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Abstract: A channel modeling method and deep-learning-based symbol decision method are pro-
posed to improve the performance of a visual MIMO system for communication between a variable-
color LED array and camera. Although image processing algorithms using color clustering are
available to correct distorted color information in a channel, color-similarity-based approaches are
limited by real-world distortions; to overcome such limitations, symbol decision is defined as a
multiclass classification problem. Further, to learn a robust classifier against channel distortion, a
deep neural network learning technique is applied to adaptively determine symbols from channel
distortion. The network designed herein comprises the channel identification and symbol decision
modules; the channel identification module extracts a channel identification vector for symbol deter-
mination from an input image using a two-dimensional deep convolutional neural network (CNN);
the symbol decision module then generates a feature map by combining the channel identification
vector and information on adjacent symbols to determine the symbol via learning correlations be-
tween adjacent symbols using a one-dimensional CNN. The two modules are connected together and
learned simultaneously in an end-to-end manner. We also propose a new channel modeling method
that intuitively reflects real-world distortion factors rather than the conventional additive white
Gaussian noise channel to efficiently train deep-learning networks. Lastly, in the proposed channel
distortion environment, the proposed method shows performance improvement by an average of
about 41.8% (up to about 54.8%) compared to the existing Euclidean distance method, and about
6.3% (up to about 9.2%) on average compared to the SVM method.

Keywords: adaptive symbol decision; channel modeling; deep learning; visual MIMO; generalized
color modulation (GCM)

1. Introduction

Visible light communication (VLC) is a wireless technology that transmits information
by modulating data through the fast on–off switching of a visible light source. As the infor-
mation and communication technology (ICT) industry’s demand for high-speed wireless
access increases with an increase in data, the competition for occupying low-frequency
bands increased, and many studies on VLC were performed to address this problem [1–4].
In addition, high-power, light-emitting diodes (LEDs) have developed significantly, en-
abling high-data-rate VLC networks. As a result, VLC has been highlighted as a new
paradigm of wireless communication for innovations of the future.

Since most of the currently commercialized VLC-based services are modeled on lighting
infrastructure inside buildings, it is clear that there are limits to realizing a hyperconnected
internet, which is the ultimate goal of the Internet of Things (IoT) technology [5,6]. For VLC-
based IoT technologies to be applied in various fields, such as the automobile, entertainment,
and advertising industries, more advanced forms of VLC with improved flexibility and
scalability are needed. To overcome the limitations of existing VLC technologies, the general-
ized color modulation (GCM) technique that secures the flexibility of LED colors and visual
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multiple-input multiple-output (visual-MIMO) technology that suggests infrastructure scal-
ability through communication between an LED array and camera were developed [7–13].
In the visual MIMO concept, multiple transmit elements of a light-emitting array (LEA) are
used as transmitters to communicate to the individual pixel elements of the camera that act
as multiple receive elements to create the visual MIMO channel [11].

Color-independent visual MIMO technology, which combines the GCM method with
visual MIMO technology, is expected to be applicable in more diverse fields because it
enables continuous communication regardless of changes to the color or brightness of the
LEDs during communication [14–16]. However, analyzing a signal received through a
camera image sensor is not an easy task in the real world; this is because currently available
commercial image sensors are very sensitive, and even small changes in external factors
such as natural/ambient light, or internal factors such as exposure and focus of the camera,
can greatly distort the transmission signals.

In previous studies based on the GCM technique, the Euclidean distance method that
calculates the color similarity between the transmitted and received symbols was mainly
used to determine the received symbol [10]. The Euclidean distance method was most
often used in early studies of the GCM technique, where a single photodiode (PD) was
used as the receiver; on the other hand, in the color-independent visual MIMO system,
wherein an image sensor is used as the receiver, a color clustering algorithm is applied by
taking advantage of the multiple inputs that somewhat guarantee the performance of the
Euclidean distance method [17,18]. However, the color clustering algorithm is a classical
image processing algorithm that is too simple compared to modern image recognition and
computer vision solutions that combine numerous machine-learning and deep-learning
algorithms [19]. As the position of the transmitted symbol for calculating the color similarity
is fixed, the Euclidean-distance-based symbol decision method cannot respond adaptively
when the position of the received symbol deviates greatly from that of the transmitted
symbol in situations where the channel distortions change.

