
Citation: Wan, Z.; Li, L.; Yu, H.;

Yang, M. A Long Short-Term

Memory-Based Approach for

Detecting Turns and Generating

Road Intersections from Vehicle

Trajectories. Sensors 2022, 22, 6997.

https://doi.org/10.3390/s22186997

Academic Editors: Dieter Schramm

and Philipp Sieberg

Received: 4 August 2022

Accepted: 13 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Long Short-Term Memory-Based Approach for Detecting Turns
and Generating Road Intersections from Vehicle Trajectories
Zijian Wan 1,2 , Lianying Li 1, Huafei Yu 1 and Min Yang 1,*

1 School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
2 Department of Geography, University of California, Santa Barbara, CA 93106, USA
* Correspondence: yangmin2003@whu.edu.cn; Tel.: +86-138-7117-6133

Abstract: Owing to the widespread use of GPS-enabled devices, sensing road information from
vehicle trajectories is becoming an attractive method for road map construction and update. Although
the detection of intersections is critical for generating road networks, it is still a challenging task.
Traditional approaches detect intersections by identifying turning points based on the heading
changes. As the intersections vary greatly in pattern and size, the appropriate threshold for heading
change varies from area to area, which leads to the difficulty of accurate detection. To overcome this
shortcoming, we propose a deep learning-based approach to detect turns and generate intersections.
First, we convert each trajectory into a feature sequence that stores multiple motion attributes of the
vehicle along the trajectory. Next, a supervised method uses these feature sequences and labeled
trajectories to train a long short-term memory (LSTM) model that detects turning trajectory segments
(TTSs), each of which indicates a turn occurring at an intersection. Finally, the detected TTSs are
clustered to obtain the intersection coverages and internal structures. The proposed approach was
tested using vehicle trajectories collected in Wuhan, China. The intersection detection precision
and recall were 94.0% and 91.9% in a central urban region and 94.1% and 86.7% in a semi-urban
region, respectively, which were significantly higher than those of the previously established local
G* statistic-based approaches. In addition to the applications for road map development, the newly
developed approach may have broad implications for the analysis of spatiotemporal trajectory data.

Keywords: road intersection; turn detection; vehicle trajectories; long short-term memory

1. Introduction

Accurate and up-to-date road maps are critical for location-based services, such as
vehicle navigation and geo-enabled social networks. Because road entities change continu-
ously over time, especially in the urban areas of developing countries, existing road maps
need to be updated regularly to remain consistent with the real world. However, national
mapping agencies usually update road maps by surveying with specialized devices or
by digitizing road features from high-resolution satellite imagery. These methods require
extensive time and labor, making it difficult to maintain up-to-date maps. In recent years,
the widespread use of GPS-enabled devices has driven an explosion of trajectory data from
road users, such as vehicle drivers. This new type of geospatial resource contains not only
geometrical and topological information for underlying road networks but also semantic
information, such as traffic rules and patterns. Moreover, short-term changes in moving
paths and rules can be sensed from the continuous tracking data, enabling them to be
updated in real-time. For these reasons, extracting road information from trajectory data is
becoming an attractive method for road map production and updating [1,2].

A number of approaches have been developed to generate road networks from trajec-
tories, including approaches based on spatial clustering [2–4], incremental track integra-
tion [5,6], and intersection linking [7–10]. Most of these approaches focus on the extraction
of road centerlines, while intersections, defined as areas where two or more roads either

Sensors 2022, 22, 6997. https://doi.org/10.3390/s22186997 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186997
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6429-3020
https://orcid.org/0000-0003-1973-527X
https://doi.org/10.3390/s22186997
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186997?type=check_update&version=2

Sensors 2022, 22, 6997 2 of 20

meet or cross, are simply recognized as graph nodes where centerlines are connected. In
the representation of a road network, intersections can be simple crossroads or various
complicated structures, such as roundabouts. Obtaining well-structured intersections is
not only essential for building the topology of road networks, but it is also beneficial for
obtaining a geometric representation of the roadways. Particularly for urban areas, auto-
matic intersection detection and delineation approaches are highly necessary for various
applications, such as traffic management [11], analyses of transportation routes [12], and
analyses of urban sprawl [13]. Therefore, intersections must be adequately considered in
the generation of road networks.

However, obtaining accurate and well-structured intersections from raw trajectories
continues to be a challenging task. From the perspective of traffic engineering, an intersection
is designed to allow vehicles to change from one road to another. This means that complex
geometrical structures and traffic rules may exist within a small area of an intersection. In one
of the earliest attempts to detect intersections, a shape descriptor was designed to represent
the heading changes of tracking points around a given location and trained a classifier
to discriminate the intersections from non-intersections [7]. Turning points were detected
in literature [8] by examining changes in the speed and heading of vehicles. The turning
points were then grouped to generate intersections by hierarchical clustering. A spatial
analysis was performed of the conflict points among the trajectories that intersect with a large
angle to compute the layouts of intersections [14]. To enable the effective detection of turns,
literature [15] proposed a distance-weighted average heading filter to eliminate the serious
motor-vehicle trajectory fluctuations, and literature [16] employed the Douglas–Peucker
compression algorithm to remove noise. Intersections were detected in the literature by [17]
using a hierarchical feature extraction strategy. The turning change point pairs were extracted
from trajectories by setting the heading and time interval thresholds and were then clustered
to obtain the coverage of the intersections. Literature [18] identified candidate intersection
points by applying a hotspot analysis of the local G statistic to the turning angles of tracking
points. A large positive G* value represents a hotspot cluster in which the points with
large angles are closer together. Subsequently, an adaptive clustering algorithm grouped the
candidate points to obtain the intersections. In this approach, the detection result is closely
related to the threshold G* value. A novel method for constructing a lane-level motorway
network was presented using low-precision GPS data [19]. In this study, an intersection was
defined where two bundles of trajectories merge or diverge. Based on this definition, the
QuickBundles clustering method was used to obtain the trajectory bundles [20]. Then, road
intersections were detected though analyzing the intersections of trajectory paths belonging
to different bundles. Literature [21] uses Mask-RCNN to extract macroscopic information
on road intersections. In addition to the coverage of intersections, this approach attempts to
classify the detected intersections into different patterns.

In general, an essential step prior to intersection generation is the recognition of turns
(i.e., the curved parts of vehicle trajectories). Turning points are commonly defined as
heading changes exceeding a predefined threshold. Then, spatial analysis is applied to
cluster the turning points into intersection units and compute each intersection’s prop-
erties. However, these approaches face usability problems. Owing to the diversity of
intersection patterns and sizes, it is difficult to determine an appropriate turning angle
threshold [16,22,23]. A low or high threshold inevitably leads to incorrect turn detection.
Furthermore, quality issues in raw trajectory data, such as fluctuating positional precision
and inconsistent sampling rates, increase the difficulty of characterizing the turns occurring
at intersections. Other indicators, such as the speed change in the vehicle and the curvature
of the segment formed by connecting consecutive tracking points, should be integrated
with the change in direction to improve the performance of turn detection.

To address the aforementioned issues, this study introduces a deep learning technique
to detect the turns at intersections from raw trajectories, aiming to alleviate the difficulty of
parameter setting in turn detection and to develop a more robust method that can benefit
from the movement pattern information hidden in each trajectory. Through continuous

Sensors 2022, 22, 6997 3 of 20

training, deep neural networks can capture high-level features and identify hidden pat-
terns [24]. Among various neural networks, the long short-term memory (LSTM) neural
network is an effective model for handling time-series data. As an improved version of the
traditional recurrent neural network, the LSTM neural network has the ability to capture
long-term dependencies in sequencing data [25,26]. Previous studies have shown the
successful application of LSTM in the fields of natural language processing [27], machine
translation [28], and speech recognition [29]. Recent studies have also applied LSTM-based
models for trajectory analysis tasks, including trajectory clustering [30], transportation
mode classification [31], and location prediction [32,33]. In this study, we explore the
potential of LSTM to detect intersections from trajectories. Specifically, we convert each
trajectory into a feature sequence that stores the motion attributes of the vehicle along the
trajectory. Subsequently, an LSTM-based model is trained to identify the turning trajectory
segments (TTSs), each of which represents a turn occurring at an intersection, by capturing
a deep representation of the input feature sequence. Finally, the detected TTSs are clustered
to generate the coverage and structure of the intersections.

The remainder of this paper is organized as follows. The proposed approach is
explained in Section 2. Section 3 presents the experimental datasets, intersection detection
results, and detailed analyses. A general discussion is presented in Section 4, and key areas
for future work are described in Section 5.

2. Methods

We represent the structure of an intersection as a network graph with a simple circular
area. When a vehicle turns within an intersection, the TTS starts from the first tracking
point entering the boundary circle and ends with the last point leaving it. As illustrated in
Figure 1a, the trajectory segment from pi to pj, denoted as TS

(
pi, pj

)
, and the trajectory

segment from pm to pn, denoted as TS(pm, pn), are two TTSs that record the left and right
turns at a cross-shaped intersection, respectively. Moreover, pi and pm indicate the entry
points, while pj and pn are located near the exits of the intersection. Figure 1 shows the
TTS samples for the various intersection types.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 21

occurring at intersections. Other indicators, such as the speed change in the vehicle and

the curvature of the segment formed by connecting consecutive tracking points, should

be integrated with the change in direction to improve the performance of turn detection.

To address the aforementioned issues, this study introduces a deep learning

technique to detect the turns at intersections from raw trajectories, aiming to alleviate the

difficulty of parameter setting in turn detection and to develop a more robust method that

can benefit from the movement pattern information hidden in each trajectory. Through

continuous training, deep neural networks can capture high-level features and identify

hidden patterns [24]. Among various neural networks, the long short-term memory

(LSTM) neural network is an effective model for handling time-series data. As an

improved version of the traditional recurrent neural network, the LSTM neural network

has the ability to capture long-term dependencies in sequencing data [25,26]. Previous

studies have shown the successful application of LSTM in the fields of natural language

processing [27], machine translation [28], and speech recognition [29]. Recent studies have

also applied LSTM-based models for trajectory analysis tasks, including trajectory

clustering [30], transportation mode classification [31], and location prediction [32,33]. In

this study, we explore the potential of LSTM to detect intersections from trajectories.

