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Abstract: Laser cutting belongs to non-contact processing, which is different from traditional turning
and milling. In order to improve the machining accuracy of laser cutting, a thermal error prediction
and dynamic compensation strategy for laser cutting is proposed. Based on the time-varying charac-
teristics of the digital twin technology, a hybrid model combining the thermal elastic–plastic finite
element (TEP-FEM) and T-XGBoost algorithms is established. The temperature field and thermal
deformation under 12 common working conditions are simulated and analyzed with TEP-FEM.
Real-time machining data obtained from TEP-FEM simulation is used in intelligent algorithms. Based
on the XGBoost algorithm and the simulation data set as the training data set, a time-series-based
segmentation algorithm (T-XGBoost) is proposed. This algorithm can reduce the maximum deforma-
tion at the slit by more than 45%. At the same time, by reducing the average volume strain under
most working conditions, the lifting rate can reach 63% at the highest, and the machining result is
obviously better than XGBoost. The strategy resolves the uncontrollable thermal deformation during
cutting and provides theoretical solutions to the implementation of the intelligent operation strategies
such as predictive machining and quality monitoring.

Keywords: time-varying; hybrid modeling; volumetric strain; T-XGBoost

1. Introduction

There are significant improvements in processing new styles of metallic materials
in many pillar industries, such as aerospace and transportation, attributable to the rapid
development of the intelligent manufacturing. Meanwhile, the requirement of the accuracy
and reliability of laser cutting is continuously increasing. As a representative of non-
contact processing, the accuracy indicators of laser cutting are different from those of the
traditional machine tools. The traditional NC machining is mainly turning and milling.
Tool wear directly affects energy consumption [1], cutting force [2], surface quality of the
workpiece [3], residual stress distribution of the workpiece surface [4], and production
cost [5] during cutting. Different from the traditional machine tool, there are no errors
caused by the induced force during the laser-cutting process. Instead, 70% of the errors
are caused by thermal error during the laser-cutting process, which is the largest source of
errors. Therefore, it is reasonable to conclude that the machine with a lower percentage of
thermal errors has a higher accuracy [6–8].

There are a large number of in-depth studies on the thermal error of machine tools
from domestic and international scholars, which mainly focused on the empirical thermal
error model and the theoretical thermal error model [9]. The empirical thermal error model
usually refers to the best processing parameters obtained through repeated processing
and experiments. This method not only wastes a lot of manpower and material resources,
but also has no reference value for other material processing. However, the limitations of
empirical thermal error compensation methods are highlighted given that the operators
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cannot perform real-time manual error compensation during the automated CNC control
process, which has been increasingly utilized in practice nowadays. Thermal errors in
the processes can be accurately predicted and reasonably avoided by using theoretical
error models. Zhao et al. [10] simulated the temperature field and deformation field of the
machine tool spindle using the finite element (FEM) method and optimized the temperature
sensitive point. Zhang et al. [11] took the whole machine tool as the research object and
discussed the FEM thermal boundary conditions of the spindle system. Wu et al. [12]
used FEM to model the thermal error of the screw feed system. FEM is widely used in
the thermal error modeling of traditional contact machine tool processing. However, it is
seldom used in non-contact cutting. The simulation accuracy is high when the boundary
conditions are not complicated. However, the boundary conditions usually need to be
re-tested and optimized and cannot be directly used for thermal error compensation [9].

Some scholars built thermal deformation prediction models by using machine learning.
Fujishima et al. [13] proposed a new compensation method using a deep-learning algorithm
to compensate for thermal deformation in the machine structure. Postel et al. [14] designed
a method for inverse identification and prediction of parameters during cutting operations.
Lin et al. [15] proposed a method to predict the transverse and tensile strength of SPR
joints based on the XGBoost algorithm and verified that the prediction error was less than
7.6%. One of the advantages of using machine-learning algorithms to predict thermal
deformation is that the model is scalable which means with more data from machine
processing and algorithm optimization, the accuracy of the prediction can be improved
accordingly. However, it is time consuming and expensive to obtain a large set of data
to achieve a more accurate prediction. To solve this problem, Liu et al. [16] proposed a
method based on FEM and artificial neural network (ANN) models for predicting and
compensating deformations in machine tools with a two-machine riveting system. The
machining accuracy is improved.

