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Abstract: Rapid, non-destructive, and smart assessment of the maturity levels of fruit facilitates their
harvesting and handling operations throughout the supply chain. Recent studies have introduced
machine vision systems as a promising candidate for non-destructive evaluations of the ripeness
levels of various agricultural and forest products. However, the reported models have been fruit-
specific and cannot be applied to other fruit. In this regard, the current study aims to evaluate the
feasibility of estimating the ripeness levels of wild pistachio fruit using image processing and artificial
intelligence techniques. Images of wild pistachios at four ripeness levels were recorded using a digital
camera, and 285 color and texture features were extracted from 160 samples. Using the quadratic
sequential feature selection method, 16 efficient features were identified and used to estimate the
maturity levels of samples. Linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), and an artificial neural network (ANN) were employed to classify samples into four ripeness
levels, including initial unripe, secondary unripe, ripe, and overripe. The developed machine vision
system achieved a correct classification rate (CCR) of 93.75, 97.5, and 100%, respectively. The high
accuracy of the developed models confirms the capability of the low-cost visible imaging system in
assessing the ripeness of wild pistachios in a non-destructive, automated, and rapid manner.

Keywords: wild pistachio; ripeness; classification; machine vision; imaging processing

1. Introduction

Wild pistachio is one of the most valuable forest trees grown in arid and semiarid
mountains and altitudes [1]. The tree is a part of the Anacardiaceae family with various
species, such as Pistacia atlantica and Pistacia khinjuk [2]. The economic trade value of
pistachios worldwide was USD 3.85 billion in 2010–2011, which has increased to USD
9.57 billion in 2020–2021 [3], indicating the superior growth in the market demand for these
tasty nuts. One of the pistachio varieties grown in the middle east is wild pistachio.

Pistachios possess a unique flavor and color appropriate for use in cakes, ice cream,
cookies, and several other food products [4]. Considering that around 30% of wild pistachio
fruit is oil [5], it also has some industrial applications. The oil extracted from wild pistachio
is highly stable [6] and can be used in colors, pesticides, glues, essences, papers, mineral oils,
and other industrial applications [7,8]. Moreover, the wild pistachio resin is a traditional
source of medicine for relieving abdominal pain, stomach pain, indigestion and stomach
ulcers, asthma, eczema, sore throat, kidney stones, anti-diarrhea and astringent, anti-fever,
antibacterial, and antiviral [9–15].

While wild pistachio has various applications, similar to other fruit, its composition
changes during ripening, affecting its end-use and trade value. Therefore, it is critical to
detect/harvest the fruit at different ripeness stages.

Over the past decade, and with the growing market demand for superior produce, the
food industry has been actively looking for rapid, objective, non-destructive, and intelligent
tools for the maturity detection of agricultural fruit and vegetables. In this regard, scholars
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have explored various tools such as near-infrared spectroscopy [16–19], or imaging tech-
niques [20–23] to predict the ripeness levels of various agriproducts and/or to evaluate their
quality parameters [24–26]. For example, the maturity of persimmon blueberry [27–29],
tomato [30], apple [31,32], citrus [33], mulberry [34], and oil palm fruit [35] have been esti-
mated using imaging and machine vision algorithms. Among the various spectral bands
that can be explored in machine vision systems (such as visible, near-infrared, nuclear
magnetic resonance, X-ray, and gamma-ray [36–40], the visible imaging range has been
identified to be the most affordable. However, the prerequisite of implementing visible
imaging systems for fruit ripeness estimation is the discriminability in the samples’ color
characteristics at different ripeness stages.

Despite several efforts on non-destructive fruit ripeness level estimations, our thor-
ough literature review indicates that there has not been any previous effort on a smart
assessment of the ripeness levels of wild pistachio. Considering that previously reported
models on agri-products have been sample-specific, they could not be applied to other fruit,
more specifically wild pistachio. Hence, to explore the feasibility of evaluating the maturity
levels of wild pistachio, the present research aims to implement an intelligent computer
vision approach to classify the wild pistachio fruit into four ripeness levels (i.e., initial
unripe, secondary unripe, ripe, and overripe) using a low-cost visible imaging system. Such
systems have already proven to revolutionize in-field and post-harvest quality management
and preservation of cereal grains, legumes, oilseeds, and vegetables.