Specifically, we convert each trajectory into a feature sequence that stores the motion

attributes of the vehicle along the trajectory. Subsequently, an LSTM-based model is

trained to identify the turning trajectory segments (TTSs), each of which represents a turn

occurring at an intersection, by capturing a deep representation of the input feature

sequence. Finally, the detected TTSs are clustered to generate the coverage and structure

of the intersections.

The remainder of this paper is organized as follows. The proposed approach is

explained in Section 2. Section 3 presents the experimental datasets, intersection detection

results, and detailed analyses. A general discussion is presented in Section 4, and key

areas for future work are described in Section 5.

2. Methods

We represent the structure of an intersection as a network graph with a simple

circular area. When a vehicle turns within an intersection, the TTS starts from the first

tracking point entering the boundary circle and ends with the last point leaving it. As

illustrated in Figure 1a, the trajectory segment from 𝑝𝑖 to 𝑝𝑗, denoted as 𝑇𝑆(𝑝𝑖 , 𝑝𝑗), and

the trajectory segment from 𝑝𝑚 to 𝑝𝑛, denoted as 𝑇𝑆(𝑝𝑚, 𝑝𝑛), are two TTSs that record

the left and right turns at a cross-shaped intersection, respectively. Moreover, 𝑝𝑖 and 𝑝𝑚

indicate the entry points, while 𝑝𝑗 and 𝑝𝑛 are located near the exits of the intersection.

Figure 1 shows the TTS samples for the various intersection types.

Figure 1. Samples of turning trajectory segment (TTS) at different types of intersections. Figure 1. Samples of turning trajectory segment (TTS) at different types of intersections.

The overall framework of the proposed approach consists of two parts, as illustrated
in Figure 2. Specifically, the two components are:

(1) TTS detection: this component identifies the TTSs contained in each trajectory using
an LSTM-based model that integrates the various motion attributes implied in the
tracking points.

(2) Intersection generation: this component calculates the TTS clusters based on the
similarity of the position and direction measures and then determines the coverage of
the intersections by aggregating the TTS clusters and extracting the internal paths of
each intersection.

Sensors 2022, 22, 6997 4 of 20

Sensors 2022, 22, x FOR PEER REVIEW 4 of 21

The overall framework of the proposed approach consists of two parts, as illustrated

in Figure 2. Specifically, the two components are:

(1) TTS detection: this component identifies the TTSs contained in each trajectory using

an LSTM-based model that integrates the various motion attributes implied in the

tracking points.

(2) Intersection generation: this component calculates the TTS clusters based on the

similarity of the position and direction measures and then determines the coverage

of the intersections by aggregating the TTS clusters and extracting the internal paths

of each intersection.

Figure 2. Framework of the proposed approach for detecting intersections from trajectories.

2.1. Data Pre-Processing

Owing to various uncertain factors, the raw trajectories must be cleaned by reducing

the outliers and random errors. Initially, the tracking points for each vehicle are ordered

chronologically as a trajectory. When the time interval between two consecutive points

exceeds a predefined threshold, 𝑖𝑛𝑡𝑇ℎ, the trajectory is split into two sub-trajectories.

Moreover, the tracking points with speeds exceeding the maximum valid speed threshold

𝑚𝑎𝑥𝑉 are labeled invalid. After removing the invalid tracking points, the trajectories

whose lengths are smaller than the threshold 𝑚𝑖𝑛𝐿𝑒𝑛 are also discarded.

An interpolation operation with a distance threshold, 𝑑𝑙 , is performed for each

trajectory to ensure that the distances between the pairs of adjacent points are close. Then,

the Savitzky–Golay filter is applied to reduce random errors [34]. As a widely used

approach for smoothing a time series, the Savitzky–Golay filter can reduce random

positional errors in the input trajectories without causing significant distortion of their

original shapes and motion features [35]. It replaces each tracking point with a new point

obtained from a polynomial fit to data within a window centered at the subject point. Note

that the parameter settings during the pre-processing are closely related to the

characteristics of the trajectory data.

2.2. Detecting TTSs Using an LSTM-Based Model

Let T denote a trajectory that contains a sequence of tracking points 𝑝1, 𝑝2, ⋯ , 𝑝𝑁

with timestamps 𝑡1, 𝑡2, ⋯ , 𝑡𝑁 (𝑡1＜𝑡2＜⋯＜𝑡𝑁) and 𝑒𝑖(𝑖 = 1, 2,⋯ ,𝑁 − 1)denotes the line

segment between the two consecutive tracking points 𝑝𝑖 and 𝑝𝑖+1 . Detecting TTSs

contained in T can be viewed as a classification task, which aims to determine whether

each line segment belongs to a TTS or not. For this task, an LSTM-based sequence-to-

sequence model is proposed to learn and predict the class of each line segment in a

Figure 2. Framework of the proposed approach for detecting intersections from trajectories.

2.1. Data Pre-Processing

Owing to various uncertain factors, the raw trajectories must be cleaned by reducing
the outliers and random errors. Initially, the tracking points for each vehicle are ordered
chronologically as a trajectory. When the time interval between two consecutive points
exceeds a predefined threshold, intTh, the trajectory is split into two sub-trajectories.
Moreover, the tracking points with speeds exceeding the maximum valid speed threshold
maxV are labeled invalid. After removing the invalid tracking points, the trajectories whose
lengths are smaller than the threshold minLen are also discarded.

An interpolation operation with a distance threshold, dl, is performed for each trajec-
tory to ensure that the distances between the pairs of adjacent points are close. Then, the
Savitzky–Golay filter is applied to reduce random errors [34]. As a widely used approach
for smoothing a time series, the Savitzky–Golay filter can reduce random positional errors
in the input trajectories without causing significant distortion of their original shapes and
motion features [35]. It replaces each tracking point with a new point obtained from a poly-
nomial fit to data within a window centered at the subject point. Note that the parameter
settings during the pre-processing are closely related to the characteristics of the trajectory
data.

2.2. Detecting TTSs Using an LSTM-Based Model

Let T denote a trajectory that contains a sequence of tracking points p1, p2, · · · , pN
with timestamps t1, t2, · · · , tN (t1 < t2 < · · · < tN) and ei(i = 1, 2, · · · , N − 1) denotes
the line segment between the two consecutive tracking points pi and pi+1. Detecting TTSs
contained in T can be viewed as a classification task, which aims to determine whether each
line segment belongs to a TTS or not. For this task, an LSTM-based sequence-to-sequence
model is proposed to learn and predict the class of each line segment in a trajectory. Figure 3
presents the architecture of the proposed model, including the input layer, encoder and
decoder layers, and output layer.

Sensors 2022, 22, 6997 5 of 20

Sensors 2022, 22, x FOR PEER REVIEW 5 of 21

trajectory. Figure 3 presents the architecture of the proposed model, including the input

layer, encoder and decoder layers, and output layer.

Figure 3. Architecture of the LSTM-based sequence-to-sequence model for TTS detection.

2.2.1. Input Layer

The input layer converts the representation of T into a sequence of vectors {g1, g2, …,

gN−1}, where gi (𝑖 = 1, 2,⋯ ,𝑁 − 1) stores the attributes that describe the motion

characteristics of the vehicle at line segment 𝑒𝑖 . We traverse a sliding window with

constant size 𝑠, defined by the number of line segments inside the window, along each

trajectory to obtain its motion attribute sequence. When the sliding window is centered at

line segment 𝑒𝑖 , four motion attributes, including tortuosity, turning angle, speed and

acceleration, are computed according to the tracking points inside the window.

Distinct from traveling on roadways, a vehicle changes its heading substantially

when turning at an intersection. Accordingly, we introduce the tortuosity and turning

angle as the first two motion attributes. Let 𝑝𝑢, 𝑝𝑢+1, … , 𝑝𝑣 denote the tracking points

inside the sliding window. The tortuosity and turning angle are computed using

Equations (1) and (2), respectively.

𝑇(𝑒𝑖) =
𝑑𝑖𝑠(𝑝𝑢, 𝑝𝑣)

∑ 𝑑𝑖𝑠(𝑝𝑘, 𝑝𝑘+1)
𝑣−1
𝑘=𝑢

 (1)

𝐴(𝑒𝑖) = {
𝜃𝑣 − 𝜃𝑢, 𝜃𝑣−1 ≥ 𝜃𝑢
𝜃𝑣 − 𝜃𝑢 + 360, 𝜃𝑣−1 < 𝜃𝑢

 (2)

where dis(𝑝𝑎, 𝑝𝑏) is a function that returns the Euclidean distance from 𝑝𝑎 to 𝑝𝑏 and 𝜃𝑢

and 𝜃𝑣 represent the moving headings of tracking points 𝑝𝑢 and 𝑝𝑣, respectively. The

heading of point 𝑝𝑘 is defined as the clockwise angle between due north and the vector

𝑝𝑘𝑝𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .

Vehicles usually change their speed at intersections, which provides another

indicator to detect turning behavior. In this study, speed and acceleration are adopted as

the other two motion attributes and are measured using Equations (3) and (4),

respectively.

𝑉(𝑒𝑖) =
∑ 𝑑𝑖𝑠(𝑝𝑘, 𝑝𝑘+1)

𝑣−1
𝑘=𝑢

𝑡𝑣 − 𝑡𝑢
 (3)

Figure 3. Architecture of the LSTM-based sequence-to-sequence model for TTS detection.

2.2.1. Input Layer

The input layer converts the representation of T into a sequence of vectors {g1, g2, . . . , gN−1},
where gi (i = 1, 2, · · · , N− 1) stores the attributes that describe the motion characteristics of
the vehicle at line segment ei. We traverse a sliding window with constant size s, defined by the
number of line segments inside the window, along each trajectory to obtain its motion attribute
sequence. When the sliding window is centered at line segment ei, four motion attributes,
including tortuosity, turning angle, speed and acceleration, are computed according to the
tracking points inside the window.

