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Abstract: In this paper, we report on our benchmark results of the LiDAR sensors Livox Horizon,
Robosense M1, Blickfeld Cube, Blickfeld Cube Range, Velodyne Velarray H800, and Innoviz Pro.
The idea was to test the sensors in different typical scenarios that were defined with real-world use
cases in mind, in order to find a sensor that meet the requirements of self-driving vehicles. For this,
we defined static and dynamic benchmark scenarios. In the static scenarios, both LiDAR and the
detection target do not move during the measurement. In dynamic scenarios, the LiDAR sensor was
mounted on the vehicle which was driving toward the detection target. We tested all mentioned
LiDAR sensors in both scenarios, show the results regarding the detection accuracy of the targets,
and discuss their usefulness for deployment in self-driving cars.

Keywords: LiDAR; benchmark; self-driving

1. Introduction

While first car manufacturers are receiving approvals for SAE level 3 self-driving func-
tions (see [1,2]), the whole industry is making huge progress to enter the era of automated
driving. A self-driving car needs to perceive its environment through its sensors, interpret
the sensed data, plan and decide future actions to take and finally perform the chosen ac-
tions. Despite some prominent opinions that the only required sensor type are vision-based
sensors, many manufacturers see the need for the use of further sensor technologies in order
to increase the accuracy and reliability of the vehicle-surrounding perception required for
higher levels of automation. They investigate other sensors, such as RADAR or LiDAR [3],
for perceiving the environment of the self-driving car [4]. Additionally, LiDAR sensors
have proven their usefulness in academic self-driving projects, such as the DARPA Grand
Challenge [5], which raises vehicle OEMs interest for use in series development as well.

In this paper, a benchmark of currently available non-rotary LiDAR sensors is pre-
sented to identify suitable LiDAR hardware for real-world usage. The selected LiDARs
were tested in our automated driving (AD) platform, which was developed in a long-
standing research cooperation between the Hyundai Motor Europe Technical Center GmbH
(HMETC) and the University of Applied Science (FH) Aachen. The overall goal is to
develop and to integrate our automated driving software framework [6] into a HMETC
prototype vehicle to support the European research activities of HMETC, particularly in
the European project Hi-Drive [7].

One common argument against LiDAR sensors for mass-produced cars is their price,
which usually heavily exceeds the price of vision-based systems. Current technical devel-
opments, such as the development of solid-state LiDARs, have further reduced the price of
these systems, making them more attractive for vehicle OEM series development activities.
The systems presented in this paper, for instance, start at around USD 1300. We present
and evaluate four different test scenarios, which can be translated into real-world use cases:
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Scenario 1: Detecting sphere targets in increasing distances;
Scenario 2: Detecting a square meter reference plane;
Scenario 3: Detecting sphere targets in motion;
Scenario 4: Detecting other vehicles in motion.

Based on the use case, the test scenario results can be weighted differently: For instance,
when performing a slow manoeuver in a parking space, a sensor which is good at a close
distance with a high accuracy is required, while for highway driving, it is more important
to have a high range; as for the accuracy of the sensor in this scenario, accuracies exceeding
1 cm is acceptable, while higher accuracies might be required on a car park. A more detailed
description of the different scenarios is given in Section 3.

Our results show that the different sensors perform quite differently in the various test
scenarios. Some perform well for static scenarios, while they fail at the dynamic scenarios;
some have high deviations in measuring depth information while others struggle with
precise measurements for x and y ranges. We further investigated the observed phenomena,
and our findings show that this also depends on the scanning patterns that the different
sensors use. Other observations showed that some sensors have particular problems on
object edges, such as crash or jersey barriers. The main contributions of this paper are
as follows:

1. To propose a LiDAR benchmark in realistic drive scenarios.
2. To find particular relationships between the scan patterns and the performance in the

proposed real-word tests.
3. To come up with a list of state-of-the-art scanning devices for self-driving cars.

The paper is organized as follows: In Section 2, we discuss related research, while in
Section 3, we define four different benchmarks, present the results and discuss them in
Sections 4 and 5, respectively. We conclude with Section 6.

2. Related Work

Recently, LiDAR sensors have gained more attention from the scientific community,
as many research results about perception [8] and localisation [9,10] algorithms have
been published.

The team of Lambert, Carballo et al. [11] followed a similar approach and shared in
their work similar ideas. They analyzed 10 different LiDARs. Similar to our work, they
designed their tests with multiple detection targets and varying distance as well as the
surface reflectivity of the objects being measured. Furthermore, they used a self-calibration
method for each LiDAR. However, their research focuses solely on static scenarios, whereas
we also study how the tested LiDAR sensors perform when the vehicle is in motion passing
a still-standing target better reflecting real-world situations. By doing so, one of our findings
shows that the sensors should be calibrated differently when deploying them in static or
dynamic use cases. We discuss this issue in depth in Section 5. This benchmark is focused
on solid-state LiDARs instead of rotary 360° LiDARs.