2. Materials and Methods

Figure 1 shows the various steps of the proposed intelligent algorithm to identify the
ripeness levels of wild pistachio fruit, which will be discussed in detail next.
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Figure 1. The operation steps in the ripeness classification of wild pistachio fruit.

2.1. Sample Preparation

The wild pistachio samples were acquired from the jungles of Ilam Province, Iran.
Trained inspector panels established ground references for the four ripeness levels. It was
found that the exterior colors of wild pistachio samples at initial unripe, secondary unripe,
ripe, and overripe stages were dominantly close to white (white to cream and or pink), red
(pink to red), blue, and green colors, respectively (see Figure 2).
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Figure 2. The separated wild pistachio samples, (a) overripe, (b) ripe, (c) secondary unripe, and
(d) initial unripe.

2.2. Image Acquisition

To acquire images of individual samples, 160 wild pistachios (40 at each ripeness stage)
were separately placed on an A4 white paper and imaged (Figure 3) using a Samsung Cam-
era (resolutions: 13 MP, model J7, Samsung Corp., Seoul, Korea). The white background
was chosen to simplify image segmentation (i.e., selecting a region of interest). The samples
were imaged indoors in the lab under normal daylight.
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2.3. Image Processing

As illustrated in Figure 1, the proposed image processing algorithm involved image
pre-processing, feature extraction, and classification, which will be discussed next. Matlab
Software (Version 2016a, Mathworks Inc., Waltham, MA, USA) was used for image analysis.

2.3.1. Image Pre-Processing

Image pre-processing involved five main steps, including (1) conversion of an original
image to a binary image, (2) image inversion, (3) applying erosion and dilation, (4) noise
removal, and (5) background removal.

2.3.2. Feature Extraction

Previous works have demonstrated the successful use of various color spaces and/or
texture features in assessing the ripening levels of fruit [32,34,41]. In this work, we used a
similar concept and extracted different color and texture features from each wild pistachio
sample to identify their ripeness stage. The feature extraction included six different color
spaces, viz. RGB, L* a* b*, I1I2I3, NRGB, CrCgCb, and HSV. The detailed definition
of the color spaces mentioned above can be found elsewhere [42–46]. In addition, the
gray level was obtained from RGB [47–50]. The data from 19 individual channels of the
abovementioned color spaces were recorded, namely R, G, B, I1, I2, I3, L*, a*, b*, nr, ng, nb,
cr, cg, cb, H, S, and V channels and gray levels.

From the aforementioned image channels, 15 color and texture features were extracted,
including minimum, mean, maximum, standard deviation, coefficient of variation, median,
mode, skewness, kurtosis, homogeneity, covariance, contrast, correlation, entropy, and
energy [47,51,52]. The detailed equations of the aforementioned features can be found
elsewhere [42,45–47,51,52]. Overall, 15 × 19 = 285 features were extracted from each of the
160 samples.

2.3.3. Feature Selection

The presence of redundant features could complicate the model development and
data analysis. To this end, we used a quadratic sequential feature selection method (similar
to [45,46,53] to identify and select optimum features for further analysis. The selected
optimum features were used as inputs for the classification algorithms.

2.3.4. Classification

Linear and quadratic discriminant analysis methods and artificial neural network [28,54–57]
methods were employed to classify wild pistachios into four ripeness levels using the opti-
mum features (see Section 2.3.3). Development of the classifier model was done in MATLAB
Software. In the case of discriminant-based classifiers (i.e., LDA and QDA), the data were
randomly divided into two sets, namely the training and test set, in a ratio of 80:20%. In
the case of ANN-based classifiers, the data were randomly divided into three sets, namely
the training, validation, and test set, in a ratio of 60:20:20%.

