
k =

T
∑

t=1
P(k|xt)xtEz

(
zT

t,k

)[ T
∑

t=1
P(k|xt)Ez

(
zi,kzT

t,k

)]−1

, (15)

∂{Q(Θ|Θold )}
∂Σz,k

= 0

⇒
T
∑

t=1
P(k|xt)

 Σ−1
z,k − Σ−1

z,k Ez

(
zt,kzT

t,k

)
+ Σ−1

z,k AkEz

(
ht−1,kzT

t,k

)
AT

k Σ−1
z,k

+Σ−1
z,k AkEz

(
zt,kzT

t,k

)
AT

k Σ−1
z,k

 = 0

⇒ Σnew
z,k =

T
∑

t=1
P(k|xt)

[
Ez(zt,kzT

t,k)−Anew
k Ez(ht−1,kzT

t,k)(A
new
k )T+Anew

k Ez(zt,kzT
t,k)(Anew

k )
T]

T
∑

t=1
P(k|xt)

, (16)

∂{Q(Θ|Θold )}
∂Σz,k

= 0

⇒
T
∑

t=1
P(k|xt)

[
Σ−1

x,k − Σ−1
x,k xtxT

t Σ−1
x,k + Σ−1

x,k BkEz(ht,k)xT
t Σ−1

x,k
+Σ−1

z,k BkEz
(
zt,kzt,k

T)BT
k Σ−1

z,k

]
= 0

⇒ Σnew
x,k =

T
∑

t=1
P(k|xt)

[
xtxT

t −2Bnew
k Ez(ht,k)xT

t +Bnew
k Ez(zt,kzt,k

T)(Bnew
k )

T]
T
∑

t=1
P(k|xt)

. (17)

In order to update the factor coefficient P(k), since the factor involves more constraints,
an optimization objective needs to be constructed separately for it. First, all terms related
to P(k) are separated and represented as Equation (18).

g(k) =
T

∑
t=1

K

∑
k=1

P(k|xt)InP(k). (18)
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Due to the existence of constraints
K
∑

k=1
P(k) = 1, the Lagrange multiplier is introduced

and constructed into a Lagrange function form.

f (k) = g(k) + λ

(
K

∑
k=1

P(k)− 1

)
, (19)

T

∑
t=1

P(k|xt) + λP(k) = 0⇒ P(k) = −

T
∑

t=1
P(k|xt)

λ
. (20)

We accumulate the k terms (for k) on both sides of Equations (19) and (20).

K
∑

k=1
P(k) = −

T
∑

t=1

K
∑

k=1
P(k|xt)

λ

K
∑

k=1
P(k|xt) = 1

K
∑

k=1
P(k) = 1


⇒ λ = −T. (21)

We substitute the result back into Equation (20) to obtain the result of the factor coefficient.

P(k) =
1
T

T

∑
t=1

P(k|xt) . (22)

We update the obtained parameter set Θnew =
{

Anew
k , Bnew

k ,µnew
π,k , Σnew

π,k , Σnew
z,k , Σnew

x,k , P(k)
|k = 1, 2, · · · , K}, and iterate E and M steps to make the parameter matrix converge, that is,
to satisfy Equation (23).

||Θold −Θnew|| ≤ σ. (23)

The optimal parameter set Θ is obtained. At this point, the parameter learning process
of FDALM is over. The model is generated by training the data under normal operating
conditions. Firstly, the normal data is pre-processed by normalization. Then the EM
algorithm identifies the parameters. Finally, we obtain the trained FDALM. The flow chart
of model training can be seen in Figure 4.
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4. FDALM-Based Multimodal Process Monitoring Method

In order to avoid the segmentation of the process data leading to the destruction of the
dynamic information in the sequence, it is necessary to make full use of the output of each
modal factor in FDALM. However, the output of each factor mode is a representation of
probability. If the construction statistics of each sub-mode are monitored separately, local
false positives are prone to occur, and the overall monitoring effect cannot be achieved.
Therefore, this chapter focuses on the use of Bayesian inference technology to fuse different
factor modalities into the posterior failure probability of the final sample, so as to monitor
the fluctuation of the whole process state in real time.