In contrast to our approach with designing tests suited for real-world scenarios, Cattini,
Cassaneli et al. [12] proposed a different test setup. They introduced a procedure to create
a very repeatable and precise testing setup for LiDAR sensors. It constraints multiple
motions of displacement and rotation of the sensor and the measurement targets to a single
dimension, which allows for a more precise setup of the tests. It also incorporates camera
data for the evaluation. While the precision and repeatability is important, the scalability
and variability of such constrained testing setups is, however, very limited.

Bijelic, Gruber, Ritter et al. benchmarked LiDARs in a fog chamber [13]. Their goal
was to evaluate the performance of LiDARs when being exposed to varying amounts of
fog. They tested four sensors from two major manufacturers. Their evaluation was based
on comparing the birds-eye-view representation of point clouds and the intensities of parts
of point clouds recorded from a fixed position at different exposure levels of fog.

The International Society of Optics and Photonics has also drafted a set of tests and
specifications on how to execute and evaluate the tests [14]. The draft recommends testing
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LiDARs on functions with high security implications, such as the detection of children-sized
targets or influence on human eyesight when exposed to LiDARs.

As shown in [8], in particular, the field of deep learning for 3D object detection based
on LiDAR data has made major leaps forward by yielding higher accuracies than previ-
ous methods. Some of the best performing algorithms in terms of quality and execution
times are algorithms processing only point cloud information, which often are provided
by a LiDAR. Good examples for this are PV-RCNN [15], PointPillars [16] and PointR-
CNN [17], to name just a few. Despite the mentioned approaches use different methods,
they have in common that they all extract features from the point cloud: (1) PC-RCNN
uses a combination of voxel- and point-based feature extractions; (2) PointPillar deploys a
feature extraction from pillar-like groupings of points in a pseudo-image representation of
a point cloud; and (3) relies solely on a point-based feature extraction. The three networks
show significantly different performances when faced with different properties in the
underlying point cloud data [18]. Properties influencing the performance outcome include
noisiness and density. Both are properties defined by a selected sensor for testing and
environmental influences.

For the field of perception-based localization, Qin Zou, Qin Sun, Long Chen et al. [10]
showed a good comparison of many of the bleeding-edge algorithms in said field. The al-
gorithms utilize such methods as Kalman filters, particle filters and loop closure to achieve
the goal of localizing an agent traversing unknown terrain, while also creating maps of
the surroundings.

For the verification and presentation of the performance, researchers usually test their
algorithms on publicly available LiDAR-based point-cloud data sets. Benchmarking data
sets, such as Kitti [19], NuScenes [20] and Waymo [21], are currently very popular in this
regard. Each provides a large number of (labeled/classified) point cloud data for research
and development. Although the quantity of records in those data sets is large, and the
variety in the recorded surroundings and objects is sufficient, each of the benchmark
data sets only uses one specific LiDAR sensor from one manufacturer to record the data.
The LiDAR sensors used in all of the mentioned data sets is of the same type—A 360°
rotary LiDAR. In general, it is a good idea to make use of the same type of LiDAR sensors
for the different data sets, as the results of the benchmarks can be compared more easily,
as they are not prone to calibration errors or different calibrations of the sensors. This
approach is beneficial for the testing and evaluation of 3D point cloud-based algorithms.
To investigate the practical use of different LiDAR sensors, this approach needs to be
reversed: Different LiDAR sensors need to be evaluated in the exact same use case with the
same algorithms. The algorithms we settled on to evaluate our use cases are RANSAC [22]
for estimation of the position of geometric shapes in point clouds and a ray-based ground–
object segmentation derived from the ideas from Petrovskaya and Thrun [23].

3. Benchmark Concept

This section will give an overview of the benchmark concepts. In Section 3.1, we
present the requirements which are derived from real-world scenarios and show our test
candidates. In Sections 3.2–3.5, we introduce the different LiDAR targets (spheres and
planes) that were used during the tests and had to be detected by the sensors. Finally,
details about the deployed detection algorithms will be discussed.

3.1. Test Candidates

HMETC selected several state-of-the-art LiDAR sensors which were available on the
market or at a close-to-market series production stage. The selected sensors are either
mechanical (moving/rotating mirror or lens parts) or solid-state types, based on micro-
mirrors with MEMS (Micro-Electro-Mechanical Systems) technology. Flash LiDARs and
optical phased array LiDARs could not be tested at the time of writing of the paper because
some of the sensors either exceeded the price limit requirement or were ruled out due to
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other HMETC requirements, such as avoiding suppliers affected by chip shortages and
sensors still in development or in the validation phase.

