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Abstract: Intermittent manual measurement of vital signs may not rapidly predict sepsis devel-
opment in febrile patients admitted to the emergency department (ED). We aimed to evaluate the
predictive performance of a wireless monitoring device that continuously measures heart rate (HR)
and respiratory rate (RR) and a machine learning analysis in febrile but stable patients in the ED. We
analysed 468 patients (age, >18 years; training set, n = 277; validation set, n = 93; test set, n = 98)
having fever (temperature >38 °C) and admitted to the isolation care unit of the ED. The AUROC
of the fragmented model with device data was 0.858 (95% confidence interval [CI], 0.809-0.908),
and that with manual data was 0.841 (95% CI, 0.789-0.893). The AUROC of the accumulated model
with device data was 0.861 (95% CI, 0.811-0.910), and that with manual data was 0.853 (95% CI,
0.803-0.903). Fragmented and accumulated models with device data detected clinical deterioration in
febrile patients at risk of septic shock 9 h and 5 h 30 min earlier, respectively, than those with manual
data. Continuous vital sign monitoring using a wearable device could accurately predict clinical
deterioration and reduce the time to recognise potential clinical deterioration in stable ED patients
with fever.

Keywords: deterioration; emergency department; wearable device; septic shock; vital sign monitoring;
machine learning

1. Introduction

Patients who visit the emergency department (ED) for fever account for 5% of all
patients and 15% of all older adult patients in the ED, and those with chronic diseases or
aged >65 years have a 30-day mortality rate of 7-9% [1]. Sepsis is a serious complication
in patients who present to the ED with febrile symptoms and can lead to a fatal clinical
outcome [2]. Therefore, it is crucial to recognise the deterioration in these patients at the
early stages of their disease courses and to promptly intervene to avoid poor outcomes [3,4].
Since changes in vital signs are important indicators of physiological decline, their imme-
diate detection enables early recognition of clinical deterioration and intervention [5-8].
However, it is practically impossible for physicians to closely monitor and observe each
patient who presents to the ED. Therefore, close patient monitoring is prioritised for pa-
tients who are unstable during triage or the first check-up. Accordingly, early detection
of clinical deterioration may not be achieved by intermittent measurement of vital signs
since resources are not continuously provided to patients initially deemed as not requiring
close monitoring [9-15]. Furthermore, febrile patients have become more vulnerable to
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deterioration since the outbreak of the coronavirus disease 2019 (COVID-19) as bedside
patient observation has been restricted to control the spread of the disease [16,17].

Recently, wireless wearable devices for continuous monitoring of heart rate (HR),
respiratory rate (RR), body temperature, and patient location have been introduced world-
wide. Previous studies found that these devices can improve the safety of patients who
have difficulty accessing regular monitoring devices [18-21]. However, the reliability of
these devices in relevant clinical environments has not been fully validated; thus, their
practical use in clinical settings is limited [22-24]. Furthermore, only a few studies were
conducted in the ED, and most studies focused on the use of these devices in patients
admitted to wards [15,25].

Due to the tremendous advances in the development of machine learning and deep
learning algorithms, the availability of large databases, and the increase in computational
processing power, machine learning in the medical field has rapidly evolved over the past
two decades, with a wide range of applications using several different algorithms such as
natural language processing, data mining, clustering, and classification [26].

The size of data obtained using a continuous monitoring device is much larger than
that obtained using the manual method in which the measurements are obtained intermit-
tently. Machine learning-based analysis is being used in various clinical research studies
that include large amounts of data since it is suitable to promptly manage large-scale
datasets with various datatypes within a short time [27,28].

Although previous studies revealed that frequently monitored vital signs are useful
for clinical decision making, the particular type and frequency of vital signs that should be
monitored and the correlation between each parameter and poor outcomes are yet to be
studied [29]. With the growing number of patients presenting to EDs and the enormous
amount of data related to patient monitoring, conventional techniques are considered
inadequate to process these data. Therefore, the efficiency of emergency medical practice
can be maximised if a large amount of data generated during the emergency department
stay can be immediately processed using a machine learning algorithm [30,31].