For a trained FDALM, the latent variable is the core force driving the operation of the
system. Therefore, this variable contains important key state information of the modality.
Although the latent variables of each sub-mode can establish the corresponding T2

t,k statistic.

T2
t,k = E(zt

q|x1:t
q)Tcov(Zk)

−1E(zt
q|x1:t

q). (24)

Zk is the set of latent variables in the kth mode in the training set, and cov(Zk) is the
covariance of Zk. However, different sub-models have their own control limits, and it is
difficult to achieve the overall monitoring effect. In order to make full use of the sample
posterior latent variable output in each mode, the monitoring results of each sub-mode are
fused into the sample posterior failure probability by means of Bayesian inference method.
First, we construct the probability of failure of the observation sample in the kth mode.

Pk
T2

(
F
∣∣∣xq

t

)
=

Pk
T2(xq

t |F)Pk
T2 (F)

Pk
T2(xq

t )

Pk
T2

(
xq

t

)
= Pk

T2

(
xq

t

∣∣∣N)Pk
T2(N) + Pk

T2

(
xq

t

∣∣∣F)Pk
T2(F)

. (25)

Among them, Pk
T2(F) and Pk

T2(N) represent the prior probability of abnormal and
normal process data, which can be skillfully combined with the significance level α.

Pk
T2(F) = 1− α

Pk
T2(N) = α

. (26)

Among them, α is the significance level, and the actual size is the balance between false
positives and false negatives. In order to obtain the failure probability Pk

T2

(
F
∣∣∣xq

t

)
of a new

data sample, it is necessary to construct the conditional probability of the observed samples
under normal and abnormal conditions. In this section, they are defined as Equation (27).

Pk
T2(xt|N) = exp

{
− T2

t,k
T2

lim,k

}
Pk

T2(xt|F) = exp
{
− T2

lim,k
T2

t,k

} . (27)

Among them, T2
lim,k is the control limit of each mode, and its value is uniquely de-

termined by the degree of freedom d of the sub-model and the significance level α; T2
t,k is

the T2 statistic of the kth sub-mode, and the calculation method is shown in Equation (24).
After the probability of failure of each local model is determined in the observation data,
Bayesian inference technology is used to further fuse the probability of failure of the sample
in each sub-mode to obtain the posterior failure probability T2

t, f inal of the sample.

T2
t, f inal =

K

∑
k=1

P(k|xt)Pk
T2(F|xt). (28)

By comparing the posterior failure probability with the significance level α, it is judged
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whether the system fails. The judgment logic is shown in Equation (29).{
T2

t, f inal ≤ α, normal
T2

t, f inal > α, abnormal
. (29)

The flow chart of process data modeling and monitoring is shown in Figure 4. Since
the detection by constructing chi-square statistics for a single mode will result in a local false
alarm, to improve the overall monitoring effect, this paper calculates the posterior failure
probability of the sample in a certain mode. We then obtain the posterior failure probability
of the sample by using Bayesian fusion methods. If the actual solitary probability of the
sample exceeds the threshold, the monitoring is abnormal, and the control threshold is the
average value between the failure rate and false alarm rate, which is generally taken as
0.05, i.e., tolerating 5% of false alarms.

Further, the main steps of the FDALM-based multimodal process monitoring method
are shown in Algorithm 1:

Algorithm 1: Steps of an FDALM-based Process Monitoring Method

Input: In order to train the model parameters, the observation variables are selected from the
process variables and quality variables, and the sampling sequence of T consecutive moments is
selected as the training data set, denoted as x1:T ; in order to test the monitoring performance, the
sampling sequence of N consecutive moments is selected online as the Test data set, denoted as
x1:N .
Step 1: The training and testing data sets {x1:T , x1:N} are preprocessed by a normalization method.
Step 2: Use the dynamic order identification algorithm and clustering algorithm to identify the
order coefficient L and factor K of the model, determine the structure of FDALM, and initialize the
model parameters Θold.
Step 3: Identification of FDALM Parameters Using Improved EM Algorithm.
Step 4: Determine the control threshold T2

k,lim and significance level α of the sub-model, calculate
the latent variable distribution of each observation sample under each sub-model online, and use
the Bayesian inference technology to fuse the output of each sub-mode into the sample posterior
failure probability T2

t, f inal .