Distinct from traveling on roadways, a vehicle changes its heading substantially when
turning at an intersection. Accordingly, we introduce the tortuosity and turning angle as
the first two motion attributes. Let pu, pu+1, . . . , pv denote the tracking points inside the
sliding window. The tortuosity and turning angle are computed using Equations (1) and (2),
respectively.

T(ei) =
dis(pu, pv)

∑v−1
k=u dis(pk, pk+1)

(1)

A(ei) =

{
θv − θu, θv−1 ≥ θu

θv − θu + 360, θv−1 < θu
(2)

where dis(pa, pb) is a function that returns the Euclidean distance from pa to pb and θu and
θv represent the moving headings of tracking points pu and pv, respectively. The heading

of point pk is defined as the clockwise angle between due north and the vector −−−−→pk pk+1 .
Vehicles usually change their speed at intersections, which provides another indicator

to detect turning behavior. In this study, speed and acceleration are adopted as the other
two motion attributes and are measured using Equations (3) and (4), respectively.

V(ei) =
∑v−1

k=u dis(pk, pk+1)

tv − tu
(3)

AC(ei) =
V(ei+1)−V(ei)

ti+1 − ti
(4)

After calculating the four motion attributes of each line segment, a motion attribute
sequence with a four-channel structure is constructed for the input trajectory. Note that

Sensors 2022, 22, 6997 6 of 20

the sequence length varies among the input trajectories owing to variation in the number
of tracking points. To ensure that each instance input to the model has the same size,
which is critical for uniformly applying the model weights and biases to the entire batch, a
fixed-length processing approach is implemented. Using MaxLen (denoting the constant
length of a sequence within a batch) as a threshold, longer sequences are sub-divided, and
zero values are appended to the end of the shorter sequences.

2.2.2. Encoder and Decoder Layers

As shown in Figure 3, the encoder and decoder layers employ two LSTM neural
networks. As a recurrent neural network variant, the LSTM effectively overcomes the
vanishing and exploding gradient problem by introducing a trainable forget gate [25].
Figure 4 illustrates the structure of an LSTM unit, where xt and ht are the input and output
of the LSTM unit at time t, respectively, and ct denotes the cell state of the LSTM unit. In
addition, ft denotes the vectors of the forget gate, it and jt denote the vectors of the input
gate, and ot denotes the vectors of the output gate. The LSTM unit works based on the
following mechanism.

ft = σ
(

W f xxt + W f hht−1 + b f

)
(5)

it = σ(Wixxt + Wihht−1 + bi) (6)

jt = tan h
(
Wj·[ht−1, xt] + bj

)
(7)

ct = ft
⊙

ct−1 + it
⊙

jt (8)

ot = σ(Woxxt + Wohht−1 + bo) (9)

ht = ot
⊙

tanh(ct) (10)

where
⊙

represents the element-wise product, W and b denote the weight matrices and
bias vectors, which are adjusted through training. The activation functions sigmoid σ()
and hyperbolic tangent tanh() are used for nonlinear scaling.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21

𝐴𝐶(𝑒𝑖) =
𝑉(𝑒𝑖+1) − 𝑉(𝑒𝑖)

𝑡𝑖+1 − 𝑡𝑖
 (4)

After calculating the four motion attributes of each line segment, a motion attribute

sequence with a four-channel structure is constructed for the input trajectory. Note that

the sequence length varies among the input trajectories owing to variation in the number

of tracking points. To ensure that each instance input to the model has the same size,

which is critical for uniformly applying the model weights and biases to the entire batch,

a fixed-length processing approach is implemented. Using MaxLen (denoting the constant

length of a sequence within a batch) as a threshold, longer sequences are sub-divided, and

zero values are appended to the end of the shorter sequences.

2.2.2. Encoder and Decoder Layers

As shown in Figure 3, the encoder and decoder layers employ two LSTM neural

networks. As a recurrent neural network variant, the LSTM effectively overcomes the

vanishing and exploding gradient problem by introducing a trainable forget gate [25].

Figure 4 illustrates the structure of an LSTM unit, where 𝑥𝑡 and ℎ𝑡 are the input and

output of the LSTM unit at time 𝑡, respectively, and 𝑐𝑡 denotes the cell state of the LSTM

unit. In addition, 𝑓𝑡 denotes the vectors of the forget gate, 𝑖𝑡 and 𝑗𝑡 denote the vectors

of the input gate, and 𝑜𝑡 denotes the vectors of the output gate. The LSTM unit works

based on the following mechanism.

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) (5)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (6)

𝑗𝑡 = tanh(𝑊𝑗 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑗) (7)

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑗𝑡 (8)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) (9)

ℎ𝑡 = 𝑜𝑡⨀tanh(𝑐𝑡) (10)

where ⨀ represents the element-wise product, 𝑊 and 𝑏 denote the weight matrices

and bias vectors, which are adjusted through training. The activation functions

sigmoid 𝜎() and hyperbolic tangent tanh() are used for nonlinear scaling.

Figure 4. Schematic diagram of an LSTM cell, as proposed in the literature [25].

The encoder sequentially processes the motion attribute sequence {g1, g2, …, gN−1}.

Once a new vector gi (𝑖 = 1, 2,⋯ ,𝑁 − 1) is added to the encoder, the hidden state ℎ𝑖 and

the cell state 𝑐𝑖 of the current LSTM unit are calculated based on the input gi, hidden states

ℎ𝑖−1 , and the cell state 𝑐𝑖−1 of the previous LSTM unit. After the last vector, gN−1, is

Figure 4. Schematic diagram of an LSTM cell, as proposed in the literature [25].

The encoder sequentially processes the motion attribute sequence {g1, g2, . . . , gN−1}.
Once a new vector gi (i = 1, 2, · · · , N− 1) is added to the encoder, the hidden state hi
and the cell state ci of the current LSTM unit are calculated based on the input gi, hidden
states hi−1, and the cell state ci−1 of the previous LSTM unit. After the last vector, gN−1, is
processed, the encoder summarizes the entire input sequence into the final states hN−1 and
cN−1. Then, using hN−1 and cN−1 as the initial states, the decoder recursively generates the
output sequence {h′1, h′2, · · · , h′N−1}. The output vector h′i (i = 1, 2, · · · , N− 1) for the
ith decoder LSTM unit is derived by combing vector gi and the states h′i−1 and c′i−1 that
were obtained from the previous decoder LSTM unit.

Sensors 2022, 22, 6997 7 of 20

2.2.3. Output Layer and Training Process

The output layer generates the classification decision for each line segment of the input
trajectory T. By applying the Softmax function to the output vector, h′i (i = 1, 2, · · · , N − 1),
the predicted probability vector li =

(
l0
i , l1

i
)

is derived for each line segment ei, where l0
i

represents the probability of ei not being a part of a TTS and l1
i represents the probability of

ei being a part of a TTS. l0
i and l1

i are both in the interval of (0, 1). If l1
i > l0

i , ei is predicted
as a part of a TTS; otherwise, ei is predicted as a part of a non-TTS. The contained TTSs can
then be obtained by connecting the consecutive line segments with positive predictions.

The proposed model was trained using a supervised method. The goal of the training
process is to learn the optimal parameters that minimize the loss function. In this study, the
loss function was calculated using categorical cross-entropy.

2.3. Generating Intersection Structures from TTSs

At this stage, the intersections are generated by estimating the spatial distribution
of the detected TTSs. First, the detected TTSs are clustered based on the similarity of the
position and direction measures. Then, the coverages of the intersections are determined
by aggregating the TTS clusters. Finally, the internal road paths for each intersection are
constructed.

2.3.1. Clustering TTSs Based on Position and Direction Similarity

This step aims to obtain clusters of TTSs, with each cluster indicating a turning
path. Based on previous studies [17], the similarity between two TTSs was measured
by estimating the differences in position and direction at their critical points. Suppose
TS(pa, pa+m) and TS(pb, pb+n) are the two detected TTSs, and pa+k and pb+l are the middle
points of these two TTSs. The position and direction differences between TS(pa, pa+m) and
TS(pb, pb+n) are calculated using equations (11) and (12), respectively.

∆D =
dis(pa, pb) + dis(pa+k, pb+l) + dis(pa+m, pb+n)

3d
(11)

∆A = 1− cos

∣∣∣∣θ(−−−−→pa pa+1 , −−−−−−−→pa+m−1 pa+m

)
− θ

(
−−−−→pb pb+1 , −−−−−−−→pb+n−1 pb+n

)∣∣∣∣
2

 (12)

where θ

(
−−−−→pa pa+1 , −−−−−−−−→pa+m−1 pa+m

)
is a function that returns the angle between the vectors of

−−−−→pa pa+1 and −−−−−−−−→pa+m−1 pa+m , and a constant d is utilized to normalize the distance measure
during the similarity computation. The overall similarity between the two given TTSs is
computed as follows:

Sim(TS(pa, pa+l), TS(pb, pb+m)) = wDe−∆D + wAe−∆A (13)

where wD and wA are the weights related to the distance and direction measures, respec-
tively.

Based on the aforementioned similarity model, a seed-based approach was imple-
mented to cluster the detected TTSs. Let UC = {TS1, TS2, . . . , TSn}(n > 1) denote the set of
TTSs. The clustering process is as follows. (1) Randomly select an element TSi (1 ≤ i ≤ n)
from UC as a cluster seed and search for the elements in UC satisfying the condition
Sim

(
TSj, TSi

)
(j 6= i) > simTh, where simTh is a predefined similarity threshold. (2) Merge

the seed TTS as well as the searched TTSs to form a new cluster, which is removed from UC.
(3) Steps (1) and (2) are repeated until the set UC is empty. Finally, the TTSs are organized
as a set of clusters, C = (c1, c2, . . . ck)(k ≥ 1), where ci (1 ≤ i ≤ k) denotes a TTS cluster. A
sample TTS clustering result is shown in Figure 5, where adjacent TTSs marked with the
same color belong to one cluster.