Therefore, in the present study, we aimed to evaluate the predictive performance of a
wireless monitoring device for the continuous measurement of HR and RR in febrile but
stable patients in the ED using machine learning-based analysis.

2. Materials and Methods
2.1. Study Design and Population

This was a retrospective study conducted using data collected prospectively at the ED
of a tertiary teaching hospital from 20 July 2020 to 15 June 2021. We used an interventional
design, which involved continuous monitoring of the signals of patients obtained using a
wireless wearable device and intermittent manual measurements of the vital signs.

Patients aged >18 years who were stable but had a body temperature over 38 °C upon
arrival and were admitted to the isolation care unit in the ED were enrolled in this study.
The isolation care unit in the ED is for patients with suspected COVID-19. All patients
who met the enrolment criteria were asked to participate in the study on arrival at the ED,
and written informed consent was obtained if the patient agreed to participate in the study.
This study was approved by the Institutional Review Board of Yonsei University College of
Medicine, Severance Hospital (no. 1-2019-0058).

2.2. Description of the Wireless Wearable Device

Hicardi (MEZOO Co., Ltd., Wonju-si, Gangwon-do, Korea) is an 8 g, 42 x 30 x 7 mm,
wireless, and wearable adhesive monitoring device certified as a medical device by the
Ministry of Food and Drug Safety of Korea. This device is used to monitor and record
single-lead electrocardiograms (ECGs), RR, and skin surface temperature, as well as patient
location and activity (Figure S1). It comprises a reusable sensor module and a disposable
adhesive patch that houses a two-point ECG electrode. The reusable sensor module contains
a microprocessor, an ECG/respiration circuit, a temperature sensor, a triaxial accelerometer,
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a Bluetooth low-energy (BLE) transceiver, and a 50 mAh Li-ion polymer battery. This
device can be attached to the chest and can continuously measure signals for up to 24 h.
The sensor processes and transmits the signals through BLE to a mobile device with a
smartphone application. This application can display ECG, HR, RR, patient posture, and
geographical location in real time and transmit the data to a cloud-based monitoring server
with a randomised research number. Patient information is not recorded on the mobile
device to ensure anonymisation. This system complied with the international standards
and guidelines of regulatory authorities regarding cybersecurity [32,33].

The ECG signal is recorded at a rate of 250 samples/s in 14 bits. The algorithm, which
calculates the HR using ECG, is based on the automated detection of QRS complexes of
ECG waveforms. RR is derived from the changes in respiration detected through the
measurement of the electrical impedance of the patient’s thorax. This device with a real-
time heartbeat detection algorithm showed 99.95% of the sensitivity, 99.95% of the positive
predictivity, and 0.10% of the detection fail rate on the four different databases in the
previous study [34].

2.3. Data Acquisition

ECG rhythm and respiratory signals were continuously monitored using the wearable
wireless device and manually measured intermittently. After obtaining informed consent
from the patient, the wireless wearable monitoring device was attached to the patient’s
left sternal border. Measurement of vital signs, such as systolic blood pressure, diastolic
blood pressure, HR, RR, and mental status, was performed manually and recorded every
hour, from baseline to 6 h later, while the wearable device was attached to the patient. If
the patient died, was discharged, or was hospitalised within 6 h from the time of enrolment
in this study, the data collected up to that time were used.

The signals were uploaded to the cloud-based server according to the device number
and analysed after data collection was completed. The data from the device were separated,
encrypted, and stored in electronic medical records in the hospital legacy system [35]. The
researchers checked the central monitor and verified the quality of the signal data during
data collection to determine whether the ECG and respiratory waveforms were properly
transmitted from the mobile device to the cloud server. Regarding the signal data from the
wearable monitoring device, 250 Hz ECG waveform data with information about R-peak
location and 25 Hz respiratory waveform data were used.

