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Abstract: Unsupervised person re-identification has attracted a lot of attention due to its strong
potential to adapt to new environments without manual annotation, but learning to recognise
features in disjoint camera views without annotation is still challenging. Existing studies tend to
ignore the optimisation of feature extractors in the feature-extraction stage of this task, while the
use of traditional losses in the unsupervised learning stage severely affects the performance of the
model. Additionally the use of a contrast learning framework in the latest methods uses only a
single cluster centre or all instance features, without considering the correctness and diversity of
the samples in the class, which affects the training of the model. Therefore, in this paper, we design
an unsupervised person-re-identification framework called attention-guided fine-grained feature
network and symmetric contrast learning (AFF_SCL) to improve the two stages in the unsupervised
person-re-identification task. AFF_SCL focuses on learning recognition features through two key
modules, namely the Attention-guided Fine-grained Feature network (AFF) and the Symmetric
Contrast Learning module (SCL). Specifically, the attention-guided fine-grained feature network
enhances the network’s ability to discriminate pedestrians by performing further attention operations
on fine-grained features to obtain detailed features of pedestrians. The symmetric contrast learning
module replaces the traditional loss function to exploit the information potential given by the multiple
samples and maintains the stability and generalisation capability of the model. The performance of
the USL and UDA methods is tested on the Market-1501 and DukeMTMC-reID datasets by means of
the results, which demonstrate that the method outperforms some existing methods, indicating the
superiority of the framework.

Keywords: person re-identification; attention; fine-grained feature; contrast learning; unsupervised
learning

1. Introduction

Person re-identification (Re-ID), which refers to the concatenated matching of images
of the same identity across different cameras, is a basic image-retrieval task [1]. The
advantage of this technique is that it can be used to identify specific people without
acquiring clear facial images and allows the use of crossed cameras for people-trajectory
reconstruction and target-detection identification. The features it acquires can be used as
complementary features for people detection and face recognition, helping to improve
and enhance the performance of target-detection and face-recognition systems. It is also
important to use person re-identification to monitor case movement routes, especially
during global epidemic crises, in order to provide reliable data for epidemic prevention
services and to achieve precise prevention and control.

The field of person re-identification is currently dominated by supervised methods,
which rely on labelled pedestrian data for model training. The core algorithms commonly
used are divided into feature-based learning methods, which focus on learning the invariant
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features of pedestrians and represent a kind of strongly supervised information, and metric
learning methods, which focus on learning similarity measures of features and represent a
kind of weakly supervised information, whose algorithm performance still dominates in
mainstream datasets [2]. However, in real life, pedestrians are in complex environments
and pedestrian data collected under intelligent surveillance are highly susceptible to
lighting, foreign-object occlusion or target-detection algorithms, so models trained on
specific publicly available datasets are not representative of the actual situation. Moreover,
labelling the pedestrian data in each training set under different cameras often requires
significant human and financial resources, making supervised approaches difficult to apply
to real-life situations and having significant limitations. Therefore, how to use large-scale
unlabelled image data to train a model with a stronger generalisation capability to cope
with various complex surveillance scenarios is the main research direction in the field of
person re-identification in the future.

The general unsupervised person-re-identification task is studied in two main stages:
the first stage is the feature-extraction stage, where the extracted pedestrian features directly
determine the performance of the network model; the second stage is the unsupervised
learning stage, which relies heavily on the features obtained in the feature-extraction stage,
and some invalid features will directly affect the subsequent clustering effect. However,
some current algorithms, in their first stages, rarely improve on the feature extractor [3,4].
The most intuitive method for selecting pedestrian representation features is to directly
extract a global feature map of the pedestrian. Relying on global features alone often fails to
accurately identify pedestrians in the presence of occlusion, misalignment and background
interference. In addition, some key local features (such as carry-ons and body parts such
as the pedestrian’s face or limbs) are not clearly observed due to interference from factors
such as low camera resolution and illumination.

Meanwhile, in the second stage, the traditional classification loss and ternary loss have
significant drawbacks. The parametric classification loss has to be implemented with the
help of a fully connected classification layer; however, the fully connected layer often has a
relatively large number of parameters and is not used at all in the inference stage of the
model. Moreover this type of loss cannot learn sufficiently for images with fewer categories,
and the overall benefit is low. Ternary loss can only handle relationships between three
samples at a time, with too many samples required, leading to too slow convergence of the
loss function and lengthening the model training time [5–7]. So, in order to optimise the
metric learning stage and improve the model’s ability to discriminate between features, we
use contrast learning. Apart from this, previous methods simply use cluster centres or all
instance features for contrast learning, where the cluster centres simply sum all features in
each class to take the mean value without considering the correctness of the samples in the
class, and there may be sample features that are clustered incorrectly, while direct contrast
learning using all instance features will put all features into the storage unit for updating.
The former will amplify the clustering noise, and the latter will seriously affect the update
speed of the storage unit.