The ANN structure consisted of an input layer, a hidden layer and a target layer.
The number of neurons in the input layer was equal to the number of the optimum
features discussed above. The number of neurons in the target layer was set to the number
of ripeness stages (=4). For the hidden layer, a varying number of neurons (between
2 and 20) were explored to identify the optimum structure. Similar to previous relevant
studies [40,42,45], a tangent sigmoid activation function was used for the hidden layer, and
a linear activation function was used for the target layer. The training of the ANN models
(over epochs) was carefully monitored using the Matlab plottrainstate function, similar
to [42]. The performance of ANN classifiers was compared based on the mean squared
error (MSE) of validation set results, the correlation coefficient of the test data, and the
correct classification rate (CCR) over the entire dataset [42,45].

The optimum ANN classifier was selected as a model with the highest CCR, the
highest correlation coefficient, and the lowest mean squared error. The performances of



Sensors 2022, 22, 7134 5 of 12

discriminant-based classifiers (i.e., LDA and QDA) were examined using CCR and MSE
measures. Ultimately, the CCR measure was utilized to compare the performance of LDA,
QDA, and the optimum ANN model [42,45,46,53].

3. Results and Discussion
3.1. Image Pre-Processing

The result of image pre-processing is presented in Figure 4. In this step, the background
and corresponding undesired shadows/components in each wild pistachio image were
removed, and the final obtained image was used for the feature extraction step.
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Figure 4. The result of different pre-processing steps, (a) original image, (b) black and white image,
(c) reversing black and white image, (d) filling the image and removing the noises, and (e) removing
the background from the image.

3.2. Feature Extraction

As mentioned in the material and methods section, 285 color and texture features
were obtained from each wild pistachio image. Out of these, 16 features were identified as
‘optimum’ for classification, including the mean of B, skewness and kurtosis of L*, mean of
b*, mean of Nr, mean and skewness of Ng, mean of Nb, mean of I2, mean and kurtosis of
I3, mean of Cr, mean and skewness of Cb, mean of H, and mean of S channel.

Table 1 shows the average values of the aforementioned features for samples with
different ripeness stages. The observed differences between the values within each row
confirm the suitability of that feature for ripeness assessment. The provided features in
Table 1 were used as the input of the classifier models.



Sensors 2022, 22, 7134 6 of 12

Table 1. The mean value of the selected features of different groups of wild pistachios.

No. Feature Channel Ripeness Stage.

Overripe Ripe Secondary Unripe Initial Unripe

1 Mean B 0.227351 0.246726 0.228051 0.318771
2 Skewness L* −0.24252 5.504441 23.80489 5.147078
3 Kurtosis L* 1.076301 2.680921 4.210625 2.880944
4 Mean b* 6.334246 2.581373 11.99416 9.648972
5 Mean Nr 0.000231 0.000262 0.000459 0.000534
6 Mean Ng 0.000225 0.000215 0.000232 0.000474
7 Skewness Ng 21.3878 17.6356 5.723309 3.559942
8 Mean Nb 0.000193 0.000213 0.000223 0.000421
9 Mean I2 0.025847 0.023206 0.114415 0.063754

10 Mean I3 0.008155 −0.01009 −0.05226 −0.00162
11 Kurtosis I3 2.987824 2.948279 4.174406 3.320493
12 Mean Cr 0.010891 0.030667 0.154239 0.052948
13 Mean Cb −0.0408 −0.01575 −0.07459 −0.07456
14 Skewness Cb −0.3614 −0.52836 0.269488 0.221479
15 Mean H 0.143898 0.39319 0.247182 0.149145
16 Mean S 0.183587 0.165916 0.500831 0.284045

3.3. Discriminant Analysis Classifiers

Table 2 shows the confusion matrix of the LDA classifier model. The correct classifi-
cation rate of the LDA classifier model was calculated to be 93.75%, with a mean squared
error of 0.0625. It can be seen that only 1 out of 40 samples was misclassified as overripe,
initial ripe, and secondary ripe stages. However, the ripe stage was misclassified in 7 out of
40 cases.