In our study, we mainly focused on non-rotary LiDARs for the reason that those
systems do not have moving parts, which are prone to wear and tear or are more sensitive
to challenging environmental conditions. It is planned to integrate the LiDARs into the
vehicle front grill to have a certain height above the ground, compared to a mounting in
the bumper below the grill. This allows to scan a wider field of view in front of the vehicle
to support object perception and localization use cases during vehicle movement (speeds
from 30 km/h to 80 km/h). This is a compromise in the design philosophy to balance the
perception needs and the impact that the mounting of the sensor in the vehicle has. It is
also related to the fact that HMETC test vehicle is a step-by-step implementation to achieve
the level of fully autonomous driving. These considerations make the mostly roof-mounted
360° mechanically spinning LiDARs known, for instance, from Waymo’s [21] robotaxis,
unsuitable, oversized and overpriced. Based on the described usage conditions and the
hardware requirements given below, the sensors shown in Table 1 are tested.

Table 1. The tested sensors with their respective scanning patterns. The pictures of the scan patterns
were made by facing the LiDAR toward a white wall. The screenshots were taken in the point cloud
viewer from the LiDAR perspective.

Livox Robosense Blickfeld Blickfeld Velodyne Innoviz
Horizon M1 Cube Cube Range Velarray H800 Pro

Picture

Scan pattern

Framerate 10 Hz 10 Hz 6.3 Hz 5.7 Hz 25 Hz 16 Hz

Points per Frame 24.000 78.750 8.829 7.599 16.181 15.500

FOV 81.7° H, 25.1° V 120° H, 25° V 72° H, 30° V 18° H, 12° V 120° H, 16° V 72° H, 18.5° V

Principle Rotating Prisms MEMS MEMS MEMS Solid State MEMS

We first start with the different requirements for the LiDAR sensors:

• Field of View. We aim at a horizontal field of view of more than 100° and a vertical
field of view of more than 10° to reduce the number of sensors that has to mounted on
the vehicle.

• Minimal detection distance and range. The distance to detect the LiDAR targets should
be less than 3 m while the range of the LiDAR should be more than 120 m.

• Resolution and number of scan lines. The sensors should of course have a high resolution
below 0.4° and at least five scan lines to be able to detect the LiDAR targets and
real-world objects.

• Update rate or frame rate. In order to avoid longer delays in the object detection,
the sensor systems should have an update frequency or frame rate of more than 5 Hz.

• ROS/ROS2 support. For an easy integration into our control software stack [6], a Linux-
based system implementation and an AD framework based on ROS2 is preferred.

• Robustness of sensor systems. The test candidates should work well also in tougher
weather conditions, and the sensor performance should not notably degrade under
those conditions.
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The LiDARs were evaluated using multiple distinctive test cases, reflecting the later
real-world usage scenarios (outdoors, urban environment, dynamic movement, and on-
road). This minimizes the selection of a false-positive-rated sensor which performs well
in a laboratory environment bench test, but shows issues with, for instance, road surface
reflections, ghost objects such as plants or leaves, or blinding sunlight when being used in
real-world environments. Mounting each sensor to a test vehicle can also reveal possible
negative impacts, such as (electromagnetic) interference with other test vehicle components,
including measurement units or ECU-related signal transmission delays, such that the per-
formance of a sensor might degrade to a level not acceptable in an automotive environment.
The sensors in Table 1 were selected based on the following criteria:

• Packaging size, interface and cabling;
• Sensor IP rating: Robustness against water, rain, snow, mud, stones
• Setup time, run-time without failure;
• Power consumption: Low power consumption (less than 15 W per unit);
• Sensor availability;
• Manufacturer support;
• Configuration options;
• Scan pattern to ensure similar test conditions.

The sensors were provided by HMETC for running the benchmark activities.
Most sensors have the possibility to change FPS (frames per second) and/or points

per frame. Some even allow changes in the scanning pattern. For our tests, we selected
a number of LiDARs with very specific patterns that moreover meet the requirements
presented in the previous section. In the next sections, we introduce how we detect the
different LiDAR targets.

3.2. Scenario 1: Static Spheres in Increasing Distances

In this section, the first test scenario is presented, where a triangular-shaped sphere
target has to be detected by the LiDAR system in different distances, ranging from 7 m to
25 m. The vehicle is not in motion for this scenario.

The deployed LiDAR target is shown in Figure 1. A structure of three spheres aligned
in an equilateral triangle is used. Each sphere has a diameter of 40 cm. The space between
each sphere center point is approximately 110 cm. To detect the LiDAR target, RANSAC [22]
is being applied to find the spheres inside the point cloud. Each time the algorithm detects
exactly all three spheres, the centroid of the triangle is calculated, containing the measured
distances in the point cloud. The process repeats n times; the result is a dataset with n
values for the centroid (see Figure 1a) because a measurement was only added to the
dataset if all the spheres were detected.