Sensors 2022, 22, 6997 8 of 20

Sensors 2022, 22, x FOR PEER REVIEW 8 of 21

which is removed from 𝑈𝐶. (3) Steps (1) and (2) are repeated until the set 𝑈𝐶 is empty.

Finally, the TTSs are organized as a set of clusters, 𝐶 = (𝑐1, 𝑐2, … 𝑐𝑘)(𝑘 ≥ 1), where 𝑐𝑖 (1 ≤

𝑖 ≤ 𝑘) denotes a TTS cluster. A sample TTS clustering result is shown in Figure 5, where

adjacent TTSs marked with the same color belong to one cluster.

Figure 5. Example of TTS clustering results. Adjacent TTSs marked with the same color belong to

one cluster.

2.3.2. Determining the Coverages of Intersections by Aggregating TTS Clusters

Next, the TTS clusters are aggregated to obtain the spatial coverage of the

intersections. The procedure is illustrated in Figure 6. Each TTS cluster is represented by

its center point, which is the average middle point of all the TTSs in the cluster. As

depicted in Figure 6a, a Delaunay triangulation model was built for all the center points

to describe the adjacent relationships of the TTS clusters. The triangle edges with lengths

exceeding the predefined threshold, 𝑑𝑖𝑠𝑇ℎ, are removed. Subsequently, the TTS clusters

whose center points are connected by the remaining triangle edges are merged into a

group.

Figure 5. Example of TTS clustering results. Adjacent TTSs marked with the same color belong to
one cluster.

2.3.2. Determining the Coverages of Intersections by Aggregating TTS Clusters

Next, the TTS clusters are aggregated to obtain the spatial coverage of the intersections.
The procedure is illustrated in Figure 6. Each TTS cluster is represented by its center point,
which is the average middle point of all the TTSs in the cluster. As depicted in Figure 6a, a
Delaunay triangulation model was built for all the center points to describe the adjacent
relationships of the TTS clusters. The triangle edges with lengths exceeding the predefined
threshold, disTh, are removed. Subsequently, the TTS clusters whose center points are
connected by the remaining triangle edges are merged into a group.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21

Figure 6. Determining intersection coverages and obtaining clusters of non-turning trajectory

segments (non-TTSs): (a) applying Delaunay triangulation; (b) creating the boundary circle for an

intersection; (c) obtaining clusters of non-TTSs within an intersection.

For each TTS cluster group, a circular area is created as the coverage of the

intersection. As shown in Figure 6b, the center of the circle is defined as the average

coordinates of all center points of the TTS clusters, and the radius is determined as the

longest distance between the circle center and all endpoints of the TTS clusters. The

endpoints of each TTS cluster are computed by averaging the endpoints of all the TTSs in

the cluster. Finally, as shown in Figure 6c, the non-TTSs within the intersection area are

extracted by clipping the trajectories with the boundary circle. Note that the obtained non-

TTSs are also clustered using the clustering method mentioned earlier.

2.3.3. Generating the Structural Model for Each Intersection

The structural model of an intersection can be delineated by extracting the central

paths of the associated TTS and non-TTS clusters. The path extraction process is illustrated

in Figure 7. For each TTS or non-TTS cluster, the element with the median length is

selected as the reference segment. Next, the tracking points of the reference segment are

regarded as the initial centers, and the K-means clustering approach is applied to group

all tracking points [36,37]. The value of K is set to the number of tracking points in the

reference segment. Finally, a path is constructed by connecting the centers of the point

groups in chronological order.

Figure 6. Determining intersection coverages and obtaining clusters of non-turning trajectory seg-
ments (non-TTSs): (a) applying Delaunay triangulation; (b) creating the boundary circle for an
intersection; (c) obtaining clusters of non-TTSs within an intersection.

Sensors 2022, 22, 6997 9 of 20

For each TTS cluster group, a circular area is created as the coverage of the intersection.
As shown in Figure 6b, the center of the circle is defined as the average coordinates of
all center points of the TTS clusters, and the radius is determined as the longest distance
between the circle center and all endpoints of the TTS clusters. The endpoints of each TTS
cluster are computed by averaging the endpoints of all the TTSs in the cluster. Finally, as
shown in Figure 6c, the non-TTSs within the intersection area are extracted by clipping the
trajectories with the boundary circle. Note that the obtained non-TTSs are also clustered
using the clustering method mentioned earlier.

2.3.3. Generating the Structural Model for Each Intersection

The structural model of an intersection can be delineated by extracting the central
paths of the associated TTS and non-TTS clusters. The path extraction process is illustrated
in Figure 7. For each TTS or non-TTS cluster, the element with the median length is selected
as the reference segment. Next, the tracking points of the reference segment are regarded
as the initial centers, and the K-means clustering approach is applied to group all tracking
points [36,37]. The value of K is set to the number of tracking points in the reference
segment. Finally, a path is constructed by connecting the centers of the point groups in
chronological order.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 21

Figure 7. Extracting the internal paths of an intersection: (a) TTS and non-TTS clusters (adjacent

trajectory segments marked with the same color belong to one cluster); (b) road path generation

using K-means clustering; (c) generated road paths.

3. Experiments, Results and Discussion

3.1. Experimental Dataset and Pre-Processing Settings

To evaluate the effectiveness of the proposed approach, we used a dataset of vehicle

trajectories from Wuhan, China. As shown in Figure 8, the dataset covers an area of 25.6

km × 19.9 km. The raw trajectories were captured by GPS trackers in vehicles from online

ride-hailing services. During the pre-processing stage, the sampling interval threshold,

𝑖𝑛𝑡𝑇ℎ, was set to 5 s because 97.3% of the tracking points were recorded at intervals of 1 s

to 5 s. The maximum valid speed threshold, 𝑚𝑎𝑥𝑉, was set to 80 km/h, which is the

highest speed allowed in the study area. The 𝑚𝑖𝑛𝐿𝑒𝑛 was set to 200, i.e., a trajectory needs

to be composed of at least 200 tracking points, thus providing the LSTM-based model with

sequences long enough to learn the implicit features. The interpolation distance threshold,

𝑑𝑙 , was set to 10 m following the recommendation in the literature [18]. When the

Savitzky–Golay filter was implemented, the window size and polynomial order were set

to 5 and 1, respectively. As a result, 7492 trajectories were obtained, with a total of 2.9

million tracking points.

Figure 7. Extracting the internal paths of an intersection: (a) TTS and non-TTS clusters (adjacent
trajectory segments marked with the same color belong to one cluster); (b) road path generation using
K-means clustering; (c) generated road paths.

3. Experiments, Results and Discussion
3.1. Experimental Dataset and Pre-Processing Settings

To evaluate the effectiveness of the proposed approach, we used a dataset of vehi-
cle trajectories from Wuhan, China. As shown in Figure 8, the dataset covers an area of
25.6 km × 19.9 km. The raw trajectories were captured by GPS trackers in vehicles from
online ride-hailing services. During the pre-processing stage, the sampling interval thresh-
old, intTh, was set to 5 s because 97.3% of the tracking points were recorded at intervals
of 1 s to 5 s. The maximum valid speed threshold, maxV, was set to 80 km/h, which is
the highest speed allowed in the study area. The minLen was set to 200, i.e., a trajectory
needs to be composed of at least 200 tracking points, thus providing the LSTM-based
model with sequences long enough to learn the implicit features. The interpolation distance
threshold, dl, was set to 10 m following the recommendation in the literature [18]. When
the Savitzky–Golay filter was implemented, the window size and polynomial order were

Sensors 2022, 22, 6997 10 of 20

set to 5 and 1, respectively. As a result, 7492 trajectories were obtained, with a total of
2.9 million tracking points.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 21

Figure 8. Overview of the vehicle trajectories used for assessing the proposed approach.

3.2. Training and Evaluation of the LSTM-Based Model

The LSTM-based model for detecting the TTSs was built on Keras (Available online:

https://keras.io/ (accessed on 3 August 2022)), which is an open-source artificial neural

network library written in Python with a TensorFlow backend. A total of 308 sample

trajectories were selected from the study area to train, validate, and test the model. These

trajectories contain TTSs made at various types of intersections, including the T-shaped,

Cross-shaped, Y-shaped, and y-shaped intersections, and complex intersections such as

interchanges. For each sample trajectory, all line segments were manually labeled as parts

of TTSs or non-TTSs based on a human interpretation of the satellite imagery. These

sample trajectories were divided into a training set, validation set, and test set, which

contain 206, 51, and 51 samples, respectively.

The kappa coefficient [38], an indicator for the consistency tests, was adopted to

evaluate the classification performance. ‘Consistency’ indicates whether the prediction

results of the trained model are consistent with the actual classification results. This

indicator is calculated as follows:

𝐾𝑎𝑝𝑝𝑎 =
2 × (𝑛𝑇𝑃 × 𝑛𝑇𝑁 − 𝑛𝐹𝑁 × 𝑛𝐹𝑃)

(𝑛𝑇𝑃 + 𝑛𝐹𝑃) × (𝑛𝐹𝑃 + 𝑛𝑇𝑁) + (𝑛𝑇𝑃 + 𝑛𝐹𝑁) × (𝑛𝐹𝑁 + 𝑛𝑇𝑁)
 (14)

where 𝑛𝑇𝑃 is the number of correctly identified line segments belonging to the TTSs, 𝑛𝐹𝑃

is the number of line segments belonging to the non-TTSs wrongly identified as parts of

TTSs, 𝑛𝑇𝑁 is the number of correctly identified line segments belonging to the non-TTSs,

and 𝑛𝐹𝑁 is the number of line segments belonging to the TTSs wrongly identified as parts

of non-TTSs.

To determine the optimal structure of the LSTM-based model, we built several

models with different hidden state dimensions in the encoder and decoder layers. Each

model was named Model(X), where X represents the dimension of the hidden state (i.e.,

the number of hidden units in an LSTM cell). All the models were trained using the Adam

Figure 8. Overview of the vehicle trajectories used for assessing the proposed approach.