2.4. Signal Data Filtering Process

The raw data transmitted by the wearable device were obtained, and invalid data
were removed to retrieve continuous vectors of vital signals. Vital sign data were sampled
once per second with their timestamps. Artifacts were not removed before the signal data
filtering process. For ECG data, one unit was set and sliced to process the outlier so that
the QRS wave was at the centre of each unit. If a unit was 1.5 times longer than the median
of the units, or if the maximum or minimum values of the units were twice as large or
small as the other units, these units were excluded to minimise the noise of the signal. The
median HR for each unit was calculated from the entire ECG data, and the units excluded
as described above were processed using the carry forward method. For respiratory signal
data, the units excluded from ECG data filtering were removed at first, and the number
of sections between each peak of the respiratory signal wave was calculated to obtain the
RR [36]. If the value of the respiratory wave was 0.5 times smaller or 1.5 times larger than
the previous respiratory value, these units were excluded. The median RR for each unit
was calculated from the entire respiratory data, and the units excluded as described above
were processed using the carry forward method.

2.5. Development of the Prediction Model

We processed and utilised 14 different values for model development. Data regarding
age, sex, body temperature, and oxygen saturation were recorded on arrival and included
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as the static values for model development (four values), and data regarding systolic blood
pressure, diastolic blood pressure, HR, RR, and mental status obtained every hour were
included as the dynamic values (five values); the data were measured either manually or
using the wearable device. We then calculated the difference between the data measured
hourly and the vital sign data measured initially (five values).

With these data, we created a data fragment to build two different models—a simple
computed model that predicted outcomes using only one data fragment in a specific time
unit, and the accumulated model that predicted outcomes by considering all previous
data fragments comprehensively. For data fragmentation, data units of the 14 previously
mentioned values (five static values, four dynamic values, and four difference values),
measured every hour, were used as manual data, whereas data units of the same 14 values,
with HR and RR replaced with signal data from the wearable device, measured every 5 min,
were used as device data.

For the development of the model, we used a convolutional neural network (CNN)
and a long-short term memory (LSTM) network for time-sensitive analysis. A CNN is a
type of artificial neural network commonly used for the analysis of visual images, such
as ECG signals [37]. LSTM is a structure with an artificial recurrent neural network that
is used in deep learning algorithms. Compared with standard neural networks, LSTM is
applied during unsegmented data handling owing to the property that processes entire
sequences of data using feedback connections [38]. The technical structure of the model is
shown in Figure 1 and Supplementary Table S1. Considering the average time to evaluate,
diagnose, and decide disposition during the ED stay, we set the data acquisition time to 6 h
to predict septic shock in febrile patients. Regarding the estimation of the time to predict
deterioration, it was assumed and recorded that it took over 6 h to predict septic shock if
the model failed to predict it within the first 6 h.

Respiration signals

ECG signals
Neurokit2 library

vital signs ECG signals vital signs at current time point (t)
Neurokit2 library

Respiration signal
Manually recorded [MJ Manually recorded } E Vital Signs

LSTM (Long Short-Term Memory Network)
1. Number of layers = 2
2. Hidden size = 128

Last
Output

Fully-connected layer
1. Inputsize: 14
2. Hidden size : 512

Fully-connected layer
1. Input size: 512
2. Hidden size : 512

Fully-connected layer
1. Inputsize: 512
2. Hidden size : 2

Batch Leaky-
Norm relu

Batch  Leaky-
Norm relu

N e e e e e e e 22 Machine leaming modeling structure | _ _ _
Fragmented model Fragmented model Accumulated model Accumulated model
I with manual data with device data with manual data — with device data

Figure 1. Technical structure of the prediction modelling process.

2.6. Outcomes

The primary outcome was clinically identified septic shock requiring treatment with
vasopressors to maintain a mean arterial pressure of 65 mm Hg or more in the absence
of hypovolemia after adequate fluid administration within 24 h from the time of enrol-
ment [39].