Step 5: Compare T2
t, f inal with the significance level α to judge the state of the process.

Output: Output system operating status.

5. Application Research on the Preparation Process of Ternary Cathode Material
5.1. Model Building

To establish a reasonable mathematical model for the preparation process data, it
is necessary to select the observed variables from the system process variables as the
model input. Since the distribution of temperature field during sintering will have a
significant impact on the performance of battery material, the specific manifestations are:
over-burning will cause changes in material morphology and internal structure, and under-
burning will not provide sufficient activation energy for chemical reactions. By analyzing
the mechanism of the sintering process, the decomposition reaction in the heating stage
is an endothermic process that requires sufficient and suitable heat. Under-burning will
lead to low water removal efficiency and affect subsequent oxidation reactions; over-
burning will lead to energy waste and increase production costs. Therefore, a reasonable
temperature distribution is very important for the sintering process. By analyzing the actual
production process data, the temperature sensors installed on the upper and lower sides of
each temperature zone can indirectly reflect the temperature distribution of the sintering
temperature zone. Reasonable temperature field distribution will help the production of
high-quality products. At the same time, some process abnormal states are included in the
product indicators. For example, the abnormality of the outlet replacement chamber will
lead to an increase in the residual lithium content. In order to comprehensively monitor the
common faults in the process, the temperature variables and residual lithium content of the
entire temperature area are selected as the observation variables of the monitoring model.
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In the actual production process, the main temperature anomalies are abnormal
temperature increase/decrease and shutdown failures. Accidents such as the aging of
the thermocouple and the fracture of the heating rod during the production process will
cause the sintering temperature to rise abnormally. An abnormality such as the excessive
current of the thermocouple and the large exhaust port can directly lead to an abnormal
decrease of the temperature. The shutdown failure often occurs in the circuit short circuit,
transmission jams, and other abnormalities. In order to verify the monitoring effect of the
model under different faults, a total of 2200 consecutive time data were selected, and the
sampling period was 30 min. The ternary cathode material roller kiln is generally stable
during manufacturing and the temperature does not change much, so the sampling time
in the plant is generally set as 30 min. All the data in this paper come from the industrial
platform carried out in our laboratory. To simulate the continuity of the production process,
all our faults are generated continuously, so the information at the time of continuous
switching is retained to facilitate the ability of the model to model dynamically. It is not
possible to put these different data segments together, because this would destroy the
useful information between sequences, and it would be difficult to capture these dynamic
changes when modeling dynamically, resulting in inaccurate modeling or a false alarm.
The sequence data are collected under the same batch of battery material produced in the
factory, and include the common process failures in the production process. In addition, the
normalized mean and variance of the normalized data are used to normalize the training
data and project their state distributions into a uniform space to facilitate the distinction
between normal and abnormal states. The detailed physical description of this batch of
data is shown in Table 1.

Table 1. Process data descriptions.

Type Data Description Sampling Number

Normal This interval is normal data 1st−1000th

Fault 1 1001st–1200th is normal data; 1201st–1400th is the abnormal
temperature increase in the third temperature zone 1001st−1400th

Fault 2 1401st–1600th is normal data; 1601st–1800th is the abnormal
temperature drop in the third temperature zone 1401st−1800th

Fault 3 1801st–2000th is normal data; 2001st–2200th is shutdown fault 1801st−2200th

The product quality of the ternary cathode material is particularly sensitive to the
sintering temperature. From a macro perspective, it is affected by the fluctuation of battery
raw material and ambient temperature. The environment temperature in summer is
30 ◦C and 10 ◦C in winter. In the actual manufacturing, to overcome fluctuation in the
environment temperature, it is necessary to adjust the operating parameters, thus changing
the optimal sintering system, so that there are two optimal sintering systems in different
environments temperature. The process data is collected for multimodal characteristics.
The process data is clustered by an improved affine propagation clustering algorithm [29],
which can adaptively determine the optimal parameters of the algorithm, thereby obtaining
the optimal factor K of FDALM. The data in the normal data interval, that is, the 1st–1000th
data, is used to classify the data set. The result shows that the data is divided into two
categories. In order to visualize the division effect, the data is subjected to PCA dimension
reduction, and the contribution is 99%. The first two-dimensional variables of the data are
visualized, as shown in Figure 5.