Although machine-learning (deep-learning) algorithms in the image processing field
have recently developed significantly, classical methods (e.g., color clustering, Euclidean
distance) have been mainly used for visual MIMO systems that have to determine color
symbols. These methods not only have poor performance, but also do not flexibly respond
to channel distortion in various environments. For this reason, in order to improve the
SER performance of existing symbol decision methods in visual MIMO, in this study, we
propose a method to adaptively determine symbols without additional information, using
a deep-learning neural network through the output information of the image sensor, which
is the receiver of the visual MIMO system. The whole network to be learned is divided into
two modules. The first module is a channel identification module (CIM) that identifies the
channel environment from the input image, and the second module is a symbol decision
module (SDM) that classifies each symbol using information from its adjacent symbols.
These two modules are combined into a single network and learned in an end-to-end
manner. In addition, this study presents a new channel modeling method that intuitively
reflects the real-world channel distortion characteristics, so that the proposed deep-learning
neural network can learn robustly against various real-world channel distortions.

The remainder of this paper is organized as follows. Section 2 presents the proposed
deep-learning neural network architecture designed for the adaptive SDM and explains the
network training. Section 3 presents the limitations of the existing channel modeling meth-
ods and describes the approach that reflects the real-world distortions when performing
simulations and experiments. Section 4 compares the symbol error rate (SER) performances
of the proposed and existing methods and examines the experimental results. Finally,
Section 5 presents the conclusions of this work.
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2. Deep-Learning Neural Networks for Adaptive Symbol Decision
2.1. Deep-Learning Neural Network Architecture

Figure 1 shows the overall structure of the deep-learning neural network designed in
this study; the network uses the CIM to predict the channel environment from the input
image, and the SDM classifies these symbols by learning the correlations between adjacent
symbols. Both modules are designed based on the convolutional neural network (CNN)
algorithm, which has been mainly used for object recognition, semantic segmentation, and
image reconstruction [20–25]. These two modules are combined into a single network and
are learned in an end-to-end manner.
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Figure 1. Conceptual diagram of the deep-learning neural network in the proposed method.

In the symbol feature map of Figure 1, the bold represents the target symbol (color) to
be determined and the different colors mean the different channel identification vectors
from CIM.

2.2. Channel Identification Module

Figure 2 shows the detailed structure of the CIM; the CIM detects the LED array
from the image acquired through the image sensor and uses only this image as the input.
In a previous study on color-independent visual MIMO systems [26], a technique was
proposed for detecting the LED array region in an image, and it was proven that robust
and continuous tracking of the LED array is possible through the Kalman filter algorithm.

CIM does not analyze the temporal information of continuous images on the receiver
side to identify the channel state, but rather makes use of the spatial information of images
obtained through LED array detection at a specific time. The detailed procedure is as follows.
The detected LED array region is down-sampled through a two-dimensional CNN, and the
compressed information is represented as a vector. In the CIM, the compressed information
(feature maps) is transformed to a flattened one-dimensional vector and transferred to the
hidden layer through the fully connected layer. This is different from that delivered to
the decoder through a fully connected neural network in existing CNN encoder–decoder
frameworks. Finally, information is extracted as a short-length implied vector at the output
layer, which will henceforth be referred to as the channel identification vector.

The CIM is learned by an implicit method, so that the extracted channel identification
vector becomes a feature for minimizing the loss function value of the entire deep-learning
model. The final output predicted by the deep-learning neural network in this study
is a multi-symbol index, and the approach here is to adaptively solve the multi-symbol
classification problem under various channel environments. That is, the CIM is trained to
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extract additional features that enable classification of multiple symbols robustly based on
changes in the channel environment.
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2.3. Symbol Decision Module

Figure 3 shows the detailed structure of the SDM; the SDM determines the symbol for
each LED of the input LED array through signal analysis. First, the channel information of
the RGB, HSV, and CIE 1931 xyY models for the corresponding LED position is extracted
from the image sensor and combined with the channel identification vector to generate its
symbol representation. In the color-independent visual MIMO system, since the LED array
is received simultaneously in a single frame from the image sensor, the spatial correlations
between adjacent symbols can be important feature information. Therefore, the information
of the inter-symbol area is used to decide each symbol, as shown in Figure 4.
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Figure 4. Adjacent symbol area used for symbol decision.