3.2. Training and Evaluation of the LSTM-Based Model

The LSTM-based model for detecting the TTSs was built on Keras (Available online:
https://keras.io/ (accessed on 3 August 2022)), which is an open-source artificial neural
network library written in Python with a TensorFlow backend. A total of 308 sample
trajectories were selected from the study area to train, validate, and test the model. These
trajectories contain TTSs made at various types of intersections, including the T-shaped,
Cross-shaped, Y-shaped, and y-shaped intersections, and complex intersections such as
interchanges. For each sample trajectory, all line segments were manually labeled as parts
of TTSs or non-TTSs based on a human interpretation of the satellite imagery. These sample
trajectories were divided into a training set, validation set, and test set, which contain 206,
51, and 51 samples, respectively.

The kappa coefficient [38], an indicator for the consistency tests, was adopted to
evaluate the classification performance. ‘Consistency’ indicates whether the prediction
results of the trained model are consistent with the actual classification results. This
indicator is calculated as follows:

Kappa =
2× (nTP × nTN − nFN × nFP)

(nTP + nFP)× (nFP + nTN) + (nTP + nFN)× (nFN + nTN)
(14)

where nTP is the number of correctly identified line segments belonging to the TTSs, nFP
is the number of line segments belonging to the non-TTSs wrongly identified as parts of
TTSs, nTN is the number of correctly identified line segments belonging to the non-TTSs,
and nFN is the number of line segments belonging to the TTSs wrongly identified as parts
of non-TTSs.

To determine the optimal structure of the LSTM-based model, we built several models
with different hidden state dimensions in the encoder and decoder layers. Each model was

https://keras.io/

Sensors 2022, 22, 6997 11 of 20

named Model(X), where X represents the dimension of the hidden state (i.e., the number of
hidden units in an LSTM cell). All the models were trained using the Adam optimizer with
a learning rate of 0.01, and the maximum number of iterations was set to 200. Moreover,
each model was implemented with different window sizes to capture the sequence of
motion attributes. The constant sequence length within a batch (i.e., MaxLen) was set to
500.

Figure 9 shows the results achieved by models with different dimensions of hidden
state and window sizes on the validation set. With an increase in window size, model
performance (as determined by the kappa coefficient) increased gradually and then de-
creased with an increase in window size. When the window size, s, was set to 11, four
models (i.e., models with hidden state dimensions of 32, 64, 128, and 512) achieved the
best performance. In particular, Model (128) achieved the highest kappa coefficient of
0.783. Hence, we chose Model (128) with a window size of 11 as the baseline model for TTS
detection. We applied the trained model to the test set, and the kappa coefficient was 0.774,
which was close to the performance on the validation set. It proved the effectiveness of the
trained model.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 21

optimizer with a learning rate of 0.01, and the maximum number of iterations was set to

200. Moreover, each model was implemented with different window sizes to capture the

sequence of motion attributes. The constant sequence length within a batch (i.e., MaxLen)

was set to 500.

Figure 9 shows the results achieved by models with different dimensions of hidden

state and window sizes on the validation set. With an increase in window size, model

performance (as determined by the kappa coefficient) increased gradually and then

decreased with an increase in window size. When the window size, s, was set to 11, four

models (i.e., models with hidden state dimensions of 32, 64, 128, and 512) achieved the

best performance. In particular, Model (128) achieved the highest kappa coefficient of

0.783. Hence, we chose Model (128) with a window size of 11 as the baseline model for

TTS detection. We applied the trained model to the test set, and the kappa coefficient was

0.774, which was close to the performance on the validation set. It proved the effectiveness

of the trained model.

Figure 9. Kappa coefficients achieved by the LSTM-based models with different hidden state

dimensions and window sizes on the validation set.

Moreover, we conducted an ablation study in which each motion attribute was

individually removed. Table 1 lists the results of the ablation test. It was observed that the

absence of the turning angle resulted in a significant decline in classification performance,

which indicated that the heading change is the most prominent feature for identifying the

TTSs. Meanwhile, the use of the other three motion attributes also has a certain positive

influence on the improvement in classification performance. These results demonstrate

the necessity of the four motion attributes to be considered in the LSTM-based model.

Table 1. Ablation study of the four motion attributes in the LSTM-based model.

Tortuosity Turning Angle Speed Acceleration Kappa Coefficient

√ √ √ √ 0.774

 √ √ √ 0.766

√ √ √ 0.614

√ √ √ 0.746

√ √ √ 0.758

Two popular machine learning methods, i.e., the decision tree (DT) and support

vector machine (SVM) [39–42], were used for comparative testing. The DT-based model

was constructed based on Gini impurity and two parameters, i.e., the minimum number

of samples required to split an internal node and the minimum number of samples

Figure 9. Kappa coefficients achieved by the LSTM-based models with different hidden state dimen-
sions and window sizes on the validation set.

Moreover, we conducted an ablation study in which each motion attribute was indi-
vidually removed. Table 1 lists the results of the ablation test. It was observed that the
absence of the turning angle resulted in a significant decline in classification performance,
which indicated that the heading change is the most prominent feature for identifying the
TTSs. Meanwhile, the use of the other three motion attributes also has a certain positive
influence on the improvement in classification performance. These results demonstrate the
necessity of the four motion attributes to be considered in the LSTM-based model.

Table 1. Ablation study of the four motion attributes in the LSTM-based model.

Tortuosity Turning Angle Speed Acceleration Kappa Coefficient
√ √ √ √

0.774√ √ √
0.766√ √ √
0.614√ √ √
0.746√ √ √
0.758

Two popular machine learning methods, i.e., the decision tree (DT) and support vector
machine (SVM) [39–42], were used for comparative testing. The DT-based model was

Sensors 2022, 22, 6997 12 of 20

constructed based on Gini impurity and two parameters, i.e., the minimum number of
samples required to split an internal node and the minimum number of samples required to
be at a leaf node, were set to 2 and 1, respectively. The SVM-based model was constructed
on the basis of the radial basis function kernel with its parameter γ computed according to
the following equation:

γ =
1

n_ f eatures× var(X)
(15)

where n_ f eatures denotes the number of features, which was four in this study, and var(X)
denotes the variance of the input, i.e., the variance of the four motion attributes.

In addition, two deep learning methods, i.e., the feedforward neural network (FNN)
and Transformer, were included for comparison. The Transformer takes advantage of the
multi-head self-attention mechanism [43]. It has demonstrated an outstanding sequential
processing capability, especially in its ability to deal with long-term dependencies. The
hyperparameters for the FNN- and Transformer-based classification models were set based
on repeated experiments. The FNN-based model was composed of five fully connected
layers, with 128, 64, 16, 8, and 2 units, respectively. As for the Transformer-based model,
the number of attention heads was set to four, and eight transformer encoder blocks were
stacked.

The results achieved by the different classification models on the test dataset are listed
in Table 2. It was observed that the kappa coefficient of the LSTM-based model showed
improvements of 0.13–0.14 compared with those of the DT-, SVM-, and FNN-based models,
which proves the necessity and effectiveness of sequential modeling. The Transformer took
sequential modeling into consideration, which made it superior to the previous models. A
closer examination of the results, however, revealed that many of the errors made by the
Transformer were around the beginning or end of a TTS. This indicated that the Transformer
struggled to determine where a TTS begins or ends. Moreover, situations existed where
between two neighboring positive results lay a negative result, leading to an incomplete
TTS detected with a gap. Such errors were rare in the results of the LSTM-based model
because the prediction result at the previous timestep was directly inputted into the next
LSTM cell.

Table 2. Comparison of classification performance using different learning methods.

Method Kappa Coefficient

DT-based model 0.634
SVM-based model 0.644
FNN-based model 0.632

Transformer-based model 0.693
LSTM-based model 0.774

3.3. Results of TTS Detection and Intersection Generation

The TTSs were identified by applying the trained LSTM-based model to the entire tra-
jectory dataset; then, the detected TTSs were clustered to obtain the intersection structures.
As distance and direction are equally important to cluster the trajectory segments [17], the
weights wD and wA in the similarity calculation were set to 0.5. The constant, d, used to
normalize the distance measure, was set to 30 m, according to the width of the road surface
in the study area. Through repeated experiments, the similarity threshold, simTh, in the
TTS clustering process and the threshold, disTh, for aggregating the TTS clusters were set
to 0.7 and 80 m, respectively.

Figure 10a shows the results for the TTS detection over the entire study area. Qual-
itatively, most of the turns that occurred at the intersections were successfully detected.
Figure 10b–i displays close views of the detected TTS clusters and the extracted internal
road paths for intersections with typical patterns, indicating that the trained model can
accurately detect turns across intersections of different sizes and patterns. Moreover, the
coverage and internal paths of the intersections can be well generated based on the clusters

Sensors 2022, 22, 6997 13 of 20

of detected TTSs. These positive results may benefit from the ability of the LSTM neural
network to capture long-term dependencies in the input sequence, which enables the
accurate classification of TTSs and non-TTSs in a trajectory.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 21

on the clusters of detected TTSs. These positive results may benefit from the ability of the

LSTM neural network to capture long-term dependencies in the input sequence, which

enables the accurate classification of TTSs and non-TTSs in a trajectory.

Figure 10. Experimental results: (a) overview of the detected TTSs (in red); (b–e) clustering results

for the detected TTSs at intersections with different patterns (adjacent TTSs marked with the same

color belong to one cluster); (f–i) coverages and internal paths generated based on the TTS clusters

(circles indicate the boundaries of the detected intersections).

For a comparative evaluation, the TTS and intersection detection results are

compared with those of the existing approaches. The results from two sub-regions, that

is, a central urban region and a semi-urban region, were chosen to evaluate the proposed

approach against the existing approaches. The urban region contains a road network with

a grid pattern, whereas an irregular road network characterizes the semi-urban region.

According to human interpretation based on the high-resolution remote sensing images,

there were 86 intersections in the central urban region and 128 intersections in the semi-

urban region that were covered by the trajectories.

3.3.1. Comparison of TTS Detection

Figure 10. Experimental results: (a) overview of the detected TTSs (in red); (b–e) clustering results
for the detected TTSs at intersections with different patterns (adjacent TTSs marked with the same
color belong to one cluster); (f–i) coverages and internal paths generated based on the TTS clusters
(circles indicate the boundaries of the detected intersections).