It can be seen from the visualization result that the classification algorithm divides
the process data into two categories. The results fully demonstrate that the data obeys
multiple distributions, so the assumption of a single distribution does not hold. Accurate
monitoring of this process requires further consideration of the multimodal nature of the
process data.



Sensors 2022, 22, 7203 13 of 18

Sensors 2022, 22, 7203 14 of 20 
 

 

the normalized mean and variance of the normalized data are used to normalize the train-
ing data and project their state distributions into a uniform space to facilitate the distinc-
tion between normal and abnormal states. The detailed physical description of this batch 
of data is shown in Table 1. 

Table 1. Process data descriptions. 

Type Data Description Sampling Number 
Normal This interval is normal data 1st−1000th 

Fault 1 
1001st–1200th is normal data; 1201st–1400th is 
the abnormal temperature increase in the third 
temperature zone 

1001st−1400th 

Fault 2 
1401st–1600th is normal data; 1601st–1800th is 
the abnormal temperature drop in the third 
temperature zone 

1401st−1800th 

Fault 3 1801st–2000th is normal data; 2001st–2200th is 
shutdown fault 

1801st−2200th 

The product quality of the ternary cathode material is particularly sensitive to the 
sintering temperature. From a macro perspective, it is affected by the fluctuation of battery 
raw material and ambient temperature. The environment temperature in summer is 30 °C 
and 10 °C in winter. In the actual manufacturing, to overcome fluctuation in the environ-
ment temperature, it is necessary to adjust the operating parameters, thus changing the 
optimal sintering system, so that there are two optimal sintering systems in different en-
vironments temperature. The process data is collected for multimodal characteristics. The 
process data is clustered by an improved affine propagation clustering algorithm [29], 
which can adaptively determine the optimal parameters of the algorithm, thereby obtain-
ing the optimal factor K of FDALM. The data in the normal data interval, that is, the 1st–
1000th data, is used to classify the data set. The result shows that the data is divided into 
two categories. In order to visualize the division effect, the data is subjected to PCA di-
mension reduction, and the contribution is 99%. The first two-dimensional variables of 
the data are visualized, as shown in Figure 5. 

 
Figure 5. Flow chart of the process monitoring method based on FDALM. 

Start

Test DatasetTraining Dataset

Data 
Preprocessing

FDALM 
Modeling

Calculate control 
limits       .

End

Bayesian Fusion 
Submodal 

Features         .  

Abnormal Normal

Data 
Preprocessing

Offine Modeling Online Monitoring

Compute The 
Submodal 

Eigendistribution

2
limT

Yes No

2
,t finalT

2
, ?t finalT α>

Mean
Variance

Parameters optΘ

Figure 5. Flow chart of the process monitoring method based on FDALM.

In order to establish a factor dynamic autoregressive latent variable model, the model
structure parameters that need to be determined include order coefficient L and factor K.
Among them, the order coefficient L is identified by the trend similarity algorithm L = 3;
the physical interpretation of the factor K is the number of types of data division, which is
obtained by the improved affine propagation clustering algorithm, K = 2. In order to verify
the rationality of factor selection, this section designs experiments to establish FDALM
under different factor K and compare its monitoring effect. The normal sample interval
1st~1200th is selected as the training data set, and the fault 1 data set is used to test the
monitoring effect of the model. In order to evaluate the actual monitoring effect of the
monitoring method, two statistics, False Alarm Rate (FAR) and Fault Detection Rate (FDR),
are used.

FAR = NFAR
Nn

FDR = NFDR
N f

.
(30)

Among them, NFAR represents the number of normal samples misclassified by the
monitored method, and Nn is the number of all normal samples. NFDR is the number of
fault samples correctly detected by the monitoring method, and N f is the number of all
fault samples. Table 2 shows the monitoring effect of the method proposed in this section
under different factor K.

Table 2. FDALM monitoring results for different K.