In this scenario, we measure the performance of the LiDAR sensors for increasing
distances, while the distance does not change during the measurement, i.e., LiDAR sensor
and measured objects are standing still. Four different distances between the LiDAR sensor
and the sphere construction were used: 7 m, 12 m, 15 m, and 25 m. The minimum distance
was chosen because at 7 m all LiDAR had all spheres in their FOV. The maximal distance
was chosen after noticing that at this range the first sensors were unable to detect the
spheres; knowing the performance at 25 m was a good indication for the following dynamic
scenarios. The decision to use 12 m and 15 m in between instead of equidistant distances
has no particular reasons. For each distance and for each LiDAR sensor, 1000 data points
were taken (cf. Section 4.1 for the results).
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40 cm

110 cm

110 cm

40 cm

40 cm

Centroid

(a) (b)
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LiDAR
y

7 m - 25 m 

(c)
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z

LiDAR

7 m - 25 m

(d)

Figure 1. Scenario 1 setup: (a) Construction sketch. (b) Picture of the construction. (c,d) Topview and
sideview of the measurement setup.

3.3. Scenario 2: Static Square Meter Reference Plane

In the second scenario, errors that might have been introduced by deploying RANSAC
for the sphere detection in Scenario 1 should be avoided and should justify the validity of
the other scenarios. If a deployed detection algorithm favours or disfavours a particular
LiDAR sensor, can be identified with this scenario. We constructed a free-floating square
meter plane as shown in Figure 2a. The wooden square meter plane was set up 7 m in front
of the LiDAR sensors (both standing). As the laser beams will just hit the front of the square
meter plane, the plane will create free floating points inside the point cloud. Around these
points, a cut-out box is placed (virtually inside the point cloud), and all points that are not
inside this box are extracted from the point cloud (Figure 2b). The remaining points inside
the point cloud are just the points originated by the reflection of the square meter plane
itself. Inside the remaining point cloud, the minima and maxima in every direction can be
determined, and we can be establish the following equations:

zAxismax − zAxismin ≈ 1 m

yAxismax − yAxismin ≈ 1 m

xAxismax − xAxismin ≈ 0 m

So, we expect to measure the width and the height of the plane (1 m in z and y
dimension). Of course, the difference in the distance to the plane should be 0 (x dimension).
Refer to Figures 2c and d for the naming of the axes. The measured sizes will scatter around
the true size and with 1000 measurements we approximate a normal distribution of the
values just like with Scenario 1. The results are shown in Section 4.2.
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(a)

0.8 m 0.6 m

2.5 m

1.0 m

1.0 m

(b)

x

y 
1 m

7 m

LiDAR

(c)
x

z
LiDAR

7 m

1m

(d)

Figure 2. Scenario 2: (a) Square meter plane target. (b) Point cloud of a detected target. Red points
are points left over after cutting out a box around the plane. The box is spaced 1 m below and 1 m
above the plane, 60 cm in front and 80 cm behind. It is 2.5 m wide around the center of the plane.
(c,d) Topview and sideview of the measurement setup.

3.4. Scenario 3: Dynamic Spheres

This scenario is used to measure the performance of the LiDAR sensors for decreasing
distances, while the LiDAR moves toward the statically placed sphere construction during
the measurement (dynamic measurement), as shown in Figure 3. The LiDAR sensor was
mounted on top of a test vehicle The vehicle started 300 m away from the measurement
target, and drove automatedly toward the sphere construction with a speed of 10 km/h.
The speed of 10 km/h was chosen for both dynamic scenarios (Scenario 3 and 4) to cater
for the update rates of the LiDAR sensor. Other tests with 80 km/h were made, but were
later excluded from both dynamic scenarios because of the distortion problem which will
be discussed in Section 4.3. For each measurement, the vehicle drove at a constant speed.
The position of the sphere construction and the position of the test vehicle was measured by
GPS. Our detection algorithm measured the distance to the triangular sphere construction
(distancelidar) at driving distance x. As a reference, the distance between the vehicle’s GPS
position and the triangular sphere construction’s GPS position was calculated as distancegps.
Now, the difference between the distance measured by LiDAR and by GPS at any given
distance can be calculated as:

distance∆(x) = distancelidar(x)− distancegps(x) (1)

Note that distance∆ will not become zero due to the offset between the vehicle’s GPS
position the position of the LiDAR sensor.
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(a) (b)

Triangular 
sphere construc�on

Vehicle 

LiDAR Sensor Driving direc�on

LiDAR GPS 
VehicleGPS 

Point
Spheres

distance_GPS

distance_LiDAR

(c)

Figure 3. Scenario 3: (a) Spheres on the test track; (b) LiDAR mounted to the test vehicle; (c) Topview
of the dynamic test scenario.