Currently, the research on thermal errors in machine tools is mainly focused on the
contact machining, such as turning and milling. Dynamic optimization methods have
mostly focused on tool wear detection for contact machining [17]. There is limited research
on the thermal error in the field of non-contact machining, including laser cutting. The
precision of the laser cutting is greatly affected by the machined parts being processed and
the processing conditions. As a result, a FEM-model-driven solution or data-driven solution
cannot meet the real-time requirements. Digital twinning technology realizes the accurate
mapping of physical entities in digital space and promotes the interaction between laser cut-
ting workshops and intelligent systems. With the help of the concept, this paper constructs
the transmission of processing information between physical and virtual entities [18,19].
To establish a laser cutting thermal error prediction and compensation model based on
the mapping ability of the digital twin technology to time-varying characteristics [13], it
is necessary to consider the whole life cycle of processing [20]. It not only analyzes the
changes in machine tool performance but also processing parameters in the time dimension.
In addition, the prediction simulation before machining is added and the cutting process
is further optimized by using the prediction information. Therefore, this paper proposes
a prediction and compensation method for thermal deformation of laser cutting based
on digital twin technology, beyond the existing thermal error compensation schemes for
contact machining, which adopts the hybrid modeling techniques of “model-driven and
data-driven”. It uses the thermo-elastic–plastic finite element (TEP-FEM) model to obtain
real-time thermal deformation data and the prediction ability of the XGBoost algorithm to
improve the accuracy of laser-cutting process parameters.

2. Materials and Methods
2.1. The Main Characteristics of Laser Cutting Accuracy

Laser cutting is widely used due to its high speed and high precision. The overall pre-
cision of laser cutting is determined by the machine performance, laser performance, prop-
erties of the workpiece, processing parameters, and processing phenomena, see Figure 1.
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However, it is difficult to study the main characteristics of real-time machining accuracy
based on the machine performance and the long decay period of the laser generator [21].
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Figure 1. Factors affecting laser cutting accuracy.

For a known type of material, the laser cutting accuracy is primarily determined by
the processing parameters and the thermal phenomenon during the cutting process. In
addition, the heat absorbed by the workpiece is impacted by the cutting speed. During the
cutting process, the surface temperature field and the structure field of the workpiece form
a solid–thermal coupling [4], resulting in thermal expansion. Therefore, the cutting speed
is selected as the main characteristic for the variation in laser cutting accuracy.

2.2. Material

Laser cutting is commonly used to alloy materials. Beyond alloy material, it has been
increasingly used on highly reflective materials with the development of laser cutting
technology. In this paper, the cutting processes of three common materials in industry
are analyzed, i.e., high-speed steel (W18Cr4V), carbon structural steel (Q235A), and 2A12
aluminum alloy, of which the 2A12 aluminum alloy is a highly reflective material and needs
surface treatment. It is found in the preliminary research that the specific heat capacity
and thermal conductivity of the material can impact the processing quality during the
cutting process to certain extent, therefore, it is also considered as a variable factor in the
modeling [22]. The physical properties of the material are shown in Table 1 [23].

2.3. Initial Conditions

The performance of the laser cutting machine can significantly impact the cutting
accuracy. Therefore, the research group cooperated with Dalian Locomotive Technician
College and used the highly precise machine, Swiss Bystronic BySmart Fiber3015 cutting
machine, as the processing equipment, which is equipped with the Fiber 3000 laser. Table 2
below shows the actual parameters when cutting the three types of material selected as
previously mentioned as initial data for modeling, each with four thicknesses that are
commonly used in practice.
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Table 1. Material properties.

Parameters Thermal Conductivity λ

W/(m*K)
Melting Point

◦C
Melting Temperature

◦C
Specific Heat Capacity Cp

c/J·(kg·K)−1

W18Cr4V

20 ◦C 27.21

1050 1180~1220

50 ◦C 473.11
200 ◦C 25.96 200 ◦C 494.04
500 ◦C 25.96 600 ◦C 457.81
700 ◦C 25.12 900 ◦C 487.12

Q235A

200 ◦C 61.1

1468 1460~1495

200 ◦C 745
300 ◦C 55.3 300 ◦C 770
500 ◦C 42.7 400 ◦C 783
700 ◦C 34.2 500 ◦C 833

2A12
aluminum alloy 121 (T4 Status) 659.8 720~760

100 ◦C 921
200 ◦C 1047
300 ◦C 1130
350 ◦C 1172

Table 2. Initial processing parameters.