For a comparative evaluation, the TTS and intersection detection results are compared
with those of the existing approaches. The results from two sub-regions, that is, a central
urban region and a semi-urban region, were chosen to evaluate the proposed approach
against the existing approaches. The urban region contains a road network with a grid
pattern, whereas an irregular road network characterizes the semi-urban region. According
to human interpretation based on the high-resolution remote sensing images, there were
86 intersections in the central urban region and 128 intersections in the semi-urban region
that were covered by the trajectories.

Sensors 2022, 22, 6997 14 of 20

3.3.1. Comparison of TTS Detection

To evaluate the performance of the LSTM-based TTS detection model, the turning
change point pair (TCPP) detection model [17] was implemented as a comparison. Al-
though a TCPP is composed of only two points, it marks the start and end of a TTS, making
the result comparable to the result of the proposed method. According to the work of Yang
et al. [17], two tracking points, pi and pj, in the same trajectory are marked as a TCPP if
they satisfy two conditions: (1) the heading difference between pi and pj is greater than
45◦, and (2) the time interval between pi and pj is in the range of 8–27 s.

To quantitatively measure the performance of the two methods, the consistency be-
tween the detected and manually identified TTSs was analyzed. A consistency ratio (CR)
metric was defined as follows:

CR =
LA∩B

LA∪B
× 100% (16)

where LA∩B and LA∪B denote the length of the intersection and the length of the union
between the detected and manually identified TTSs, respectively.

The CR metrics for the TTS detection results that were achieved using the two models
are listed in Table 3. It was observed that the CR values of the LSTM-based model were
higher than those of the TCPP-based model, especially in the semi-urban region, where the
road network pattern is less regular. That is because the performance of the TCPP-based
model is extremely susceptible to the threshold setting, including the heading change
threshold and the time interval threshold. Although those thresholds can be carefully
evaluated and selected on a scientific basis by repeated experiments, they still make the
TCPP-based method less flexible. For instance, intersections that are far smaller or far larger
than an ordinary intersection might need different thresholds for the TCPP-based method
to function correctly. On the contrary, the memory cell of LSTM, together with the encoder–
decoder architecture, makes the proposed model capable of learning the vehicle’s moving
pattern, which is implied in a trajectory before making predictions on a TTS. Therefore, the
proposed LSTM-based model has a superior and more robust TTS detection performance.

Table 3. Consistency ratios (CRs) of the TTS detection results using the two approaches.

Study Area Method CR (%)

Central urban region TCPP-based model 81.6
LSTM-based model 92.9

Semi-urban region TCPP-based model 72.3
LSTM-based model 88.7

3.3.2. Comparison of Intersection Generation

The local G* statistic-based approach was implemented for comparison. Different
from obtaining intersections by clustering turning segments, this approach detects turning
points to generate intersections. According to the recommendations in literature [18], the
threshold value for the local G* statistic was set to 2.58, and the minimum number of
turning points in each cluster was set to 5. For the quantitative analysis, two evaluation
indicators, namely precision and recall, are defined as follows:

Precision (%) =
nTP

nTP + nFP
× 100% (17)

Recall (%) =
nTP

nTP + nFN
× 100% (18)

where nTP is the number of correctly detected intersections, that is, the overlap ratio of the
intersection boundary circles derived from the proposed method and that the human inter-
pretation is over 80%, nFP is the number of intersections that are either a non-intersection

Sensors 2022, 22, 6997 15 of 20

or detected with an incorrect range, i.e., the overlap ratio is less than 80%, and nFN is the
number of intersections that were not detected.

Figures 11 and 12 show the results of intersection detection in the central urban
and semi-urban regions, respectively. The precision and recall achieved using the two
approaches are listed in Table 4. The recall values achieved by the two approaches in the
two regions were over 80%, indicating that different types of intersections can be detected
based on trajectory data. In comparison, the model performances for the central urban
region were much better than those for the semi-urban region. There are two reasons for
this difference. First, the trajectory data for the central urban region has a higher coverage of
road segments, which is beneficial for the detection of intersections. Second, in the central
urban region, the roadways between intersections are approximately straight, which makes
it relatively easy to identify the turns occurring at intersections from trajectories.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

intersection or detected with an incorrect range, i.e., the overlap ratio is less than 80%, and

𝑛𝐹𝑁 is the number of intersections that were not detected.

Figures 11 and 12 show the results of intersection detection in the central urban and

semi-urban regions, respectively. The precision and recall achieved using the two

approaches are listed in Table 4. The recall values achieved by the two approaches in the

two regions were over 80%, indicating that different types of intersections can be detected

based on trajectory data. In comparison, the model performances for the central urban

region were much better than those for the semi-urban region. There are two reasons for

this difference. First, the trajectory data for the central urban region has a higher coverage

of road segments, which is beneficial for the detection of intersections. Second, in the

central urban region, the roadways between intersections are approximately straight,

which makes it relatively easy to identify the turns occurring at intersections from

trajectories.

Figure 11. Results of intersection detection in the central urban region: (a) using the local G* statistic-

based approach and (b) using the proposed approach. The points and segments in color are the

detected turning points and TTSs, and turning points (TTSs) detected for the same intersection are

marked in the same color.

Figure 12. Results of intersection detection in the semi-urban region: (a) using the local G* statistic-

based approach and (b) using the proposed approach. The points and segments in color are the

detected turning points and TTSs. Turning points (TTSs) detected for the same intersection are

marked in the same color.

Table 4. Statistical summary of the intersection detection results for the central urban and semi-

urban regions using the two approaches.

Study Area Approach 𝒏𝑻𝑷 𝒏𝑭𝑷 𝒏𝑭𝑵 Precision (%) Recall (%)

Figure 11. Results of intersection detection in the central urban region: (a) using the local G* statistic-
based approach and (b) using the proposed approach. The points and segments in color are the
detected turning points and TTSs, and turning points (TTSs) detected for the same intersection are
marked in the same color.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

intersection or detected with an incorrect range, i.e., the overlap ratio is less than 80%, and

𝑛𝐹𝑁 is the number of intersections that were not detected.

Figures 11 and 12 show the results of intersection detection in the central urban and

semi-urban regions, respectively. The precision and recall achieved using the two

approaches are listed in Table 4. The recall values achieved by the two approaches in the

two regions were over 80%, indicating that different types of intersections can be detected

based on trajectory data. In comparison, the model performances for the central urban

region were much better than those for the semi-urban region. There are two reasons for

this difference. First, the trajectory data for the central urban region has a higher coverage

of road segments, which is beneficial for the detection of intersections. Second, in the

central urban region, the roadways between intersections are approximately straight,

which makes it relatively easy to identify the turns occurring at intersections from

trajectories.

Figure 11. Results of intersection detection in the central urban region: (a) using the local G* statistic-

based approach and (b) using the proposed approach. The points and segments in color are the

detected turning points and TTSs, and turning points (TTSs) detected for the same intersection are

marked in the same color.

Figure 12. Results of intersection detection in the semi-urban region: (a) using the local G* statistic-

based approach and (b) using the proposed approach. The points and segments in color are the

detected turning points and TTSs. Turning points (TTSs) detected for the same intersection are

marked in the same color.

Table 4. Statistical summary of the intersection detection results for the central urban and semi-

urban regions using the two approaches.

Study Area Approach 𝒏𝑻𝑷 𝒏𝑭𝑷 𝒏𝑭𝑵 Precision (%) Recall (%)

Figure 12. Results of intersection detection in the semi-urban region: (a) using the local G* statistic-
based approach and (b) using the proposed approach. The points and segments in color are the
detected turning points and TTSs. Turning points (TTSs) detected for the same intersection are
marked in the same color.

Sensors 2022, 22, 6997 16 of 20

Table 4. Statistical summary of the intersection detection results for the central urban and semi-urban
regions using the two approaches.

Study Area Approach nTP nFP nFN Precision (%) Recall (%)

Central urban region

Local G*
statistic-based

approach
72 18 7 80.0 91.1

Proposed
approach 79 5 7 94.0 91.9

Semi-urban region

Local G*
statistic-based

approach
95 34 18 73.6 84.1

Proposed
approach 111 7 17 94.1 86.7

The proposed approach was superior to the local G* statistic-based approach in ac-
curacy. For the central urban region, the precision values of the proposed and local G*
statistic-based approaches were 94.0% and 80.0%, respectively. In particular, 18 intersec-
tions detected by the local G* statistic-based approach were inconsistent with the manual
identification results, compared with five errors using the proposed approach. Similar find-
ings were obtained for the semi-urban region, where the precision values of the proposed
and local G* statistic-based approaches were 94.1% and 73.6%, respectively.

A comparative analysis revealed that our approach outperforms the local G* statistic-
based approach in at least three situations, as illustrated in Figure 13. The first situation
occurred in areas with adjacent intersections, where two or more intersections were iden-
tified as a single intersection by the local G* statistic-based approach (see Case A). This
can be explained by the spatial proximity of intersections, such that the associated turning
points were treated as one cluster. Such detection errors were reduced by the newly pro-
posed approach. The second situation occurred in the intersections with a low coverage
of trajectories. For example, in Case B, the local G* statistic-based approach treated the
associated turning points as two clusters and thus obtained two separate intersections.
Third, the coverage of many intersections detected by the local G* statistic-based approach
was inaccurate (e.g., Case C). Most of these detection errors were closely related to the
misidentification of turning points, and therefore, some tracking points outside of an inter-
section were added to generate the intersection coverages. Using the proposed approach,
this type of incorrect detection was significantly reduced because not only the heading
changes but also the speed and acceleration attributes were considered for the decision of
turns within the intersection areas. Moreover, the memory capability of LSTM enabled the
proposed model to integrate the moving features of the adjacent tracking points, which
further improved the ability to detect turns.