3.5. Scenario 4: Dynamic Vehicle Detection

This scenario is designed to be close to a real-world use case. This scenario is designed
analogously to Scenario 3, but instead of the sphere construction, another still-standing
vehicle was placed on the shoulder lane and was to be detected by the LiDAR sensor (see
Figure 4). Again as in Scenario 3, we used Equation (1) to measure the offset between the
true position and the detected position of the target.

The algorithms used in the previous scenarios could not be used for object detection,
because it is only capable of detecting spheres. Therefore, another algorithm had to be
developed. Using a ray-based ground object segmentation [23], the algorithm converts
the point cloud into a 2D grid of cells. For each cell of the grid, the algorithm calculates
a height profile (see Figure 5). The height of a cell is equal to the highest measured point
of the point cloud inside the grid. Once each cell has a height profile, the cell extension
starts. Starting from the origin and then going up-stream (in the driving direction, where
the bottom of the grid is nearest to the vehicle), the algorithm calculates an angle between
two grid cells (see side view of Figure 5). The calculated angle is compared to an angle
threshold. If the angle between two cells is bigger than the threshold, the cell is flagged as
non-ground. This means it contains a whole object or only a part of an object bigger than
the cell. In the end, the resulting point cloud with all the non-ground-flagged cells is split
into single objects by extracting the resulted cluster. The results of Scenario 4 are shown in
Section 4.4. Additionally, for the difference between the measured distance by LiDAR and
the measured distance by GPS, also the width and the height of the second vehicle were
measured with the LiDAR.
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(a)

Vehicle 

LiDAR Sensor Driving direc�on

LiDAR
GPS 

Vehicle

GPS 
Point

Second
vehicle

Second vehicle

distance_GPSdistance_LiDAR

(b)

Figure 4. Scenario 4 (a) A second still-standing vehicle is the detection target. (b) Top view of the
Scenario 4.

Wave expansion

a

b

Grid
Topview

c
Angle threshold

a
b 

c 

Angle a → b <  threshold Angle b → c > threshold

Grid
Sideview

Figure 5. Ray-based ground–object segmentation detection functionality, sketch. The angle between
cell a and b does not exceed the threshold, cell b is marked as ground cell. The angle between cell b
and c exceeds the threshold, cell c is marked as non-ground.
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4. Results

This section will show the results and will give insights on the comparison, the de-
cisions that were made, and some compelling problems that occurred. In all scenarios,
multiple datasets were captured. A dataset for one measurement will scatter around an
average, resulting in a normal distribution. The static scenarios are evaluated by com-
paring standard deviations. For dynamic scenarios, the measured points correlate with
the distance.

4.1. Scenario 1: Static Spheres Increasing Distances

Figure 6 shows the standard deviations according to each axis and distance. The Blick-
feld Cube as well as the Innoviz Pro failed to perform in this scenario at a distance of
25 m; hence, the decision was made to exclude both of them from further investigations
in dynamic scenarios. Even though the Blickfeld Cube Range yielded good results, it was
excluded for dynamic scenarios as well, due to its too narrow field of view.

Despite being accurate at the 7 m distance, the Blickfeld Cube sensor shows less accuracy
at higher distances and fails to measure at 25 m. This is due to its small amount of available
scan points per frame. It is noticeably lower than all the others (see data sheets in Table 1).
The Blickfeld Cube Range on the other hand shows the highest accuracy in this test due to
its zoom lens. At a distance of 15 m it is about as accurate as the Blickfeld Cube at 7 m.
The zoom lens helps to keep the beams close together resulting in a dense scanning pattern
even in higher distances. However, the dense scanning pattern does, on the other hand,
result in a too narrow FOV and therefore the sensor was excluded from dynamic tests.
The Velodyne Velarray performed with an average result. There is a noticeable decrease
in the accuracy between 7 m to 12 m. Compared to its competitors, the accuracy of the
Robosense M1 was decreasing less with higher distances. The reason for this could be its
really high amount of points and homogeneous scan pattern with the same amount of
beams in vertical and horizontal alignment. Finally, the Livox Horizon provided a high
accuracy at 7 m to 15 m distance, while at a distance of 25 m, the accuracy decreases. Fewer
points hitting the sphere at this distance lead to a smaller accuracy. It shows marginal noise
for each point; this also explains the accurate measurements at closer distances.