Work
Condition Material Thickness

mm
Laser Power

W
Cutting Speed

m/min
Pulse Frequency

Hz
Focus Position

mm

1

W18Cr4V

1 3000 36 1000 2
2 2 3000 16.5 1000 2
3 5 3000 2.9 1200 5
4 10 3000 0.5 1200 10

5

Q235

1 3000 33 1000 2
6 2 3000 15 1000 2
7 5 2400 2.8 500 5
8 10 2900 1.5 500 10

9
2A12

aluminum alloy

1 3000 19 2000 2
10 2 3000 8 2000 2
11 5 3000 2.6 2000 5
12 10 3000 0.9 2000 10

2.4. Hybrid Model Methods

Most of the existing laser cutting parameter optimization schemes are empirical
models, which improve the cutting accuracy by adjusting the cutting speed based on a
large amount of processing results. Although are they time-consuming and labor-intensive
with high costs, those models also do not sufficiently consider the impact on the slit from
the changes in the laser generator motion from time to time.

The cutting speed varies during the operation of the laser cutting machine, especially
in the beginning and end stages. A full-cycle speed optimization strategy can be established
utilizing the time-varying mapping capability of digital twin technology. The method steps
are as follows, as shown in Figure 2:

1. Establish the laser heat source model;
2. Establish the thermal deformation theoretical model;
3. Establish a visual TEP-FEM simulation model and obtain real-time thermal deforma-

tion data;
4. Use the factory’s mature technical parameters to verify the rationality of the TEP-

FEM model;
5. Use the TEP-FEM dataset as the training dataset on T-XGBoost to optimize the actual

processing data;
6. The optimized thermal deformation is used as the offset to compensate the real-time

error of the cutting speed.
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Among them, the processing parameters used in step 4 are provided by Dalian Loco-
motive Technical College and the verification method is shown in reference [22].

As a result, the virtual cutting accuracy prediction and analysis is achieved through the
high approximation simulation under the hybrid model of “model-driven and data-driven”,
which is driven by the ability of transmission of virtual and real information introduced by
the digital twin technology.

2.4.1. Heat Source Model

The laser cutting equipment has a complex structure. During the machining process,
there is no contact between the cutting equipment and the workpiece, except for the bracket
fixing the workpiece. The impact on the simulation results of the rest of the complex
structure of the laser cutting equipment is minimal. Therefore, it is reasonable to simplify
the mechanical part as the laser heat source. The laser is not a uniform heat source and the
equation of the heat flow density is:

q(x, y) = qm·e−K(x2+y2) (1)

qm =
P·K
π

(2)

qm is the maximum heat flow in the center of the heat source, P is the total power of
the heat source, and K is the heat source concentration coefficient. The heat flow density at
any point (x, y) is related to its distance from the central maximum heat source point. In
another word, the closer to the central point, the higher the heat flow density. The margin
of heat flow density is related to the heat source concentration factor. The heat source
concentration is modeled with a power of 3000 W and a laser focus radius of 2 mm, as
shown in Figure 3. The model is established by COMSOL 5.4. The research object within
this paper is a thin steel plate, which is one of the primary workpiece types processed by
laser cutting and widely used in the industry. Another major type of workpiece processed
by laser cutting is steel pipe. However, the performance of cutting steel pipe is limited by
the fixture and has no obvious advantages in high-speed processing.

2.4.2. Finite Element Model

The thin steel plates using laser cutting technology are primarily thin-walled parts
with thicknesses of 0.5~12 mm. It is appropriate to divide thin plate parts into triangular
elements. Mesh refinement is performed at the slits to enhance the calculation accuracy
and reduce the waste of material. The refinement is performed on the longest side of the
workpiece since the slit will be much larger than the light spot during the cutting process
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with high speed. If the grid at the slit was larger than the laser spot radius, it would severely
affect the simulation accuracy as the middle part would be skipped.
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Figure 3. Heat source model.

The heat source model in Section 2.4.1 shows that the laser heat source is concentrated
with a large temperature gradient. Therefore, it is necessary to refine the meshes on the
moving path of the heat source to truly reflect the temperature change and deformation of
the area affected by the laser heat source. The mesh at the slit is encrypted four times by
mesh irrelevance verification, and the mesh division is shown in Figure 4.
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Figure 4. Encrypted FEM model at the slit.