4. Discussion

The experimental results show that the proposed approach outperforms the local
G* statistic-based approach in terms of precision. This improvement benefited from the
introduction of the LSTM neural network, which enabled the extraction of high-level mov-
ing patterns based on the implicit direction and speed changes in the trajectories. Thus,
it helped our approach to better detect the turns (i.e., TTSs) occurring at intersections.
Moreover, the difficulty of the parameter settings during the turn detection was allevi-
ated. Existing approaches require the manual determination of appropriate thresholds on
heading changes, which can easily lead to incorrect detection due to the diverse structures
and sizes of intersections. In contrast, the proposed approach employs the LSTM neural
network to learn knowledge to identify the turns from samples, which does not require a
manual setting of relevant parameters or rules.

Sensors 2022, 22, 6997 17 of 20Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

Figure 13. Comparison of the detected intersections using the two approaches. The points and

segments in color are the detected turning points and TTSs, and the circles represent the boundaries

of the detected intersections.

4. Discussion

The experimental results show that the proposed approach outperforms the local G*

statistic-based approach in terms of precision. This improvement benefited from the

introduction of the LSTM neural network, which enabled the extraction of high-level

moving patterns based on the implicit direction and speed changes in the trajectories.

Thus, it helped our approach to better detect the turns (i.e., TTSs) occurring at

intersections. Moreover, the difficulty of the parameter settings during the turn detection

was alleviated. Existing approaches require the manual determination of appropriate

thresholds on heading changes, which can easily lead to incorrect detection due to the

diverse structures and sizes of intersections. In contrast, the proposed approach employs

the LSTM neural network to learn knowledge to identify the turns from samples, which

does not require a manual setting of relevant parameters or rules.

Despite the relatively good performance of the proposed approach, a small number

of intersections were not accurately detected. First, the detection of the y- and Y-shaped

intersections needs to be improved. Unlike the T-shaped and cross-shaped intersections,

the y- and Y-shaped intersections involve turns with slight heading changes. This makes

it difficult to identify the associated TTSs from the trajectories, leading to the missing

detection of intersections. Second, it is still challenging to obtain the complete structure of

complex intersections. Figure 14 presents a close view of the detected TTSs around several

complex intersections. In these examples, many TTSs across intersection areas were

missing or not accurately detected, resulting in failures in coverage and internal path

generation. The complex intersections, such as interchanges and overpasses, show diverse

external shapes and complex internal structures, making their turns much more difficult

to characterize. Future work needs to collect more trajectory samples that cover these

complex intersections of various sizes and structures and further investigate how those

complex intersections can be better tackled.

Figure 13. Comparison of the detected intersections using the two approaches. The points and
segments in color are the detected turning points and TTSs, and the circles represent the boundaries
of the detected intersections.

Despite the relatively good performance of the proposed approach, a small number
of intersections were not accurately detected. First, the detection of the y- and Y-shaped
intersections needs to be improved. Unlike the T-shaped and cross-shaped intersections,
the y- and Y-shaped intersections involve turns with slight heading changes. This makes
it difficult to identify the associated TTSs from the trajectories, leading to the missing
detection of intersections. Second, it is still challenging to obtain the complete structure
of complex intersections. Figure 14 presents a close view of the detected TTSs around
several complex intersections. In these examples, many TTSs across intersection areas
were missing or not accurately detected, resulting in failures in coverage and internal path
generation. The complex intersections, such as interchanges and overpasses, show diverse
external shapes and complex internal structures, making their turns much more difficult to
characterize. Future work needs to collect more trajectory samples that cover these complex
intersections of various sizes and structures and further investigate how those complex
intersections can be better tackled.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 21

Figure 14. Detection results for TTSs (in red) at three typical complex intersections (a–c) using the

proposed approach.

Moreover, as a supervised learning method, the proposed LSTM-based model

depends heavily on high-quality training samples. Labeling sample trajectories requires a

certain amount of work and support from professionals. In addition, further investigation

is required before using the trained LSTM-based model on other trajectory datasets. For

example, applying the model trained on the trajectory samples of Wuhan to detect TTSs

in Beijing’s trajectories might see a certain decrease in model performance because of the

differences in intersection patterns and local traffic regulations. In such situations, the

LSTM-based model may need to be restructured (e.g., the setting of the hidden state in the

encode and decode layers) and retrained.

The LSTM-based model alleviates the difficulty of parameter setting and, in turn,

detection. However, other steps of the proposed approach, i.e., data pre-processing and

intersection structure generation, are still susceptible to the setting of parameters, such as

the similarity threshold in TTS clustering and the distance threshold in intersection

coverage determination. To solve this problem, an end-to-end approach that generates

road intersections from raw trajectories directly using a single neural network or a

combination of neural networks needs to be investigated.

5. Conclusions

The widespread use of vehicle trajectory data has provided new opportunities for

monitoring transportation infrastructures and updating road maps. However, there is still

a lack of effective tools for realizing automatic transformation from raw trajectory data to

road features. This paper presents a new approach for detecting turns and generating

intersections from trajectories. An LSTM-based model was developed to analyze the

motion characteristics of the vehicle along each trajectory and to detect TTSs, each of

which indicates a turn at an intersection. The detected TTSs were then clustered to obtain

the coverage and internal structure of the intersections. The proposed approach was

validated using a trajectory dataset obtained from Wuhan. In a central urban region, the

intersection detection achieved a precision of 94.0% and a recall of 91.9%. In a semi-urban

region, the intersection detection precision and recall were 94.1% and 86.7%, respectively.

These results were better than those obtained using the local G* statistic-based approach.

Future work can focus on three aspects to improve the robustness of our approach.

First, it is necessary to establish a high-quality sample dataset that contains trajectories

covering intersections with various patterns and sizes. Second, other deep learning

networks, such as the one-dimension convolutional or graph neural networks, can be

considered when searching for more robust models for turn detection. Third, the quality

of the generated intersection features, including position accuracy and structural

integrity, needs to be fully assessed against official, authoritative road data. Beyond the

specific topic of generating road intersections, the proposed approach can potentially be

extended to mine the movement behaviors from spatiotemporal trajectory data. This field

provides promise for studies of implicit patterns and interpreting human mobility

behaviors by spatiotemporal data analytics.

Figure 14. Detection results for TTSs (in red) at three typical complex intersections (a–c) using the
proposed approach.

Sensors 2022, 22, 6997 18 of 20

Moreover, as a supervised learning method, the proposed LSTM-based model depends
heavily on high-quality training samples. Labeling sample trajectories requires a certain
amount of work and support from professionals. In addition, further investigation is
required before using the trained LSTM-based model on other trajectory datasets. For
example, applying the model trained on the trajectory samples of Wuhan to detect TTSs
in Beijing’s trajectories might see a certain decrease in model performance because of the
differences in intersection patterns and local traffic regulations. In such situations, the
LSTM-based model may need to be restructured (e.g., the setting of the hidden state in the
encode and decode layers) and retrained.

The LSTM-based model alleviates the difficulty of parameter setting and, in turn,
detection. However, other steps of the proposed approach, i.e., data pre-processing and
intersection structure generation, are still susceptible to the setting of parameters, such
as the similarity threshold in TTS clustering and the distance threshold in intersection
coverage determination. To solve this problem, an end-to-end approach that generates road
intersections from raw trajectories directly using a single neural network or a combination
of neural networks needs to be investigated.

5. Conclusions

The widespread use of vehicle trajectory data has provided new opportunities for
monitoring transportation infrastructures and updating road maps. However, there is still
a lack of effective tools for realizing automatic transformation from raw trajectory data
to road features. This paper presents a new approach for detecting turns and generating
intersections from trajectories. An LSTM-based model was developed to analyze the
motion characteristics of the vehicle along each trajectory and to detect TTSs, each of which
indicates a turn at an intersection. The detected TTSs were then clustered to obtain the
coverage and internal structure of the intersections. The proposed approach was validated
using a trajectory dataset obtained from Wuhan. In a central urban region, the intersection
detection achieved a precision of 94.0% and a recall of 91.9%. In a semi-urban region, the
intersection detection precision and recall were 94.1% and 86.7%, respectively. These results
were better than those obtained using the local G* statistic-based approach.

Future work can focus on three aspects to improve the robustness of our approach.
First, it is necessary to establish a high-quality sample dataset that contains trajectories cov-
ering intersections with various patterns and sizes. Second, other deep learning networks,
such as the one-dimension convolutional or graph neural networks, can be considered
when searching for more robust models for turn detection. Third, the quality of the gen-
erated intersection features, including position accuracy and structural integrity, needs
to be fully assessed against official, authoritative road data. Beyond the specific topic
of generating road intersections, the proposed approach can potentially be extended to
mine the movement behaviors from spatiotemporal trajectory data. This field provides
promise for studies of implicit patterns and interpreting human mobility behaviors by
spatiotemporal data analytics.

Author Contributions: Conceptualization, Z.W. and M.Y.; methodology, all authors; data curation,
L.L. and M.Y.; validation, Z.W. and H.Y.; writing—original draft preparation, Z.W.; writing—review
and editing, all authors; supervision, L.L. and M.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant num-
ber 41871377) and key basic research projects of the Foundation Plan of China (grant number
2020-JCJQ-ZD-087).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2022, 22, 6997 19 of 20

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Davies, J.J.; Beresford, A.R.; Hopper, A. Scalable, Distributed, Real-Time Map Generation. IEEE Pervasive Comput. 2006, 5, 47–54.

[CrossRef]
2. Kuntzsch, C.; Sester, M.; Brenner, C. Generative models for road network reconstruction. Int. J. Geog. Inf. Sci. 2016, 30, 1012–1039.

[CrossRef]
3. Biagioni, J.; Eriksson, J. Inferring Road Maps from Global Positioning System Traces: Survey and comparative evaluation. Transp.