2.7. Statistical Analysis

Statistical analyses were performed using R software version 3.4.4 for Windows
(R foundation for statistical computing, Vienna, Austria). The results are presented as
mean = standard deviation (SD) or median (interquartile range) for continuous variables
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and as frequencies (%) for categorical variables. The patients were randomly allocated
to a training set, a validation set, and a test set in a 6:2:2 ratio for machine learning and
model development. The sensitivity and specificity of the models were examined. The
discriminative ability of each model was assessed using the area under the receiver operat-
ing characteristic curve (AUROC) and the area under the precision-recall curve with 95%
confidence interval (CI) values.

3. Results
3.1. Baseline Characteristics

A total of 1263 febrile patients were admitted to the isolation care unit of the ED for
COVID-19 screening. We excluded 793 patients who did not provide informed consent.
Two patients had missing wearable device data owing to technical issues. Thus, the data of
468 patients, comprising 277 patients in the training set, 93 in the validation set, and 98 in
the test set, were eligible for analysis (Figure 2).

Febrile patients admitted
to the isolation care unit
(=1263)

Excluded patients
* Did not provide informed consent
(=793)
« Missing data (+=2)

Patients included in the final analysis
(7=468)

Test set

(=98)

Manual data Device data

Training set Validation set 686 data units 2553 data nits

=277 (7=93)

Manual data Device data Manual data Device data
1639 data units 8114 data units 651 data units 2733 data units

Figure 2. Flowchart of patient selection for the study.

Table 1 shows the baseline characteristics of the enrolled patients.

Table 1. Baseline characteristics of the enrolled patients.

Characteristics Value
sex (male) 202 (44.20)
age (years) 56.87 £ 18.80
duration of device use (min) 300.27 4+ 100.03
vital signs on arrival
systolic blood pressure (mmHg) 127.36 £ 22.06
diastolic blood pressure (mmHg) 75.72 £ 11.46
heart rate (bpm) 108.59 + 18.52
respiratory rate (bpm) 18.16 £ 2.71
body temperature (°C) 38.64 £ 0.57
oxygen saturation (%) 96.77 + 2.47
Glasgow Coma Scale score 14.98 £+ 0.23
use of vasopressors 85 (18.60)

Values are expressed as number (%) or mean =+ standard deviation.

3.2. Reliability of the Wireless Monitoring Device

Figure 3a shows the agreement between HR data measured using the wireless device
and a standard monitoring device (reference standard). The mean difference in HR was
—0.685 bpm, with a 95% level of agreement (—15.978-14.607 bpm). Figure 3b shows the



Sensors 2022, 22, 7054 6 of 12

agreement between RR data measured using the wireless device and a wall monitor. The
mean difference was 1.039 bpm, with a high level of agreement (—5.884-7.963). Bland-
Altman plots to compare the Hicardi with a standard measuring method are depicted in
Supplementary Figure S2.

@) (b)

"l ,h“‘l“lhlu.h...

10

20 30 a0
Manually recorded respiratory rate (breaths/min)

Figure 3. Agreement between the measurements from the wireless monitoring device and manual
measurements. (a) Agreement between heart rate measurements. (b) Agreement between respiratory
rate measurements.

3.3. Predictive Performance

Of the 468 enrolled patients, 76 (16.2%) suffering from sepsis needed vasopressors to
maintain at least 65 mmHg of mean arterial pressure. In the test set, the clinical condition
of 16 of the 98 (16.3%) patients deteriorated, resulting in septic shock. The AUROC value
of the fragmented model developed using device data was 0.858 (95% CI, 0.809-0.908),
which was higher than that developed using manually recorded data (AUROC, 0.841;
95% CI, 0.789-0.893). The accumulated model developed using device data showed better
predictive performance (AUROC, 0.861; 95% CI, 0.811-0.910) than that developed using
manually recorded data (AUROC, 0.853; 95% CI, 0.803-0.903) (Table 2).