In addition to the mesh model, the variation in material properties of the processed
workpiece with temperature is introduced in the modeling process. The changes in thermal
conductivity and specific heat capacity are embedded in the model, and the specific data
are shown in Table 1.

2.4.3. Boundary Conditions

The characteristics of the heat transfer in laser processing follow Fourier’s law, which
includes three basic modes of heat conduction, heat convection, and heat radiation. Heat
loss exists in every thermal phenomenon in the cutting process, and the boundary condi-
tions are divided into three categories, as shown in Formula (3).

T|Γ1 = T(Γ, t)
⇀
n ·(k∇T)Γ2 = qs(Γ, t)
−⇀

n ·(−k∇T)Γ3 = εσ
(
Tamb

4 − T4) (3)

The first type of boundary condition describes the temperature distribution on the
system boundary, where Γ is the boundary range, T is the temperature, and t is the time.
When T|Γ1 is a constant, it is a steady state condition, and when T(Γ, t) is expressed as a time
function, it is an unsteady heat source. The second type of boundary condition describes
whether there is heat inflow or outflow on the boundary, where qs is the heat flux density,
and

⇀
n is the direction of the normal line outside the system boundary. When ∂T

∂n |Γ2 = 0, it is
an adiabatic boundary; when ∂T

∂n |Γ2 is a constant, it is a constant heat flow boundary; when
∂T
∂n |Γ2 is a time-dependent function, it is a non-constant heat flow boundary. During the
cutting process, the laser heat source moves along the cutting trajectory with the constant
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cutting speed, therefore, it is a non-stationary and non-constant heat flow boundary, which
varies from time to time.

The whole machining process is simulated by the TEP-FEM simulation method. Con-
sidering three heat loss modes, heat conduction, heat convection, and heat radiation,
complete boundary conditions are formulated to improve the simulation accuracy. The
research of Gutiérrez G. et al. [24,25] mostly refers to the consideration of the thermal
radiation mode but ignores the influence of thermal convection and thermal radiation.
Although the influence of thermal convection and thermal radiation on deformation is less
than that of thermal convection [26], when the machining accuracy reaches or exceeds the
nanometer level, it still directly affects the yield. All should be considered in high-speed
and high-precision cutting.

The third type of boundary condition describes the heat exchange between the system
and the outside environment. k is the heat transfer coefficient, ε is the surface emissivity, σ is
the Stefan–Boltzmann constant, and Tamb is the ambient temperature. The heat absorptivity
of the high-reflectivity material surface is low, and as a result it is the part with the largest
heat loss during the laser-cutting process. Q235 has a better surface heat absorption rate of
70%, and the rate of W18Cr4V can also reach 60%. The absorption rate of 2A12 aluminum
alloy is only about 10% before the surface refinement. If the surface is simply refined using
the carbon ink with a good absorption rate, the absorption rate can increase to 42.32% [27].
The wind speed in the closed or semi-open workshop space is less than 0.15 m/s, which
approximates the natural air heat transfer. The temperature variant during processing is
large, but the heated area is small. The laminate material has a large area in contact with
the air and has better heat dissipation performance. The air heat transfer coefficient is 10,
and the processing ambient temperature is room temperature of 20 ◦C.

At present, most research only considers the influence of heat conduction but ignores
the heat convection and heat radiation. For high-precision machining, any heat loss
will affect the simulation accuracy. All three heat transfer conditions are considered in
this model.

2.4.4. Temperature Field

Based on the data in Sections 2.2 and 2.3, the finite element model is established using
the above method. By simulating the relative motion between the laser heat source and the
workpiece, the heat transfer phenomenon in the cutting process is analyzed.

2.4.5. Thermal Deformation

During the laser-cutting process, the heat source moves at a high speed and heats
the slit spot, causing the thermal expansion and elastic deformation at the slit, which lasts
for a short time, and gradually recovers after the heat source passes through. When the
thermal stress in the heated area exceeds the yield limit of the material, plastic deformation
occurs, which has a significant impact on the machining accuracy [28,29]. Based on the
temperature field analysis in Section 2.4.4, the solid–thermal method is carried out to
analyze the deformation during the machining process.