The purpose of the Euclidean distance method, which is mainly used as the symbol
decision method in existing color-independent visual MIMO systems, is to distinguish the
similarity (or difference) between the color of the symbol sent from the transmitter and
that of the symbol received at the receiver; thus, the symbol decision method proposed
herein determines the symbol with the highest probability by learning its correlations with
the adjacent symbols, without calculating the similarities between the two colors in the
transmission/reception process.

At the boundary of the LED array, the padding method shown in Figure 5 is used.
Although zero padding that fills with zero values or copying the values at the boundary
can be used, the degree of distortion received by the LED array from the channel in this
study is learned through the symbol correlation information within the LED array. To allow
this, the adjacent symbol area is determined by copying the symbol information from the
opposite side of the boundary.
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Figure 5. Adjacent symbol area at the LED array boundary.

Finally, the feature map required to learn the SDM is formed by combining the repre-
sentations (RGB, HSV, and CIE 1931 xyY model channel values with channel identification
vector) of the symbols included in the adjacent symbol area. Figure 6 shows the symbol
feature map generated by the proposed method. The bold part in the figure indicates a
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symbol to be determined and the corresponding channel information of the RGB, HSV, and
CIE 1931 xyY models.
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The symbol feature map is used as the input to a one-dimensional CNN based on each
feature channel. The network in Figure 3 is a CNN with N filters of size 5 × 12 symbol
feature maps and a kernel size of 3. When the symbol feature map passes through one
filter, a vector of length 3 is generated; when four filters are used, a vector of length 12
is obtained at the output. Unlike the CNN of the CIM, the CNN of the SDM proposed
in this study is not designed as a deep CNN. In [27], the validity of using each channel
of the RGB, HSV, and CIE 1931 xyY models as symbol decision features is demonstrated
through the SER performance comparison experiment according to the color model. In
the experiments, the three color models show almost similar SER performances. In other
words, a deep CNN structure is not required because the symbol feature map generated
through the adjacent symbol domain can be considered as already feature engineered with
domain expertise from the color-independent visual MIMO system and color modeling
perspective. Instead, N one-dimensional convolutional filters are applied with different
kernel sizes and concatenated to finally extract a one-dimensional vector. The extracted
vector passes through a fully connected layer and a softmax function to produce the final
symbol. The one-dimensional CNN of the SDM is an independent network that does not
share parameters with the CNN of the CIM; however, in the process of learning the entire
deep-learning neural network by gradient descent method, it plays an important role in
connecting the error backpropagation to the CNN of the CIM. In other words, the CNNs
of the two modules are organically coupled, so that the error of the SDM is transmitted
to the CIM by error backpropagation, and the output of the CIM affects the final output
performance of the SDM. Through this process, the SDM learns to determine symbols in
various channel distortion environments.

3. Variable Channel Modeling
3.1. Limitations of Existing Channel Modeling Methods

In previous studies, simulations were performed by adding the values of random
variables of a Gaussian distribution defined according to the variance size as noise to
each channel of the RGB model [10]. Figure 7 shows the actually observed representative
distortions of the real world on the CIE 1931 xy chromaticity coordinate system [17]. In
the figure, the symbol ‘�’inside the triangle indicates the white color position in the color
space, and the symbols ‘�’ at the vertices of the triangle indicate the positions of red, green,
and blue colors. It is seen that all four types of received symbols are clustered around white.
This is a case in which the image captured by the image sensor suddenly becomes bright or
dark, and occurs when the saturation of the LED array part of the image is lowered. When
the saturation is low, as the brightness increases, the color approaches white, and as the
brightness decreases, the color approaches black.