4.2. Scenario 2: Static Square Meter Reference Plane

Figure 7 shows the measured standard deviations for each LiDAR in x, y and z
direction for this scenario. The x-axis refers to the distance to the square meter plane,
the y-axis to the width and the z-axis to the height of the plane. With the Blickfeld Cube and
the Velarray sensors, we observed a low accuracy for the distance measurement (x-axis).
We explain this observation in detail in the next paragraph and will refer to it as the edge
fringing problem in the rest of the paper. The problem did not occur with the Velarray or the
Blickfeld Cube.
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Figure 6. Results: Standard deviations for each individual axis in scenario ’Static Spheres Increasing
Distances’ at 7 m, 12 m, 15 m and 25 m; normal distribution with 1000 samples.
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Figure 7. Results: Standard deviations for each individual axis in scenario ’Static Square Meter
Reference Plane’ normal distribution, 1000 samples.

In Figure 8, we explain the edge fringing problem. As can be noticed on the edges of
the plate, points are falsely detected behind the plate. This effect was strongest at the top
and the bottom (see Figure 8). This phenomenon was observed with almost all sensors.
In order to figure out what was causing that problem, a sensor was turned 90 degrees on its
x-axis while scanning the plate. Prior to the rotation, the problem was seen at the top and
the bottom; after the rotation, the problem was seen on the sides of the plate. This means it
was caused by the sensor’s scan pattern, not the wooden plate itself. This test was repeated
with another sensor showing the same behavior.

The Blickfeld Cube showed a higher accuracy in x-axis measurements than its competi-
tors, while showing bad results for the y and z-axis accuracy. Despite having the same
hardware, the Blickfeld Cube Range did not yield the same results as the Blickfeld Cube.
The accuracy of y- and z-axis are noticeably more accurate than the x-axis measurements,
which can be traced back to the edge fringing problem. The Innoviz Pro showed less accurate
x-axis measurements, again because of the edge fringing problem, while the Velodyne Velar-
ray achieved the best results, providing the most accurate measurements for all three axis.
The sensor suffering the most from the edge fringing problem was the Robosense M1 , while
the Livox Horizon performed with an average accuracy despite the edge fringing problem.

LiDAR scan directionFringing

Wood plate

Figure 8. The red point cloud contains the reflections of the reference plane. The fringing at the top is
noticeable (marked in the green circle), which is also known as edge fringing.



Sensors 2022, 22, 7146 13 of 20

4.3. Scenario 3: Dynamic Spheres

During the measurements, a problem was discovered that would cause the results of
the dynamic scenarios to be unreliably. When LiDAR sensors are moved, the point cloud
becomes distorted. The distortion could, theoretically, be detected and corrected, but due to
the data structure of the submitted source date of some LiDAR sensors, it was not possible
to correct this distortion.

Moving a sensor at high velocities causes distortion. As the sensor traverses more
distance in the time period it takes to measure a complete point-cloud, more distortion is
introduced to the measured scene. This is caused by the sequential transmission of the
scanned points. The time difference in between measured points allows for a relative error
in the opposite direction of motion. This effect, as seen in Figure 9, is clearly visible when
observing clusters of points measured on static objects lateral to the direction of movement.
Early points in the point-cloud seem to be further away than points measured later in the
measurement-period, resulting in the pattern representing an object being stretched along
the axis of movement. With such distortion, the algorithm was not able to detect spheres
in an adequate extent, even at low speeds. It was not possible to extract the distortion for
some LiDARs (as discussed in Sections 5 and 6); therefore, the decision was made to leave
the results out, as they may be unrepresentative.

(a) (b) (c)

Figure 9. This figure presents the visualization of the distortion effect due to movement of the
sensor at high velocities. (a) Picture of target. (b) View at 10 km/h, Visualization of the measured
point-cloud at 10 km/h rotated so the structure can be viewed from the left side. (c)View at 80 km/h,
The visualization of the measured point-cloud at 80 km/h rotated so the structure can be viewed
from the left side. In (c), the measured structure is virtually stretched over a span of 2.22 m.

4.4. Scenario 4: Dynamic Vehicle Detection

This test was conducted with the selected top three sensors out of the previous scenar-
ios. These three yielded best results so far and are best suited for Scenario 4:

• Robosense M1;
• Velodyne Velarray H800;
• Livox Horizon.

4.4.1. Position Difference Test 10 km/h

Figure 10 shows the difference between the distance to the second vehicle measured
via GPS against the distance to the second vehicle measured by each LiDAR in relation
to the distance. Because the LiDARs were mounted in the front of the car roof and the
GPS measurements are taken at the back axle of the measurement vehicle (see Figure 4),
an offset of about 2.5 m occurs, which leads to the curve seen in Figure 10.
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Figure 10. Results of Scenario 4. The difference between GPS and LiDAR measurement in relation to
the distance is shown (a) Velodyne Velarray (1175 vehicle detections); (b) Robosense M1 (522 vehicle
detections); (c) Livox Horizon (468 vehicle detections).