Table 2. Predictive performance of each model.

AUROC AUPRC Sensitivity Specificity
Model Data (95% CI) (95% CI) (95% CI) (95% CI)

il data 0.841 0.699 0.731 0.836

fragmented (0.789-0.893) (0.598-0.783) (0.633-0.811) (0.7960.870)
model device data 0.858 0.761 0.710 0.936

(0.809-0.908) (0.664-0.837) (0.611-0.792) (0.907-0.956)
anual data 0.853 0.679 0.710 0.841

accumulated (0.803-0.903) (0.578-0.766) (0.611-0.792) (0.802—0.874)
model device data 0.861 0.689 0.699 0.880

(0.811-0.910) (0.588-0.775) (0.599-0.783) (0.844-0.908)

AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; CI,
confidence interval.

3.4. Time to Predict Deterioration

In the test set, both fragmented and accumulated models developed using device data
accurately predicted septic shock within 6 h in one more patient than those developed
using manual data. Regarding the time to predict septic shock when the threshold was set
at maximum sensitivity with specificity over 0.9, compared with the model with manual
data, the fragmented model with device data predicted septic shock at least 9 h earlier in
total, and the accumulated model with device data predicted septic shock 5 h 30 min earlier
at the minimum. The prediction time point data for all patients with positive outcomes are
shown in Figure 4.
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Figure 4. Prediction timepoint data for all patients with positive outcomes. (a) Fragmented model.

(b) Accumulated model.

3.5. Feature Importance Scores of the Models

As a result, blood pressure (SBP, DBP), both the value of the current time point and
the difference value between the present and the time of the visit, showed high feature
importance scores in all four models. Additionally, accumulating the latest HR value was
important for prediction since the current HR ranked higher in the model using the device
data. On the other hand, in the model using manual data, the HR difference value ranked
higher. The ranking of features with high importance scores showed a similar tendency in
the accumulated and fragmented models. The feature importance scores of the models are

shown in Figure 5.
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Figure 5. Feature importance scores of the models. (a) Fragmented model with manual data (left),
with device data (right). (b) Accumulated model with manual data (left), with device data (right).
SBP, systolic blood pressure; DBP, diastolic blood pressure, HR, heart rate; RR, respiratory rate; GCS,
Glasgow coma scale; BT, body temperature; Sat, oxygen saturation; diff, difference; seq, sequence.
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4. Discussion

Patients in the ED who show signs of instability during the triage stage are assigned to
a treatment area with a standard multi-parameter monitoring device used in intensive care
units (ICU) and operating rooms [17]. Since the supply of resources in the ED is limited, it
is not possible to assign all patients in the ED to this critical treatment area or to provide a
standard monitoring device for each patient. In addition, unlike in the ICU, ED physicians
cannot continuously manage the admitted patients for an extended period. Moreover,
since patients in the ED are frequently moved out of the ED for radiologic evaluation or
urgent procedures, the use of standard monitoring devices with limited mobility in the
ED is not practical [40,41]. Additionally, patients in the ED are more likely to become
unstable than patients in the general ward, even if their initial vital signs are stable; thus,
frequent monitoring of patients in the ED is important. Currently, numerous wireless
monitoring devices capable of continuously measuring vital signs have been introduced to
compensate for the lack of mobility of standard monitoring devices [42,43]. According to
the findings of previous studies, the performances of these devices are not inferior to those
of standard monitors; in particular, the measurement of HR using wireless devices has
been considerably reliable [22,23]. However, studies that assess the clinical utility of these
devices in specific medical settings are rare [44]. Furthermore, several studies conducted to
confirm the improvement in clinical outcomes with the use of wireless monitoring devices
could not clearly demonstrate the superiority of such devices over the manual measurement
of vital signs [24]. The present study demonstrated that continuous measurement of HR
and RR using a wireless monitoring device enabled the accurate prediction of clinical
deterioration and could reduce the time to predict septic shock in actual clinical practice.
In addition, we minimised the contamination of the prediction modelling by the noise
that inevitably occurred when using the real-time data by developing an algorithm after
pre-processing using time series data processing technology [36]. It is known that clinical
deterioration of patients can be predicted more precisely when vital signs are measured and
recorded frequently and the changes at intervals are considered comprehensively [45-49].
The predictive model developed in the present study confirmed that even though only two
vital signs were measured continuously, the predictive value, except sensitivity for clinical
deterioration, was increased compared with that of the model developed using intermittent
input. In summary, the present study quantitatively confirms the clinical hypothesis that
physicians should make a medical decision considering changes in the patient’s condition
by acquiring vital sign values more frequently.