2.4.6. T-XGBoost Model

XGBoost, an emerging integrated learning algorithm, improves the prediction stability
and accuracy by combining multiple weak learners with a strong learner. Ma et al. used the
XGBoost algorithm to predict the classification and sensitivity for clay materials [30]. It was
also verified that the prediction performance of the XGBoost is better than Artificial Neural
Network (ANN) and Bayesian (NB), and this algorithm is considered more suitable for the
engineering industry. Bae et al. used the XGBoost algorithm to predict solar photovoltaic
power generation. They also compared the accuracy with that of the Long–Short Memory
method (LSTM) and the Mean Error method (MAPE) and verified the unique advantages
of the XGBoost algorithm for energy conversion [31]. It improves the performance of
boosting models through pruning, parallelization, and term regularization by using the



Sensors 2022, 22, 7022 8 of 15

XGBoost algorithm and reduces the overfitting of the traditional decision tree algorithms.
The XGBoost algorithm has been gradually applied in various fields [32], and currently is
rarely used in the laser-cutting process. The XGBoost regression of the prediction value
calculation [33,34] is shown in (4):

ŷt = ∑K
k=1 fk(xt), fk ∈ F (4)

ŷt represents the predicted value, fk() represents the kth tree model, xt represents the
input features, and t represents the number of trees, which represents the functional space
consisting of a set of trees. The objective function in the XGBoost regressor includes a
regularization term [28,29], as shown in (5):

Obj = ∑n
t=1 l(yt, ŷt) + ∑K

k=1 Ω( fk) (5)

l() represents the mean square error (MSE) of the loss function, yt represents the actual
value, and Ω() represents the regularization term that causes loss to the model complexity,
as shown in Equation (6):

Ω( f ) = γT +
1
2

λ ∑T
j=1 ω2

j (6)

where T represents the time point, ωj represents the thermal deformation amount at the
corresponding time point, and γ and λ represent the penalty factors.

Predictions are made using the XGBoost algorithm tree by utilizing the resulting
branched data based on the input features. This paper proposes a segmentation model
in the time series (T-XGBoost model). Given the target data can be from different stages,
different prediction models can be established for each specific stage by using the tree
structure of the XGBoost algorithm to combine the classification task and the regression
task. The T-XGBoost model uses different training data sets for different stages of the
prediction target. The booster parameter is set to gbtree, the model is a tree-based model,
and hyperparameter tuning is performed for maximum depth, minimum weight, and
subsamples. The termination conditions are set according to the machining accuracy
requirements, and other parameters remain default. To improve the accuracy of the model
and reduce the learning time, the thermal deformation in Section 2.4.5 is used as the training
dataset for different stages. The prediction process is shown in Figure 5.
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3. Results
3.1. Temperature Field Results

Based on the data in Section 2, TEP-FEM modeling simulations were used for the
12 working conditions to obtain the transient temperature clouds of the cutting process,
the temperature variation curves at specific points, and maximum temperature variation
curves of the machined part in the whole domain with time.
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Take condition 2 as an example, Figure 6 shows the cloud diagram of the temperature
field at a certain time of laser cutting. It is shown in Figure 7 that the temperature change
curve is at the slit at this time. The highest temperature position corresponding to the laser
focus position is 1185.5 ◦C. Figure 8 shows the maximum temperature value of the thin
plate. At the beginning of cutting, the temperature at the cutting seam rises rapidly and
reaches a stable value at 0.015 s. After stabilization, it fluctuates up and down around the
maximum value, and the average stable temperature is 1183.5 ◦C. It is cooled naturally
after cutting.
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Using the data obtained above, the mean value of the extreme heating time and the
stable temperature was calculated via logistic regression and statistical analysis based on
the Levenberg Marquardt algorithm and the Gauss–Newton linear model (instead of a
nonlinear function), as shown in Table 3.
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Table 3. Results of the temperature analysis for different working conditions.