Table 2. The confusion matrix of the LDA classifier model.

Predicted
Overripe Ripe Secondary Unripe Initial Unripe

Actual

Overripe 39 0 0 1

Ripe 7 33 0 0

Secondary
unripe 0 0 39 1

Initial unripe 0 0 1 39

The confusion matrix of the QDA classifier model is presented in Table 3. The correct
classification rate of the QDA classifier was calculated to be 97.50%, with a mean squared
error of 0.0250. It can be seen that the QDA outperformed LDA by yielding better accuracy
and smaller error. In a set of 40 samples, the overripe, ripe, secondary ripe, and initial ripe
stages were misclassified 2, 1, 1, and 0 times, respectively.

Table 3. The confusion matrix of the QDA classifier model.

Predicted
Overripe Ripe Secondary Unripe Initial Unripe

Actual

Overripe 38 2 0 0

Ripe 1 39 0 0

Secondary
unripe 0 0 39 1

Initial unripe 0 0 0 40



Sensors 2022, 22, 7134 7 of 12

3.4. Artificial Neural Network Classifier

As indicated in Section 2.3.4, we also explored the suitability of various ANN structures
to identify the ripeness stages of wild pistachios. Table 4 shows the performance of different
ANN classifier structures.

Table 4. The performance of different ANN structures.

No. Structure Mean Squared
Error of Validation

Correlation Coefficient
Of Test Data

Correct Classification
Rate of All Data

1 16-2-4 0.06441 0.80368 75.00
2 16-3-4 0.02591 0.93764 96.30
3 16-4-4 0.00020 0.88903 97.50
4 16-5-4 0.00861 0.93359 97.50
5 16-6-4 0.01584 0.91826 97.50
6 16-7-4 0.01014 0.85928 98.10
7 16-8-4 0.02546 0.92715 98.80
8 16-9-4 0.00204 0.92087 98.10
9 16-10-4 0.01372 0.97779 100.00
10 16-11-4 0.19684 0.94592 98.80
11 16-12-4 0.00748 0.95115 99.40
12 16-13-4 0.00391 0.89191 99.40
13 16-14-4 0.01795 0.90738 100.00
14 16-15-4 0.01710 0.95211 100.00
15 16-16-4 0.01770 0.94989 99.40
16 16-17-4 0.00897 0.94868 98.80
17 16-18-4 0.01328 0.94509 98.80
18 16-19-4 0.00779 0.96164 98.80
19 16-20-4 0.01447 0.92076 100.00

One can see that the best performance was achieved under a structure with 10 neurons
(16-10-4), where the highest correct classification rate for the entire dataset was achieved
(CCR = 100%) with the highest correlation coefficient of test data (r = 0.97779) and a rela-
tively low mean squared error of validation data (MSE = 0.01372). Figure 5 shows the struc-
ture of the optimum ANN classifier, the corresponding confusion matrix (CCR = 100%),
and the mean squared error curve (MSE = 0.01372).

The regression lines and the correlation coefficients of the optimum ANN are shown
in Figure 6. Herein, 0 and 1 represent the non-membership and membership of a sample
for the desired class (see [42,45] for details). The correlation coefficients (R) of the optimum
ANN model for training, validation, and test data sets were 0.99, 0.96, and 0.98, respectively.
The correlation coefficient over the entire data was in excess of 0.98. One can see that
rounding the predicted values to the closest binary values (0 or 1) can result in a perfect
regression line (r = 1).

An alternative approach to using a shallow neural network to analyze our data could
be state-of-the-art deep learning algorithms. However, the former approach was selected
as it could offer reliable performance while needing lower computational time and power.