Sensors 2022, 22, 7146 15 of 20

Figure 10a shows the differences in the position measurements for the Velodyne Velarray.
Because the sensor has a sample rate of 20 FPS, it generated most of the detection of the
vehicle. The sensor is capped by its software driver to 200 m, which is the reason why the
sensors measurements never exceeded this distance. The sensor managed a few detections
up to 150 m, where detections occur more often. The results Robosense M1 are shown in
Figure 10b. This sensor is is also capped at 200 m by the sensors driver. Besides some
outliers, the sensor shows overall precise and dense measurements up to 150 m. The Livox
Horizon (Figure 10c) was the only sensor that was able to detect the car at a distance of
over 250 m. Besides the overall good result in range, the sensor measured the position less
accurately and less densely than its competitors.

4.4.2. Height Measurement Test 10 km/h

Figure 11 shows the height of the second standing vehicle measured by the LiDAR
in relation to the distance. The actual height of the measured car was 1.7 m. Height mea-
surements are less important for automotive use cases; hence the vertical resolution is
often compromised. A low vertical resolution leads to a phenomenon called quantization.
At far distances of around 150 m, just a few points reflect from the measured second vehicle.
The result of the height measurement relies on the highest point that was reflected and
is therefore only an approximation that will get better the closer the LiDAR gets to the
measured object. The same applies to width measurements, even though the horizontal
resolution is often higher.
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Figure 11. Cont.
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Figure 11. Results for Scenario 4. Measured height in relation to the distance to the second vehicle.
(a) Velodyne Velarray (1175 vehicle detections); (b) Robosense M1 (522 vehicle detections); (c) Livox
Horizon (468 vehicle detections).

The Velodyne Velarray has a very low vertical resolution. However, for an automotive
sensor, this is nonetheless acceptable. At a distance of approximately 120 m, the points
are 80 cm apart vertically, confirming the pattern seen in Figure 11a, as the probability
at this distance that a point of a higher scan line does hit the standing vehicle increases.
The Robosense M1 has a wider vertical FOV alongside a higher vertical resolution than the
’Velodyne Velarray’, being less prone to the quantization problem in the vertical direction.
Other than its competitors does the Livox Horizon not use a common grid-like scan pattern.
The deployed scan pattern has benefits, as the probability is increased that some points
hit the second vehicle at a larger height. Figure 11c does not show the same pattern as
previously seen with the other LiDARs, which have a unique scan pattern .

4.4.3. Width Measurement Test 10 km/h

Figure 12 shows the width of the second standing vehicle measured by the LiDAR
in relation to the distance. The actual width of the measured car is 1.9 m. In traffic,
width and length of objects are often more important, because cars can only move in a 2D
space. The quantization phenomenon explained previously will again have an impact on
the measurements. It has to be noted that the LiDAR systems detect the second vehicle
standing on the side, not directly from behind. Therefore the sensors mostly measure the
true width, but some beams will hit the side of the vehicle as well, which falsely causes a
higher width. This explains why all tested LiDAR systems measurements of the vehicle are
a bit wider than they actual are.

The width measurement of the Velodyne Velarray is more accurate than its height
measurement. Its measurements are consistent, taking the quantization pattern into account.
Compared to Velarray, the Robosense M1 is closer to the real width of the second vehicle
at a distance of 80 m. This makes Robosense and Velarray close competitors in this test.
Finally, the detection of Livox Horizon does not follow the quantization pattern and has
a lot of variations. This could be explained by its scan pattern: sometimes, the beams
scan just a part of the width of the car, but going up or down before scanning the whole
car, causing the less accurate measurements and out-of-place-looking points below 1 m in
width. Additionally, it is the only sensor that is able to return a width near ground truth at
over 200 m.
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Figure 12. Results: Scenario ’Dynamic Vehicle Detection’. Measured width in relation to the distance
to the second vehicle. (a) Velodyne Velarray (1175 vehicle detections); (b) Robosense M1 (522 vehicle
detections); (c) Livox Horizon (468 vehicle detections).

5. Discussion

In this section, we will discuss the observations we made during the benchmark.
Further, we will discuss a number of problems that occurred with the tested sensors.

Based on the results of the first scenario, static spheres increasing distances (Section 4.1),
we decided to exclude three sensors from dynamic scenarios. Both the Blickfeld Cube
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and the Innoviz Pro were not able to perform the benchmark at a distance of 25 m and
the Blickfeld cube range showed that the narrow FOV would be too narrow for the dy-
namic scenarios.

In Scenario 2 (Section 4.2), we identified a problem which led to poor performance in
measuring the x direction of most sensors. This fringing problem at the edges of the plane,
referred to in Section 4.2, was documented and forwarded to the manufacturers. At this
point, the reason for this phenomenon is unclear and just speculative.