Working
Condition Material Thickness

mm
Extreme Heating

Time (s)
Stabilized Temperature

Average (◦C)

1

W18Cr4V

1 0.032 1161.87
2 2 0.015 1183.5
3 5 0.35 1194.98
4 10 1.08 1197.89

5

Q235

1 0.01 1476.45
6 2 0.1 1473.03
7 5 0.49 1468.84
8 10 0.84 1486.95

9
2A12 aluminum

alloy

1 0.02 676.36
10 2 0.12 762.72
11 5 0.28 747.68
12 10 1.6 674.94

Working conditions 1–4 use the same material W18Cr4V, and the thickness gradually
increases. The time for condition 1 to reach stability is slightly longer than condition 2,
which is 0.032 s. Under conditions 2–4, the stabilization time gradually becomes longer.
The lowest stable temperature of the four working conditions is 1161.87 ◦C, and the highest
is 1197.89 ◦C. The processed material is Q235 under working conditions 5–8. With the
increase in the thickness, the time to reach the stable temperature increases, and the longest
time is 0.84 s. The average stable temperature is close, all falling within the range of
1473.03 ◦C~1486.95 ◦C. The processed material is 2A12 aluminum alloy under working
conditions 9–12. With the increase in the thickness, the stable temperature increases from
0.02 to 1.6 s. The stable temperature of working condition 9 is close to that of working
condition 12, which is 676.36 and 674.94 ◦C. The stable temperature of working conditions
10 and 11 is slightly higher, reaching 762.72 and 747.68 ◦C.

3.2. Thermal Deformation Results

In order to better express the size of thermal deformation, volume strain is chosen
to represent it. With the increase in temperature, the thermal conductivity and specific
heat capacity of the material also change. Adding the change in related parameters to the
material properties makes the simulation results of deformation more accurate.
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Under working condition 2, for example, there is deformation at the slit, while the
largest deformation occurs at the laser focus point. With the movement of the heat source,
the area that has been cut is gradually cooled down, and the thermal expansion and elastic
deformation is gradually recovered. After the material completely cools down, there is still
some remaining irreversible plastic deformation, as shown in Figure 9.
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Figure 9. Thermal deformation of the slit when cutting for 1 s in working condition 2 (scale factor 1000).

Three specific points, i.e., the origin, 0.5 m, and 1 m are taken at the slit [35]. The
volumetric strains at the origin of condition 1 is close to 0.5 m and 1 m, which are 1.3567,
1.3578, and 1.3522. In the other 11 working conditions, the volume strain at the origin is
the smallest, and the other two points are close. When the processing material is fixed, the
volume strain decreases with the increase in the thickness of the workpiece, as shown in
Table 4.

Table 4. Thermal deformation analysis results of different working conditions.

Working
Condition Material Thickness

mm
Volume Strain ‰

Origin 0.5 m 1 m

1

W18Cr4V

1 1.3567 1.3578 1.3522
2 2 0.7513 0.873 0.7912
3 5 0.1726 0.3846 0.351
4 10 0.021363 0.1024 0.09748

5

Q235

1 2.4324 2.577 2.4625
6 2 0.8255 1.0508 1.0272
7 5 0.1617 0.5762 0.4994
8 10 0.12676 0.2115 0.2222

9
2A12 aluminum

alloy

1 1.0821 1.3068 1.2818
10 2 0.6917 1.051 0.9856
11 5 0.2353 0.5742 0.507
12 10 0.0993 0.1289 0.1161

3.3. T-XGBoost Compensation Results

The thermal deformation results predicted by the T-XGBoost algorithm in Section 2.4.6
are used in the FEM model for recalculation. The parameters of all 12 conditions are
kept the same except for the compensation change in the cutting speed to the thermal
deformation. To verify the effectiveness of the compensation of the thermal deformation
prediction to the thermal error, we compared the maximum value and average value of the
thermal deformation at the slit under each condition. The results are shown in Table 5.
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Table 5. Compensation results under different working conditions.

Working
Condition

Without Compensation
(Volume Strain ‰)

XGBoost Compensation
(Volume Strain ‰)

T-XGBoost Compensation
(Volume Strain ‰)

