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Chemical structures and ECL mechanism 

The chemical species 2-(dibutylamino)ethanol (DBAE) is a well-studied exemplary ECL co-reactant 
[1]. The mechanism for the oxidation-reduction ECL production between alkyl amines and Ru(bpy)3

2+ is 
shown in in Figure S2 [2-3]. The general scheme of the ECL mechanism involves the oxidation of both 
Ru(bpy)3

2+ and co-reactant, after which the amine rearranges to form a free radical. The radical reduces 
Ru(bpy)3

3+ in a process that creates an electronically excited *Ru(bpy)3
2+ state. Finally, *Ru(bpy)3

2+ relaxes 
to Ru(bpy)3

2+ and emits a photon with a characteristic wavelength of 620nm.  
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Figure S1. Structures of (A) tris(2,2’-bipyridyl)ruthenium(II) and (B) amines investigated in this work. 

It has been noted that ECL mechanisms involving amines work most efficiently with tertiary amines [4], 
though secondary and primary amines may also be substituted with only a moderate decline in signal 
response. One such class of primary, secondary, and tertiary amines to which ECL studies have been applied 
are the biogenic amines. 

 

   

 



 
Figure S2. Mechanism of oxidative-reductive ECL mechanism of amines with Ru(bpy)3

2+. R. represents the 
strongly reducing free radical and P represents a product.  

Electrode Fabrication 

Stencil-printed carbon electrodes were fabricated as described in the experimental section [5]. with 
photographs of the process and the end product shown in Figure S3. 
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Figure S3. Stencil printing carbon paste through a laser-cut transparency stencil and (A-B) completed SPCE with 
reservoir attached (C). A few drops of solution are placed in the reservoir and contact is made to the reference (re), 
working (we) and counter (ce) electrodes via the contact pads at the bottom. 
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Figure S4. Photographs taken of a 3.0 mm diameter SPCE generating ECL from a solution of 5.0 mM Ru(bpy)3

2+ 
and 0.050 mM DBAE under an applied potential of 1.10. Standard deviations were calculated from the image 
analysis of red pixel mean on ImageJ (n = 5). 

Cyclic voltammetry at stencil-printed electrodes 

These electrodes are fabricated so that the working, counter and reference are each made from the carbon 
ink/graphite mixture. We investigated the effects of painting the reference with Ag paint on the stability of 
the cyclic voltammetry. Here, we looked at the CV’s of the one-electron reduction of ferricyanide 
(Fe(CN)6

3-). For each reference electrode, five CV’s were collected, with a two minute wait time in between. 
The data table shows the mean and standard deviations of the peak cathodic and anodic currents. 

Fe(CN)6
3-  +  e-  ⇔   Fe(CN)6

4-       (Equation S1) 
 

  



 

 

 

Figure S5. Intra-electrode cyclic voltammograms of 4.0 mM ferricyanide in 1.0 M KNO3 at carbon electrodes (v = 
0.10 V/s). A) glassy carbon with Ag, AgCl reference and Pt counter electrode. Stencil-printed carbon with B) Ag, 
AgCl reference C) Ag paint reference and C) carbon reference. All stencil printed electrodes have a carbon counter 
electrode. 

 
Table S1: Intra-electrode CV data for the reduction of ferricyanide* 

Working Reference E1/2 (V) ΔEp (mV) ipc/ipa 

Stencil Ag, AgCl 0.268 ± 0.002 272 ± 8 1.22 ± 0.01 

Stencil Ag 0.110 ± 0.005 305 ± 16 1.16 ± 0.02 

Stencil Carbon -0.183 ± 0.050 308 ± 54 1.31 ± 0.11 

GC Ag, AgCl 0.254 ± 0.001 110 ± 4 1.21 ± 0.01 

*Mean ± standard deviation (n = 5 for each electrode) 

  



Table S2: Inter-electrode CV data for the reduction of ferricyanide * 

Working Reference E1/2 (V) ΔEp (mV) ipc/ipa 

Stencil Ag, AgCl 0.269 ± 0.003 350 ± 7 1.31 ± 0.04 

Stencil Ag 0.101 ± 0.008 289 ± 21 1.13 ± 0.05 

Stencil Carbon -0.151 ± 0.030 384 ± 34 1.61 ± 0.09 

GC Ag, AgCl NA NA NA 

*Mean ± pooled standard deviation (3 electrodes, n = 5 for each electrode) 

 
Cyclic Voltammetry of Ru(bpy)3

2+ 

 
Table S3: Electrochemical data for the oxidation of Ru(bpy)3

2+ at stencil-printed electrodes 

Scan rate (V/s) E1/2 (V) vs. Ag ΔEp (mV) ipa/ipc 

0.05 0.938 96 1.22 

0.10 0.938 111 1.22 

0.25 0.937 136 1.18 

0.50 0.939 166 1.23 

0.75 0.941 187 1.23 

 
 

Figure S6. Multiple standard addition of 0-0.50 mM spermidine and 5.0 mM Ru(bpy)3
2+ to 4x diluted 

centrifuged skim milk samples captured at 1.10 V with a (A) mobile phone camera and (B) CCD camera.  
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