In general, it is difficult to intuitively understand the high and low levels of brightness
and saturation in images represented by RGB models. Hence, the HSV model color space,
designed to easily analyze the brightness and saturation levels in images, is widely used [28].
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Since this study proposes an adaptive symbol decision method based on channel state
changes, a channel modeling technique that is more reasonable to the real world is needed
to effectively reflect the real-world distortions in deep learning.
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3.2. Proposed Channel Modeling Method

Figure 8 shows the real-world distortion factors that may occur during the transmis-
sion/reception process of the visual MIMO system by classifying them into stages. By
classifying these factors of distortion that occur simultaneously in the communication pro-
cess as shown in Figure 8, it is assumed that the distortion at each step can be limited as
follows. Transmission distortion is a factor where the transmitter LED emits light of the
modulated symbol color, and it is assumed that it mainly causes color distortion of the
symbol, or a distortion phenomenon in which the signal strength of the symbol is attenuated.
Next, it is assumed that ambient distortion is a factor that occurs when natural or ambient
light is strongly irradiated; this mainly causes color changes to an image and color distortion
of the symbols. Reception distortion is a factor that occurs when the camera settings, such
as exposure and gain, are adjusted. Finally, additive white Gaussian noise (AWGN) is
considered as a channel noise factor of the image sensor output in the RGB model.
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We cannot say that these limited assumed distortions reflect all the real-world distor-
tions. In reality, all of the distortions assumed above may occur at the same time during the
transmission/reception process. However, since the distortion phenomena assumed above
are the biggest challenges for successful commercialization of visual MIMO systems, it is
absolutely necessary to reflect them in the channel modeling.
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In this study, the channel state according to time that reflects the major distortion
factors is modeled as Equations (1)–(3):

Srx = Ct(Stx) (1)

where Ct(·) denotes a channel state function at time t and Stx and Srx denote the transmit
and receive symbol vectors in the color space, respectively. The symbol vector S can be
represented as Equation (2), according to the color space in which it is expressed:

S(space) =


[R, G, B]T

[H, S, V]T

[x, y, Y]T
(2)

where R, G, and B represent the three channel values of the RGB color space; H, S, and V
represent the three channel values of the HSV color space; x, y, and Y represent the three
channel values of the CIE 1931 xyY color space. The three color spaces in Equation (2) are
modeled to be mutually transformable based on the RGB model [28,29]. The formulas for
conversion between these color spaces is detailed elsewhere [28,29].

The channel state function Ct(·) can be recursively represented as in Equation (3), so that
the distortion factor is linked according to the transmission/reception flow shown in Figure 8:

Ct(Stx) = DRx

(
DLight

(
A × DTx(Stx)

))
+ nawgn (3)

where DTx(·) is a transmittance distortion function, DLight(·) is an ambient distortion
function, DRx(·) is a reception distortion function, A is a weight by transmitter attenuation
distortion, and nawgn denotes the conventional AWGN for the RGB model.

As described above, the transmission and ambient distortions cause changes in the
chromaticity of the symbol color, and the reception distortion can cause changes in the
saturation and brightness of the symbol color. Accordingly, Equation (3) can be represented
as Equation (4):

Ct(Stx) = DHSV

(
DCIE(Stx)

)
+ nawgn (4)

where nawgn can be represented as in Equations (5) and (6).

nawgn =
[
nr, ng, nb

]T (5)

nr ∼ N
(
0, σ2

r
)

, ng ∼ N
(
0, σ2

g
)

, nr ∼ N
(
0, σ2

r
)

(6)

In Equation (4), DCIE(·) is a function that distorts the chromaticity of the input signal,
and is given by Equations (7)–(9).

DCIE

(
S(CIE)

tx

)
= S(CIE)

tx + n(CIE)
xy (7)

n(CIE)
xy =

[
nx, ny, 0

]T (8)

nx ∼ N
(
0, σ2

x
)

, ny ∼ N
(
0, σ2

y
)

(9)

DHSV(·) is a function that distorts the brightness and saturation of the input signal,
and is expressed by Equations (10)–(12).