Res. Rec. 2012, 2291, 61–71. [CrossRef]
4. Fu, Z.; Fan, L.; Sun, Y.; Tian, Z. Density Adaptive Approach for Generating Road Network from GPS Trajectories. IEEE Access

2020, 8, 51388–51399. [CrossRef]
5. Ahmed, M.; Wenk, C. Constructing street networks from GPS trajectories. In European Symposium on Algorithms; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 60–71. [CrossRef]
6. Cao, L.; Krumm, J. From GPS traces to a routable road map. In Proceedings of the 17th ACM International Symposium on

Advances in Geographic Information Systems, Seattle, WA, USA, 4 November 2009; pp. 3–12. [CrossRef]
7. Fathi, A.; Krumm, J. Detecting road intersections from GPS traces. In International Conference on Geographic Information Science;

Springer: Berlin/Heidelberg, Germany, 2010; pp. 56–69. [CrossRef]
8. Karagiorgou, S.; Pfoser, D. On vehicle tracking data-based road network generation. In Proceedings of the 20th International

Conference on Advances in Geographic Information Systems, New York, NY, USA, 6 November 2012; pp. 89–98. [CrossRef]
9. Xie, X.; Wong, K.; Aghajan, H.; Veelaert, P.; Philips, W. Inferring directed road networks from GPS traces by track alignment.

ISPRS Int. J. Geo-Inf. 2015, 4, 2446–2471. [CrossRef]
10. Guo, Y.; Li, B.; Lu, Z.; Zhou, J. A novel method for road network mining from floating car data. Geo-Spat. Inf. Sci. 2022, 25,

197–211. [CrossRef]
11. Jiang, B.; Zhao, S.; Yin, J. Self-organized natural roads for predicting traffic flow: A sensitivity study. J. Stat. Mech: Theory Exp.

2008, 2008, P07008. [CrossRef]
12. Lee, K.; Lee, U.; Gerla, M. Survey of routing protocols in vehicular ad hoc networks. In Advances in Vehicular Ad-Hoc Networks:

Developments and Challenges; IGI Global: Hershey, PA, USA, 2010; pp. 149–170.
13. Murcio, R.; Masucci, A.P.; Arcaute, E.; Batty, M. Multifractal to monofractal evolution of the London street network. Phys. Rev. E

2015, 92, 062130. [CrossRef]
14. Wang, J.; Rui, X.; Song, X.; Tan, X.; Wang, C.; Raghavan, V. A novel approach for generating routable road maps from vehicle GPS

traces. Int. J. Geog. Inf. Sci. 2015, 29, 69–91. [CrossRef]
15. Wang, J.; Wang, C.; Song, X.; Raghavan, V. Automatic intersection and traffic rule detection by mining motor-vehicle GPS

trajectories. Comput. Environ. Urban Syst. 2017, 64, 19–29. [CrossRef]
16. Ezzat, M.; Sakr, M.; Elgohary, R.; Khalifa, M.E. Building road segments and detecting turns from GPS tracks. J. Comput. Sci. 2018,

29, 81–93. [CrossRef]
17. Yang, X.; Tang, L.; Niu, L.; Zhang, X.; Li, Q. Generating lane-based intersection maps from crowdsourcing big trace data. Transp.

Res. Part C 2018, 89, 168–187. [CrossRef]
18. Deng, M.; Huang, J.; Zhang, Y.; Liu, H.; Tang, L.; Tang, J.; Yang, X. Generating urban road intersection models from low-frequency

GPS trajectory data. Int. J. Geog. Inf. Sci. 2018, 32, 2337–2361. [CrossRef]
19. Arman, M.; Tampère, C. Lane-level routable digital map reconstruction for motorway networks using low-precision GPS data.

Transp. Res. Part C 2021, 129, 103234. [CrossRef]
20. Garyfallidis, E.; Brett, M.; Correia, M.M.; Williams, G.B.; Nimmo-Smith, I. Quickbundles, a method for tractography simplification.

Front. Neurosci. 2012, 6, 175. [CrossRef]
21. Yang, X.; Hou, L.; Guo, M.; Cao, Y.; Yang, M.; Tang, L. Road intersection identification from crowdsourced big trace data using

Mask-RCNN. Trans. GIS 2022, 26, 278–296. [CrossRef]
22. Xie, X.; Liao, W.; Aghajan, H.; Veelaert, P.; Philips, W. Detecting road intersections from GPS traces using longest common

subsequence algorithm. ISPRS Int. J. Geo-Inf. 2016, 6, 1. [CrossRef]
23. Zourlidou, S.; Sester, M. Intersection detection based on qualitative spatial reasoning on stopping point clusters. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 41, 269–276. [CrossRef]
24. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
25. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
26. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
27. Azari, E.; Vrudhula, S. An Energy-Efficient Reconfigurable LSTM Accelerator for Natural Language Processing. In Proceedings of

the IEEE International Conference on Big Data, Los Angeles, CA, USA, 9 December 2019; pp. 4450–4459. [CrossRef]
28. Khan, A.; Sarfaraz, A. RNN-LSTM-GRU based language transformation. Soft Comput. 2019, 23, 13007–13024. [CrossRef]

http://doi.org/10.1109/MPRV.2006.83
http://doi.org/10.1080/13658816.2015.1092151
http://doi.org/10.3141/2291-08
http://doi.org/10.1109/ACCESS.2020.2980174
http://doi.org/10.1007/978-3-642-33090-2_7
http://doi.org/10.1145/1653771.1653776
http://doi.org/10.1007/978-3-642-15300-6_5
http://doi.org/10.1145/2424321.2424334
http://doi.org/10.3390/ijgi4042446
http://doi.org/10.1080/10095020.2021.2003165
http://doi.org/10.1088/1742-5468/2008/07/P07008
http://doi.org/10.1103/PhysRevE.92.062130
http://doi.org/10.1080/13658816.2014.944527
http://doi.org/10.1016/j.compenvurbsys.2016.12.006
http://doi.org/10.1016/j.jocs.2018.09.011
http://doi.org/10.1016/j.trc.2018.02.007
http://doi.org/10.1080/13658816.2018.1510124
http://doi.org/10.1016/j.trc.2021.103234
http://doi.org/10.3389/fnins.2012.00175
http://doi.org/10.1111/tgis.12851
http://doi.org/10.3390/ijgi6010001
http://doi.org/10.5194/isprs-archives-XLI-B2-269-2016
http://doi.org/10.1038/nature14539
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/BigData47090.2019.9006030
http://doi.org/10.1007/s00500-019-04281-z

Sensors 2022, 22, 6997 20 of 20

29. Chorowski, J.; Bahdanau, D.; Serdyuk, D.; Cho, K.; Bengio, Y. Attention-based models for speech recognition. In Advances in
Neural Information Processing Systems 28; MIT Press: Cambridge, MA, USA, 2015.

30. Yao, D.; Zhang, C.; Zhu, Z.; Hu, Q.; Wang, Z.; Huang, J.; Bi, J. Learning deep representation for trajectory clustering. Expert Syst.
2018, 35, e12252. [CrossRef]

31. Nawaz, A.; Zhiqiu, H.; Senzhang, W.; Hussain, Y.; Khan, I.; Khan, Z. Convolutional LSTM based transportation mode learning
from raw GPS trajectories. IET Intel. Transp. Syst. 2020, 14, 570–577. [CrossRef]

32. Bao, Y.; Huang, Z.; Li, L.; Wang, Y.; Liu, Y. A BiLSTM-CNN model for predicting users’ next locations based on geotagged social
media. Int. J. Geog. Inf. Sci. 2021, 35, 639–660. [CrossRef]

33. Lu, H.; Zhang, J.; Xu, Z.; Shi, R.; Wang, J.; Xu, S. Prediction of tourist flow based on multi-source traffic data in scenic spot. Trans.
GIS 2021, 25, 1082–1103. [CrossRef]

34. Savitzky, A.; Golay, M. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1627–1639. [CrossRef]

35. Pander, T. EEG signal improvement with cascaded filter based on OWA operator. Signal Image Video Processing 2019, 13, 1165–1171.
[CrossRef]

36. Etienne, L.; Devogele, T.; Buchin, M.; McArdle, G. Trajectory Box Plot: A new pattern to summarize movements. Int. J. Geog. Inf.
Sci. 2016, 30, 835–853. [CrossRef]

37. Petitjean, F.; Ketterlin, A.; Gançarski, P. A global averaging method for dynamic time warping, with applications to clustering.
Pattern Recognit. 2011, 44, 678–693. [CrossRef]

38. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
39. Kumari, L.V.; Sai, Y.P. Classification of ECG beats using optimized decision tree and adaptive boosted optimized decision tree.

Signal Image Video Process. 2022, 16, 695–703. [CrossRef]
40. Quinlan, J. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
41. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
42. Dilrukshi, I.; De Zoysa, K.; Caldera, A. Twitter news classification using SVM. In Proceedings of the 8th International Conference

on Computer Science and Education, Colombo, Sri Lanka, 26 April 2013; pp. 287–291. [CrossRef]
43. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Advances in Neural Information Processing Systems 30; Curran Associates Inc.: Red Hook, NY, USA, 2017.

http://doi.org/10.1111/exsy.12252
http://doi.org/10.1049/iet-its.2019.0017
http://doi.org/10.1080/13658816.2020.1808896
http://doi.org/10.1111/tgis.12724
http://doi.org/10.1021/ac60214a047
http://doi.org/10.1007/s11760-019-01458-9
http://doi.org/10.1080/13658816.2015.1081205
http://doi.org/10.1016/j.patcog.2010.09.013
http://doi.org/10.1177/001316446002000104
http://doi.org/10.1007/s11760-021-02009-x
http://doi.org/10.1007/BF00116251
http://doi.org/10.1007/BF00994018
http://doi.org/10.1109/ICCSE.2013.6553926

	Introduction
	Methods
	Data Pre-Processing
	Detecting TTSs Using an LSTM-Based Model
	Input Layer
	Encoder and Decoder Layers
	Output Layer and Training Process

	Generating Intersection Structures from TTSs
	Clustering TTSs Based on Position and Direction Similarity
	Determining the Coverages of Intersections by Aggregating TTS Clusters
	Generating the Structural Model for Each Intersection

	Experiments, Results and Discussion
	Experimental Dataset and Pre-Processing Settings
	Training and Evaluation of the LSTM-Based Model
	Results of TTS Detection and Intersection Generation
	Comparison of TTS Detection
	Comparison of Intersection Generation

	Discussion
	Conclusions
	References