To address the above existing problems, in the first stage, as shown in Figure 1, we
propose an attention-guided fine-grained feature network (AFF) by combining fine-grained
features and two attentional mechanisms. It will guide the network to discover salient
cues at different scales sequentially, from coarse to fine, in order to obtain a comprehensive
and complementary perception. Specifically, we adopt hybrid attention to focus on the
pedestrian in the picture, reduce the interference brought in by the background and obtain
the global features of the pedestrian. The processed features are then segmented on
the channel, and the channel attention is employed to mine semantic information. By
combining spatial local-to-local and semantic concept-to-concept matching, we are able to
establish a fine-grained feature-fusion approach with attention to achieve generalised and
distinguishable representations and improve the ability of the neural network to extract
more discriminative features. In the second stage, we propose a symmetric contrast learning
(SCL) method using mean features combined with hard sample features instead of the
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traditional loss function. Moreoverthe hard sample features introduced can be well mined
for pedestrian-distinguishing information and a balance loss is introduced to ensure that
the network is updated in a more stable manner. Symmetric contrast learning can make
full use of information from multiple samples that complement each other to improve the
robustness of this stage against noise robustness.

Input       ResNet50        AFF

(a)

   

(c)

(b)

(d)

Input       ResNet50        AFF

Figure 1. In this paper, the pedestrian image features are visualised in the baseline model (ResNet50)
and the attention-guided fine-grained feature network (AFF) in Grad_CAM, and four pedestrian
images (a–d) are selected for visualisation and comparison analysis. It can be seen from this that
using the proposed AFF model in this paper can better focus on pedestrian information compared to
ResNet50, focusing on pedestrian details such as backpack, clothing colour or accessories, etc. This
can better distinguish some similar pedestrians, improve the accuracy of retrieval and verify the
effectiveness of the model.

In summary, the main contributions of this paper are as follows:

1. For the feature-extraction stage, i.e., how to obtain “effective” people features from
the model and avoid the interference of background and other noise in the people
images, so as to prepare for better clustering, this paper introduces an AFF network.
By combining the fine-grained features of people images with the attention mecha-
nism, we can improve the distinguishability of people features and thus enhance the
discriminative power of the model.

2. For the unsupervised learning stage, i.e., how to reduce the influence of “invalid” data
in the clustering process, reduce the clustering error and improve the robustness of
the model, this paper introduces a SCL method. Instead of adopting a single feature in
the selection of clustering representatives in the storage unit, a combination of mean
features and hard sample features is adopted to design a symmetric contrast loss to
improve the generalization ability of the model.

3. Combining the methods proposed in the two stages, we construct an unsupervised
person-re-identification framework AFF_SCL and conduct performance tests on the
Market-1501 and DukeMTMC-reID datasets from both the Unsupervised Learn-
ing(USL) and Unsupervised Domain Adaptation(UDA) methods. Additionally, the
results show the superiority of the person-re-identification framework designed in
this paper.

2. Related Work
2.1. Supervised Person Re-Identification

When extracting pedestrian features in person-re-identification tasks, using only global
features to train the model no longer improves the model’s ability to discriminate between
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complex samples. As research continues, researchers have started to apply finer features
and learn local fine-grained features [3,4,8–12]. From fine-grained features, the global
feature information is somehow decomposed into local features, and the decomposed
features are taken separately for training to learn finer feature information.