Scenario 3 (Section 4.3) could not be executed because of the distortion problem. This
problem is inherent for all LiDARs and will affect sensors with low refresh rates more
than sensors with high refresh rates. The distortion can be removed by calculating the
movement of the sensor against the delta between points, but the data structures of some
point clouds have dynamic sizes, rendering this approach impossible. Here, it needs to be
mentioned that Livox provides an open source software solution to remove the distortion
by deploying the integrated IMU of the sensor.

In the last scenario (Section 4.4), the obvious observation was made that for large
distances, the fixed gaps between the scan lines of the scan patterns makes precise object
detection difficult. The Livox Horizon LiDAR sticks out because of the unconventional
scan pattern. With this, it outperforms its competitors in terms of range, while, on the other
hand, losing precision in comparison to Robosense M1 and Velodyne Velarray H800. Scan
patterns and point density also make a difference when measuring the dimension of objects.
The observation we made here was that the unconventional scan pattern design of Livox
can help to obtain a better approximation for the real dimensions of the scanned object.

Sensors designed for automotive applications tend to trade off vertical against hor-
izontal FOV as can be seen with the Velodyne Velarray H800. Summarizing, we found
that the information of the properties given in the data sheet is of course important and
valuable, but it does not necessarily yield reliable information on how this sensor works
in practice.

Another observation was that unconventional scan patterns have their benefits. LiDAR
sensors have a low resolution in comparison to cameras; with conventional grid-like scan
patterns, a low resolution results in big gaps between the beams. Unconventional scan
patterns can counteract these gaps.

During the evaluation of the LiDAR sensors, we encountered multiple possible prob-
lems with the data, which prevent or may influence the performance of the sensors. Some of
these occurred only on devices from specific manufacturers, while others can be corrected
in post-processing steps.

All of the analyzed sensors had a certain level of noise. The noise observed on indi-
vidual point measurements deviated in many cases from the expected location of where a
single beam of the sensor would reflect off. In other cases, the location of the measured
points was contradictory. Points were measured in mid-air with no obvious obstacle in
sight. Specifically in medium and far-away regions of the point cloud, the points contained
faulty or non-usable information. This can be a hazard if the algorithms used are supposed
to detect patterns and objects from distant measurements. The faulty information could
occasionally form clusters of points, which can be similar to a search pattern. For exam-
ple, in a collision avoidance system, false positives due to noise can endanger the life of
passengers if safety precautions, such as the fastening of a seat belt, are not taken. A false
positive in the near field could result in an hard braking manoeuver. Not only could this
cause damage to the passengers, but it could also potentially lead to loss of control over the
vehicle by the driver.

The edge fringing effect of different LiDAR sensors shown in Figure 8 and explained
in the respective section can be compensated through the configuration of the individual
firmware. Different measurement types are available to decide by which strategy the
reflected beams will be evaluated. The measurement type “strongest return” results in
the reflected beams with the most intensity to be chosen for the calculation of a 3D point.
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Another measurement type “first return” leads to the first reflected beam to be chosen for
the same calculation.

We want to point out that some problems should be addressed by the manufacturers;
when asked about the fringing and distortion problem, the manufacturer’s technological
support was often unaware that such problems exist or had to speculate.

6. Conclusions

Deploying LiDAR technology has major benefits in many robotics application fields,
as well in the field of automated driving. Series production of automated vehicles would
demand sensors that are precise and in an acceptable price range. A set of different LiDAR
sensors were selected to be benchmarked against each other in four different scenarios.
To the best of our knowledge, benchmark scenarios based on real-life use cases have not
been proposed in the literature before. We divided the scenarios into static and dynamic
tests. In static scenarios, both the measured object and the sensor did not move; in the
dynamic scenarios, the sensor was placed on a vehicle that drove toward the measured
object. In contrast to other benchmarks such as [11], the selected LiDARs were mainly
based on solid-state LiDAR technology.

The findings in this paper have shown that there are considerable differences in LiDAR
technologies: for individual use cases, the whole package has to be considered, including
the availability and the kind of driver software. As additional software may also be required
and useful, open source software should be the first choice.

Scenario 2 (static spheres in increasing distances, Section 4.1) and especially the static
square meter reference plane scenario in Section 4.2 show that the tested LiDAR sensors can
have major deviations in point precision.

Scenario 4 (dynamic vehicle detection, Section 4.4) shows that the scan pattern of a LiDAR
can make a difference, an observation of which researchers and developers seem not to
be very aware. When designing a LiDAR-based use case, the scan pattern should not be
ignored. The results of this publication help to select the best-suited LiDAR for a particular
application. Further, the minor and major differences between the tested LiDAR sensors
and their particular technologies become apparent.
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