Assessment of the risk of potential clinical deterioration in patients who are clinically
stable on arrival to the ED is a crucial and challenging task for ED physicians [3,50,51]. In
the frequently overcrowded ED, it is practically impossible for medical staff to continuously
collect signal data of vital signs manually and use them in real time for the timely detection
of clinical deterioration of patients. In addition, the utility of the wearable device can
be guaranteed only when there is an algorithm that can accurately predict deterioration
by rapidly processing real-time unstructured data generated from the device. Therefore,
advanced technologies, such as wearable devices for patient monitoring and the machine
learning analysis introduced in this study, can support the complex decision-making task of
physicians in clinical settings through the quantification of atypical data, which is currently
missing in practice.

Advanced devices that can facilitate patient monitoring have been introduced in
previous studies [18-21]. However, the medical device itself does not change the clinical
environment. These technologies can be applied in clinical practice only when the clinical
benefit of the device’s performance is clearly identified in a specific clinical scenario [52].
The scenario of the present study meets the needs of ED physicians in clinical practice.
Specifically, bedside evaluation of febrile patients who visit the ED has been limited since
the outbreak of COVID-19 [16,17]. Accordingly, we utilised a real-world scenario to verify
the clinical usefulness of this wireless monitoring device by improving the blind spots
in monitoring that may occur owing to the limitations in bedside access by medical staff.
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In addition, the structure of the prediction model developed was designed to reflect the
physician’s point of view and predict clinical deterioration in febrile patients. Since vital
signs reflect core information that identifies patients progressing to septic shock [53,54], we
used serial values as input information for the model. In particular, the machine learning
algorithm used for detecting the earliest time to recognise deterioration was trained to
maximise sensitivity in predicting poor outcomes while maintaining high specificity. This
was performed considering the characteristics of the ED, where it is critical to not miss
deteriorating patients and to initiate treatment within a short period.

The present study had some limitations that should be considered when interpreting
its results. Firstly, of the vital sign indicators, only the continuous signal data for HR and
RR were used for analysis. The performance of the predictive model can be improved
when the continuous signal data of additional indicators are obtained. Secondly, although
the data were collected prospectively, the analysis was performed retrospectively; thus,
the predictive model did not lead to physician intervention in clinical practice. Therefore,
future prospective research is required to confirm whether our predictive model supports
the clinical decisions of ED physicians and improves clinical outcomes.

5. Conclusions

The present study is a pilot trial in which a wearable device continuously captured pa-
tients’ vital signs that occurred in the clinical field but could not be detected and converted
into a useful data source for clinical practice. It showed that continuous monitoring of vital
signs using a wearable device could predict clinical deterioration accurately and reduce
the time to recognise potential clinical deterioration in stable ED patients with fever. Our
results support the application of a wearable device in clinical settings to decrease safety
risks due to limited ED resources. Similar studies are needed to secure the use of these
digital technologies in various clinical settings in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s22187054 /s1, Table S1: Technical structure of the prediction modelling;
Figure S1: The wireless wearable monitoring device and the smartphone application used in the
study; Figure S2: Bland-Altman plots to compare the Hicardi with a standard measuring method.
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