Maximum
Deformation

Average
Deformation

Maximum
Deformation

Lift
Rate

Average
Deformation

Lift
Rate

Maximum
Deformation

Lift
Rate

Average
Deformation

Lift
Rate

1 4.56 1.3545 3.053 33% 1.38 −2% 2.508 45% 1.206 11%
2 10.39 0.8323 3.122 70% 0.94 −13% 1.898 82% 0.809 3%
3 9.472 0.3676 3.966 58% 0.592 −61% 3.987 58% 0.382 −4%
4 8.30 0.09994 3.356 60% 0.235 −135% 3.46 58% 0.0982 2%
5 16.596 2.51973 8.87 47% 3.121 −24% 7.086 57% 2.439 3%
6 21.73 1.0394 8.927 59% 1.892 −82% 9.063 58% 0.893 14%
7 13.47 0.53783 5.001 63% 0.898 −67% 5.768 57% 0.534 1%
8 13.696 0.21658 5.112 63% 0.307 −42% 5.71 58% 0.0796 63%
9 19.758 1.2943 8.199 59% 2.034 −57% 8.34 58% 1.0232 21%
10 25.123 1.0183 9.345 63% 1.431 −41% 10.52 58% 0.934 8%
11 18.411 0.5406 7.216 61% 0.79 −46% 7.696 58% 0.536 1%
12 11.146 0.1225 4.748 57% 0.262 −114% 4.674 58% 0.12 2%

Using the XGBoost algorithm directly to compensate the cutting speed can reduce
the maximum deformation by more than 33%. However, the average deformation of
12 working conditions is higher than that before compensation. The average maximum
deformation of working conditions 4 and 12 increased by more than 100%. The T-XGBoost
algorithm segments data in advance for prediction and compensation. Compared with
compensation, the maximum deformation of the 12 working conditions was improved,
which can reduce the maximum deformation by more than 45%. At the same time, the
average volume strain of 11 working conditions decreases, which can be increased by 63%
at the highest.

4. Discussion
4.1. Temperature Field Analysis

The results show that the trend of data variation is consistent under 12 working
conditions, except for the time to reach the stabilization temperature and the value of the
stabilization temperature. The heat flux density at the laser focus position is the highest,
and the temperature around it gradually decreases, which is in line with the Gaussian
heat source distribution characteristics. After the high-speed laser passes through, the
temperature on the processing path gradually cools down over time. It is shown in Figure 7
that the temperature at the focus point is the highest, of which the left side gradually
cools down over time. The unprocessed part on the right is at room temperature, which is
consistent with the actual processing. Figure 8 shows three phases within the trend of the
maximum temperature value of the thin plate. Phase I represents a rapid heating process
where the temperature rises rapidly over the heating time. Phase II shows that during the
cutting process, once a stable temperature is reached, the maximum temperature value
fluctuates up and down, which follows the principle of the generation of the pulsed laser.
Phase III is the natural cooling process at the slit after the cutting is completed.

The average of the stable temperature for each of the 12 working conditions exceeds
the melting point of the respective material. For the thin plates with the same thickness,
the larger the material absorption rate, the shorter the time needed to reach the stability,
resulting in a relatively better cutting accuracy, except for working condition 1. The stable
temperature under working condition 1 is slightly lower than the melting temperature of the
material, however, given the stable nature of W18Cr4V and that the thermal conductivity
and specific heat capacity are not significantly affected by temperature, a stable cutting
can be achieved when the cutting temperature is higher than the melting point. Under
working conditions 2–8, the cutting accuracy is high as the stable temperature falls within
the material melting temperature range. Among the last four conditions, only the stable
temperature under condition 11 falls within the melting temperature range. Although
cutting can be achieved under working condition 10, since the stable temperature is slightly
higher than the melting range, it is very likely to cause a large amount of vaporization,
sublimation, slag, and other phenomena at the cutting seam, which affects the processing
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quality. The 2A12 aluminum alloy is a material with low melting point and high reflectivity,
which is more difficult to cut than the other two materials. The stable temperature under
working conditions 9 and 12 is higher than the melting point of the material and slightly
lower than the melting temperature. Because of the active properties of aluminum alloy,
the melting point can be quickly reached. Therefore, the cutting can be achieved with better
cutting accuracy only under these two conditions, which is consistent with the fact that
aluminum alloy material is more difficult to cut in actual practice. The cutting accuracy for
aluminum alloy material is also a hot topic within laser cutting research.

4.2. Thermal Deformation Analysis

When the heat source is close to those points, the material expands significantly and
the volumetric strain reaches the maximum value. After the heat source moves away, the
elastic deformation of the material at the spot gradually recovers, and the volumetric strain
gradually decreases and stabilizes at the plastic deformation value.