DHSV

(
S(HSV)

tx

)
= S(HSV)

tx + nHSV
xy (10)

n(HSV)
sv = [ns, nv, 0]T (11)

ns ∼ N
(
0, σ2

s
)

, nv ∼ N
(
0, σ2

v
)

(12)
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Therefore, the proposed channel modeling technique includes a total of seven variables
(nx, ny, ns, nv, nr, ng, nb), and each can be variably controlled by a Gaussian distribution with
a different variance (σ2) value. The transmission/reception process shown in Figure 8 is
only one scenario for a new channel modeling, and Equation (13) is also just one method
defined by this scenario. The key here is that more intuitive and detailed distortion variables
should be reflected in the channel model through multiple color spaces, to account for
various channel distortions. Therefore, the channel state function through the proposed
channel modeling can be represented as a comprehensive expression, in which the total
distortion is determined by the seven variables defined above.

Ct(Stx) = Stx + f (nr, ng, nb, ns, nv, nx, ny) (13)

3.3. Channel Modeling Verification

To validate the proposed channel modeling method, we attempt to reproduce the
real-world distortions by adjusting the seven variables in Equation (13). Figure 9 shows the
differences between the symbol images obtained by adjusting the exposure of the camera
in the real world. In the figure, the upper and lower rows are examples of blue and red
symbols, respectively. The dotted circle in the figure, represent the shape of a light source
(LED). With respect to a camera, exposure refers to the amount of light that enters the image
sensor through the lens; a high exposure means that a large amount of light enters the
image sensor and a low exposure indicates that a small amount of light enters the image
sensor through the lens. Exposure is determined by the camera’s aperture (F) and shutter
speed. The smaller the aperture value, the larger the opening of the aperture and amount
of light received. The lower the shutter speed, the longer the shutter is open; the longer the
image sensor is exposed to light, the greater the amount of light received.
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Figure 9. Differences in symbol images according to camera parameter adjustment. (a) When
exposure is appropriate; (b) when exposure is low; (c) when exposure is high; (d) when exposure is
appropriate; (e) when exposure is low; (f) when exposure is high.
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Table 1 shows the observed information in the images of Figure 9 through the RGB,
HSV, and CIE 1931 xyY models.

Table 1. Color space information based on camera exposure changes.

Figure 9
HSV Model RGB Model CIE 1931 Model

H (◦) S (%) V (%) R G B x y Y

Figure 9a 246 100 100 26 0 255 0.1691 0.0099 0.0120
Figure 9b 240 100 23.5 0 0 60 0.1670 0.0090 0.0004
Figure 9c 180 9.4 100 231 255 255 0.3151 0.3364 0.9656
Figure 9d 344 87.1 39.6 101 13 37 0.6353 0.2302 0.0243
Figure 9e 352 90.6 12.5 32 3 7 0.6972 0.2537 0.0019
Figure 9f 0 0 100 255 255 255 0.3333 0.3333 1.0000

When the camera exposure is changed, the channel-changing pattern of the RGB
model differs depending on the symbol color. However, in the case of the HSV and CIE
1931 models, it is seen that the channel changes have similar trends, regardless of the
symbol colors. Thus, it can be considered that the HSV and CIE 1931 models are suitable
for channel modeling. A simulation experiment of the transceiving symbols of a 4 × 4 LED
array was performed to reproduce the real-world distortions using the proposed channel
modeling method. If the seven variables of Equation (13) are set as shown in Table 2, and
the coordinates of the symbols received for 100 frames (total of 1600 symbols) are plotted
in the CIE 1931 xy chromaticity coordinate system, the results are as shown in Figure 10.

Table 2. Channel modeling parameter settings.

N
(
0, σ2) nx ny ns nv nr ng nb

σ 0.01 0.01 0.2 0.2 0.01 0.01 0.01
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Figure 10. Symbol transmission/reception simulation results from channel modeling.

In Figure 10, when the values of the variable ns are less than −0.2, the results are shown
in Figure 11; these results represent the case where the symbol saturation is lowered and it
can be considered as distortion wherein the camera exposure is largely adjusted. Therefore,
it is proven that the proposed channel modeling method correctly reflects the real-world
distortion factors and reproduces specific distortion phenomena similarly through the
parameter settings.
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4. Simulation and Experimental Results
4.1. Experimental Environment

Table 3 shows the GCM information used in the simulations. In the simulations, the
LED array of the transmitter was set to a size of 4 × 4, and the 16 symbols were arranged
and transmitted in parallel. The constellation diagram comprised four types of symbols
through 2-bit encoding modulation. Table 4 shows the color space information for the
target colors and symbols used in the simulations.