As mentioned in Section 1, to the best of our knowledge, there have not been any
previous studies on smart assessment of the ripeness of pistachios. However, color imaging
with LDA has been used by scholars to classify ripeness levels of banana (CCR = 98% using
L* a* b* color space) [48], apricot (CCR = 90.4% using R, G, B channels, gray-scale, L*, a*,
and b* color space) [58], and tomato (CCR = 81% using RGB color space) [59]. Similarly,
QDA has been used by scholars to classify the ripeness levels of apricot (CCR = 92.3%
using R, G, B channels, gray-scale, L*, a*, and b* color space) [58], and persimmon
(CCR = 90.2% RGB + L* a* b* color space) [28]. ANN has also been implemented by scien-
tists to classify the ripeness levels of mulberry (CCR = 96% using various color spaces [34]),
banana (CCR = 96% using RGB color space) [60], tomato (CCR = 96% using L* a* b* color
space) [30], and watermelon (CCR = 86.51% using YCbCr color space) [61]. Compared to
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the aforementioned works, our study confirms the reliability of visible imaging and image
processing in identifying the ripeness stages of a new fruit (wild pistachio).
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Future work in this area can involve examining the capability of the developed models
on different pistachio cultivars and in orchard environments. Indeed, one should note that
performing fruit segmentation in an orchard environment under variable light settings is
a more challenging task (see [41]). Upon the development of appropriate segmentation
algorithms, a modified model can be designed to be integrated into robots/drones to let
stakeholders make efficient managemental decisions in the field.



Sensors 2022, 22, 7134 9 of 12Sensors 2022, 22, x FOR PEER REVIEW 10 of 13 
 

 

  

  

  

  

Figure 6. Correlation coefficient (R) of (a) training, (b) validation, (c) test, and (d) all data. 

An alternative approach to using a shallow neural network to analyze our data could 

be state-of-the-art deep learning algorithms. However, the former approach was selected 

as it could offer reliable performance while needing lower computational time and power. 

As mentioned in Section 1, to the best of our knowledge, there have not been any 

previous studies on smart assessment of the ripeness of pistachios. However, color imag-

ing with LDA has been used by scholars to classify ripeness levels of banana (CCR = 98% 

using L* a* b* color space) [48], apricot (CCR = 90.4% using R, G, B channels, gray-scale, 

L*, a*, and b* color space) [58], and tomato (CCR = 81% using RGB color space) [59]. Sim-

ilarly, QDA has been used by scholars to classify the ripeness levels of apricot (CCR = 

92.3% using R, G, B channels, gray-scale, L*, a*, and b* color space) [58], and persimmon 

(CCR = 90.2% RGB + L* a* b* color space) [28]. ANN has also been implemented by scien-

tists to classify the ripeness levels of mulberry (CCR = 96% using various color spaces 

[34]), banana (CCR = 96% using RGB color space) [60], tomato (CCR = 96% using L* a* b* 

color space) [30], and watermelon (CCR = 86.51% using YCbCr color space) [61]. Com-

pared to the aforementioned works, our study confirms the reliability of visible imaging 

and image processing in identifying the ripeness stages of a new fruit (wild pistachio). 

(c) (d) 

(b) (a) 

Figure 6. Correlation coefficient (R) of (a) training, (b) validation, (c) test, and (d) all data.

4. Conclusions

Wild pistachio is a fruit of high economic importance with various applications in
the medicine and food industry. A non-destructive approach was developed to estimate
the ripeness levels of wild pistachio using artificial intelligence and an image processing
algorithm. Using linear discriminant analysis, quadratic discriminant analysis, and artificial
neural network, classification accuracies of over 93% were obtained to classify wild pistachio
images into four ripeness levels. The best performance was achieved using the artificial
neural network, with an accuracy of 100%. The obtained results confirm the suitability of the
proposed imaging algorithm combined with linear and non-linear classification techniques
to characterize the ripeness levels of wild pistachios. However, further research is required
to evaluate the capability of the developed model on various pistachio cultivars. Moreover,
upon further research, the developed models can be integrated into harvesting robots to
facilitate smart and efficient harvesting, grading, and handling of wild pistachios.
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