The origin point is the beginning of the processing, of which the thermal deformation
is affected by cutting speed and motion inertia of the laser generator and is affected
differently compared to other points. This is because the heat source moves at a uniform
speed without preheating, the heat flux density at the origin point is lower than other
locations, and as a result, the volumetric strain value is slightly lower. The other two points
have similar volume strain and the deformation after natural cooling down, when the
machining accuracy is at or below micron level. For certain type of material, the volume
strain decreases when the thickness of the steel plate increases. After multiplying by the
thickness of the workpiece to obtain the volume strain, the amount of thermal deformation
at the slit of the same material is similar, and as a result, a micron-level processing accuracy
can be achieved. The thinner the workpiece, the lower the machining accuracy. Multiplied
by the thickness of the workpiece, the accuracy under condition 1 is lower than other
conditions. The deformation under condition 11 is larger than the other three conditions
for 2A12 aluminum alloy material, and the cutting accuracy is relatively lower, which is
consistent with the temperature field result.

4.3. T-XGBoost Compensation Analysis

The quality of the laser kerf is primarily determined by factors such as the hanging
slag at the kerf and the waviness and roughness of the cutting surface. Using the XG-
Boost algorithm directly to compensate for the cutting speed can reduce the maximum
deformation. However, the average deformation is higher than that before compensation,
which indicates that the periodic ripple of the cutting surface is obvious at this time. The
maximum deformation is significantly reduced with the compensation calculated by the
XGBoost algorithm, but the average deformation is higher than the pre-compensation
condition. It means that the periodic ripple of the cutting surface is obvious, and therefore,
the expected compensation effectiveness is not achieved. The periodic corrugation on the
laser cutting surface is a geometric feature between the machining accuracy and surface
roughness, which seriously affects the quality of laser cutting. This is because of the time
series in the input data. The pre-cutting and natural cooling stages are at the poles of the
data set and at room temperature, but the deformation is different, which significantly
affects the prediction results of the algorithm. According to the data analysis, T-XGBoost
can reduce the maximum deformation at the slit by more than 45%. At the same time, by
reducing the average volume strain under most working conditions, the lifting rate can
reach 63% at the highest point, and the machining result is obviously better than XGBoost.

5. Conclusions

In this paper, a thermal error prediction and dynamic compensation strategy of digital
twin laser cutting based on T-XGBoost is proposed. Combined with the actual situation of
laser cutting thermal deformation prediction, the XGBoost algorithm is optimized. TEP-
FEM is widely used in thermal error simulation of contact machining (such as turning) [3–5],
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but it is not used in thermal error research of laser cutting. The XGBoost algorithm has been
used many times to predict practical engineering problems and performed well [19–21],
but it has not been used in laser cutting. The main conclusions are as follows:

(1) A hybrid model combining TEP-FEM and the T-XGBoost algorithm is established for
laser cutting, which drives the possibility of real-time mapping of thermal deformation.

(2) According to the real situation of laser cutting temperature change, a more targeted
T-XGBoost algorithm with a better optimization effect is proposed. The thermal
deformation at any moment is obtained using simulation and used as the training
data set of the algorithm. Higher cutting accuracy can be achieved by appropriately
adjusting the cutting speed under a specific parameter.

(3) TEP-FEM and the T-XGBoost algorithm are used to realize the data flow between
“model-driven and data-driven”, and the predicted thermal deformation is used to
compensate the processing speed to improve the laser cutting accuracy.

This strategy is remarkably advanced comparing to the traditional empirical model
as it can be applied to a wide range of materials. In addition, it can also obtain larger
datasets through visual finite element simulations. In the virtual environment, this strategy
and model can be used to pre-analyze and judge the reasonableness of the processing
parameters, which will further help save time and reduce costs, with the potential of wider
application in manufacturing. It provides theoretical support and application guidance for
the realization of intelligent operation strategies such as laser cutting predictive processing
and quality monitoring.

Future research will focus on the testing of the product using the cutting tests and
algorithm optimization, especially the use in actual processing. We will use a coordinate
measuring machine (accuracy 0.1 um) to measure multiple cuts under the machining
parameters based on the optimized data and verify the machining quality. At the same
time, the algorithm can be further optimized based on the measurement results to be
more suitable for the non-contact machining. The influence of surface absorbance of high
reflectivity materials on cutting conditions will be optimized. We will focus on the speed
control and the use of related sensors.
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