Table 3. GCM information for simulations.

Parameter Value

Color space CIE 1931
RGB model CIE RGB

Reference white E
LED array size 16 (4 × 4)

Number of constellation points 4
Intensity (Y value) 0.165

Three positions of RGB LEDs in CIE 1931 space
R: (0.735, 0.265)
G: (0.274, 0.717)
B: (0.167, 0.009)

Table 4. Target color and symbol information.

Target Color
Symbol x y R G B

x y

0.40 0.33

s1 0.50 0.33 168 96 82
s2 0.40 0.43 118 112 72
s3 0.30 0.33 97 115 117
s4 0.40 0.23 168 95 138

For the training of the proposed deep-learning neural network, as shown in Table 5,
a total of 21 random channel environments (ID 0–20) were defined using the channel
modeled in Section 3.2, and a total of 4200 frames (67,200 symbol samples) were generated
as training data via 200 frames in each environment. In addition, to increase the reliability
of the experimental results, the same amount of verification data as the training data
were generated in an environment that was slightly worse than the environment used
to generate each step of the training data. Table 5 shows the training data used in the
simulation experiment, and Table 6 shows the verification data.
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Table 5. Training data information.

Channel Distortion
Channel Environment ID

0 1 . . . 19 20

Std. of x, y noise distribution 0.0 0.02 . . . 0.38 0.40
Std. of S, V noise distribution 0.0 0.02 . . . 0.38 0.40

Std. of AWGN 0.0 0.02 . . . 0.38 0.40
Number of frames 200 200 . . . 200 200

Sample frames
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machine learning, is the supervised learning model with associated learning algorithm 
that analyzes data for classification and regression analysis. In the case of SVM as a 
comparison target, radial basis function (RBF) kernel was adopted, and the values of 
gamma and C parameters with the highest performance were used experimentally. Here, 
C is a hypermeter that is set before the training model and used to control error, and 
gamma is also a hypermeter that is set before the training model and used to give curvature 
weight of the decision boundary. As a performance comparison metric, the SER is used, 
and SER performance is calculated as the reciprocal of accuracy. 

The performances of the Euclidean distance method, which is the existing symbol 
decision method, and the SVM method, which is a representative machine-learning 
algorithm, are compared. Then, we compare the SER performance of the proposed deep-
learning-based adaptive symbol decision method with that of the SVM method, which 
shows the best performance before deep learning. Figure 12 shows the SER performance 
comparisons between the Euclidean distance and SVM, SDM, and CIM + SDM (proposed) 
methods. The vertical axis indicates the SER value, and the symbol decision performance 
increases as the SER decreases. The horizontal axis indicates the channel environment ID 
value specified in Table 6, and the larger the value, the more severe the transmission 
symbol distortion due to the channel environment. Inside the figure, “w/intersymbol” 
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4.2. SER Performance

The comparison target for the performance evaluation in this study is the Euclidean dis-
tance method used in existing color-independent visual MIMO systems [27]. Additionally,
the performance is compared with that of the support vector machine (SVM) method [30].
The SVM, which is already proven in numerous applications requiring machine learning, is
the supervised learning model with associated learning algorithm that analyzes data for
classification and regression analysis. In the case of SVM as a comparison target, radial
basis function (RBF) kernel was adopted, and the values of gamma and C parameters with
the highest performance were used experimentally. Here, C is a hypermeter that is set
before the training model and used to control error, and gamma is also a hypermeter that is
set before the training model and used to give curvature weight of the decision boundary.
As a performance comparison metric, the SER is used, and SER performance is calculated
as the reciprocal of accuracy.