K 1 2 3

FAR 0.150 0.020 0.055
FDR 0.945 0.965 0.940

Table 2 shows the monitoring results indicators of FDALM under the factor K of (1, 2,
3). It can be seen that when factor K = 2, the method can obtain better monitoring results by
combining the monitoring results and training costs. At the same time, Figure 6 shows the
monitoring diagram of the monitoring method under different factors. It can be seen that
choosing an appropriate K is helpful to smooth the monitoring results, and the monitoring
results also verify the effectiveness of the classification algorithm. Finally, the factor K is
selected as 2.
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5.2. Process Monitoring

In order to compare the monitoring effect of the proposed monitoring method (FDALM)
on dynamic multimode processes, two other monitoring methods are established for com-
parison in this section, which are representatives of static models: Probabilistic Partial Least
Squares Regression (PPLSR) [30], and the representative of dynamic models: dynamic
autoregressive latent variable model (DALM). Table 3 presents the FAR and FDR indicators
of the monitoring results of the three monitoring methods in the data sets with different
fault types.

Table 3. Monitoring results for different faults.

Type
PPLSR DALM FDALM

FAR FDR FAR FDR FAR FDR

Fault 1 0.240 0.120 0.120 0.925 0.020 0.965
Fault 2 0.100 0.350 0.090 0.970 0.045 0.985
Fault 3 0.315 0.980 0.085 1.000 0.040 1.000

From the final monitoring effect, FDALM is better than the DALM method, and DALM
is better than the PPLSR method. Considering the structure of the model, the PPLSR model,
as a static modeling method, only performs effective dimensionality reduction on the data
set without considering the changes in the data sequence. Although DALM considers the
dynamic information between sequences, it is difficult to adapt to monitoring of multimode
processes; the FDALM model considers the dynamics and multimode characteristics of
process data as a whole, so it is more comprehensive. In order to more intuitively show the
monitoring performance at different times, Figures 7–10 further present the monitoring
results of the three models under different faults.

Compared with the traditional PPLSR, FDALM introduces both dynamic and mul-
timodal information of the process data, which can better describe the dynamic changes
and modal fluctuations of the sintering process. Therefore, the characterization of the
process is more comprehensive. In addition, the advantages of FDLAM are also reflected
in the modeling and fusion technology. First, the establishment of FDALM for process
data can more accurately describe the dynamic and multimode characteristics of the pro-
cess; it is prone to local false positives, and, finally, modeling sequence data does not lose
inter-sequence information.
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Figure 9. Monitoring results of fault 2.

Compared with the single DALM monitoring method, the introduction of factor
technology makes the modeling method suitable for multimode processes, which further
improves the monitoring effect. The intuitive performance is that the parameters of the
model in different modes of the process are different. Through factor weighting and
Bayesian inference technology, the models established in different sub-modes can not
only capture the modal information, but also establish local information for the fusion
of the overall failure probability, so it can better follow the system dynamics and modal
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fluctuations. Compared with DALM, the overall fault false alarm rate and detection rate of
the multimodal feature monitoring method are improved by 48.2% and 1.9%, respectively.
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To sum up, the multimodal process monitoring method based on FDALM simul-
taneously solves the problems of dynamics, randomness, and multimodality of process
data in the battery sintering process. It has a strong ability to describe complex produc-
tion processes, and the monitoring results can play a better role in predicting the actual
production process.

6. Conclusions

In this paper, a multimode process monitoring method based on FDALM was pro-
posed. Firstly, in the technology of dynamic autoregressive latent variable model, with
the help of the factor modeling method, DALM suitable for single mode was extended to
multimode form, so that the model can consider the dynamic and multimode characteristics
of process data at the same time. We introduced the use of the EM algorithm to learn the
model parameters. Next, the failure probability of the sample under each sub-model was
fused into the posterior failure probability of the sample by means of Bayesian inference
technology to realize the process output of each factor model. Finally, the simulation results
compared with other models show that the proposed monitoring method was able to track
the modal fluctuations of the process.

An important issue in industrial process monitoring applications is the problem of
multiple sampling rates. The method proposed in this paper assumes that the input and
output data have the same sampling rate. If the sampling rate is inconsistent, some data
is removed by down sampling. However, a more worthwhile approach is to combine
semi-supervised learning methods, which can improve data utilization by training data on
imbalanced input and output data. Another practical problem is the nonlinear relationships
between process data, which are common in industrial processes. How to effectively deal
with this issue deserves further research in the near future to make monitoring methods
more applicable.
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