The performances of the Euclidean distance method, which is the existing symbol deci-
sion method, and the SVM method, which is a representative machine-learning algorithm,
are compared. Then, we compare the SER performance of the proposed deep-learning-
based adaptive symbol decision method with that of the SVM method, which shows the
best performance before deep learning. Figure 12 shows the SER performance comparisons
between the Euclidean distance and SVM, SDM, and CIM + SDM (proposed) methods. The
vertical axis indicates the SER value, and the symbol decision performance increases as the
SER decreases. The horizontal axis indicates the channel environment ID value specified in
Table 6, and the larger the value, the more severe the transmission symbol distortion due to
the channel environment. Inside the figure, “w/intersymbol” means that learning with
the information of adjacent symbols is considered, while “w/o intersymbol” means that
learning with the information of adjacent symbols is not considered.
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As seen in Figure 12, in the Euclidean distance method, the symbol decision perfor-
mance deteriorates rapidly if the channel condition deteriorates even a little. Through this,
it is clearly seen that the Euclidean distance method has obvious limitations in the proposed
new channel modeling environment. In the case of the SVM method, on average, the perfor-
mance improves by about 33.4% (up to about 43.6%) compared to the Euclidean method
when learning with the information of adjacent symbols proposed in this study. Through
this, it is proven that learning the information of adjacent symbols together has a positive ef-
fect on the symbol decision performance in situations where the channel is greatly distorted.
Next, we compare the SER performance of the SVM and proposed CNN-based SDM meth-
ods. Both methods learn the correlations between symbols by using them as information
features of the adjacent symbols. It can be seen that the CNN-based SDM shows a better
overall performance than the SVM method. Although there is no dramatic performance
improvement, the performance is improved by about 2.6% (up to about 5.7%). Considering
the total amount of verification data, about 3830 symbol errors are reduced compared to
the SVM method. From this, we can conclude that the deep-learning-based method is more
suitable for learning various channel distortion factors than the classical machine-learning
method. Figure 12 also presents the SER performance of the deep-learning-based adaptive
symbol decision method (SDM + CIM) proposed in this study.

When the CIM is combined with the SDM, the performance improves on average by
about 3.7% (up to about 6.2%). Among the comparison groups shown in Figure 12, only
the proposed method maintains the SER below 1% until the channel environment ID #6.
Through this, it is proven that the proposed method adapts to the channel changes and
correctly determines the symbol, even in an environment where the channel condition
deteriorates rapidly. Overall, it can be seen that the performance of the proposed deep-
learning-based adaptive symbol decision method is improved on average by about 41.8%
(up to about 54.8%) compared to the existing Euclidean distance method, and by about 6.3%
(up to 9.2%) compared to the SVM method in the entire channel state used for evaluation.

5. Conclusions

This study proposed an adaptive symbol decision method for a visual MIMO system
to which a deep-learning neural network was applied. The proposed deep-learning neural
network comprises the SDM and CIM, both of which use the CNN algorithm. The CIM is
designed with a deep CNN structure, and the SDM is designed with a one-dimensional
convolutional multiple-filter structure. In addition, unlike the existing symbol decision
methods that calculate the color similarities between the transmitted and received symbols
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to distinguish the received symbols, the proposed SDM uses the information of the adjacent
symbols as the feature map, and determines the symbols by learning the correlations with
the adjacent symbols.

To prove the superiority of the proposed adaptive symbol decision method over extant
methods, a new channel modeling technique of a multicolor model mixing method that reflects
various real-world distortion factors is presented; based on this, we succeed in reproducing
the distortions caused by natural and ambient light and camera exposure variations in the
real world. In addition, by directly comparing the performances of the learning methods in
the proposed channel modeling environment and in the existing AWGN channel modeling
environment, the proposed method is shown to not only include the AWGN environment,
but also reflect more realistic channel distortion factors than the AWGN.

Lastly, in the simulations and experiments performed in the proposed channel distor-
tion environment, the proposed method shows performance improvement by an average
of about 41.8% (up to about 54.8%) compared to the existing Euclidean distance method,
and about 6.3% (up to about 9.2%) on average compared to the SVM method. Based on the
presented SER performances, it is proven that the deep-learning-based adaptive symbol
decision method proposed in this study can robustly maintain SER performance, even
when the channel environment deteriorates rapidly.
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