The different ways of dividing feature regions can be divided into three categories;
the first one is spatial chunking based on information such as body keypoints [3,4,8]. In
2018, Sun et al. [8] proposed a part-based convolutional chunking network that spatially
chunks the image uniformly to obtain fine-grained features and then applies different
loss functions to different parts. Most of the subsequent spatial chunking has also been
analysed based on this method. However, the disadvantage of image spatial binning is
that this method requires checking the alignment of key parts of the pedestrian’s image.
If the key parts of the body do not correspond to the same location after the pedestrian
image is chunked, there is no guarantee that the feature information at the corresponding
location will be extracted, so there will be non-convergence in the learning process of the
model. The second one is the segmentation of channel information based on mapped
depth features [9,10]. Chen et al. [9] validated an approach to image channel segmentation
that does not extract the local features of specific body parts, but instead typically divides
features that have been represented by a deep network into a series of bands or unordered
blocks in the channel dimension and forms independent channel groups. The semantic
concepts of each channel group can be correlated and local features learned separately. The
extracted pedestrian features are divided into chunks according to the channel size and then
processed. As the Convolutional Neural Network (CNN) progresses, channel segmentation
allows for semantic concept-to-concept matching (e.g., with or without a hat, etc.), with
the final layer being more abstract, and the output of the channel being more semantic in
character, potentially corresponding to concepts such as hair colour, body type, etc. This
semantic information is not only useful for discriminating pedestrians, especially pedestrian
features that are extremely similar. Moreover, it avoids the problem of feature misalignment
and reduces the omission of detailed information in key areas. Moreover, this semantic
information shows strong generality in cross-domain person-re-identification tasks. In
contrast, image channel segmentation can also suffer from partial semantic gaps, which we
use a channel attention approach to improve. The third one uses attention mechanisms
to focus on local regions of interest [11,12]. The attention model mitigates misalignment
by discovering salient regions in the image, while the learned features are more robust
and can effectively help deep neural networks focus on the information of interest. For
fine-grained pedestrian analysis tasks, Liu et al. [12] proposed a HydraPlus-Net architecture
based on a multi-directional attention module, which was able to capture multiple attention
features from the lower to the semantic layer. The final feature representation of pedestrian
images is enriched by incorporating a multi-scale selection of attentional features.As the
focus varies with the scale of the image, the attention mechanism may eliminate useful
additional information. However, through research, this information can be preserved by
fine-grained features.

These three methods can make it easier for the network to extract finer and more
effective pedestrian features. Channel segmentation allows the neural network to learn
more local features, while then combining the attention mechanism to guide the neural
network to locate the most important regions in the image and extract secondary seman-
tic information. The complementary nature of attention and fine-grained features can
effectively preserve the problem of missing information.

2.2. Unsupervised Person Re-Identification

In general, researchers have divided person re-identification into two lines of research:
Unsupervised Learning (USL) person re-identification and Unsupervised Domain Adaptive
(UDA) person re-identification, which have achieved excellent performance on commonly
used publicly available datasets and even outperformed supervised methods on some
individual datasets.
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2.2.1. Unsupervised Learning Person Re-Identification

The idea of unsupervised-learning person re-identification is usually to use a pseudo-
label-generation approach to train the model directly using unlabelled datasets in the
target domain, which fully explores the distribution of data in the target domain to learn
discriminative human features, and many researchers have used traditional clustering
algorithms to generate pseudo labels.

Initial researchers combined K-Means clustering methods and fine-tuned models to
achieve this [13,14]. Later Lin et al. [5] proposed a Bottom-Up clustering approach consid-
ering the relationship between CNNs and individual samples. Since each pedestrian image
is considered to be a different class, the features extracted from the network during training
are clustered using bottom-up clustering to ensure the similarity of identity information
within the same class and the difference of identity information between different classes.
Fu et al. [15] proposed a natural self-similarity grouping method, which independently
groups the target domain images based on three cues: full-body, upper-body and lower-
body. According to the corresponding groupings, the corresponding pseudo labels are
assigned using Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
and trained iteratively to continuously explore the potential similarities between global
and local.

However, in order to reduce the noise error generated in the pseudo-label-generation
process and improve the quality of the pseudo label, some researchers conducted further
research. Zeng et al. [6] used Hierarchical Clustering with hard-batch Triplet loss to reduce
the effect of difficult samples and mine the similarity of not-easily-distinguishable samples
in the target domain with the help of hierarchical clustering to generate high-quality pseudo
label. To solve the problem of being affected by noisy labels and feature changes caused
by camera shifts, Yang et al. [16] used a dynamic symmetric cross-entropy loss algorithm
to deal with noisy samples and proposed a perceptual meta-learning algorithm adapted
to cross-camera shifts to cope with camera shifts, which can effectively solve the feature
change problem.

In addition to the above-mentioned use of clustering algorithms, some researchers
have generated pseudo label with the help of some discriminative information, such
as pedestrian-attribute information or identity information to generate pseudo labels to
update unlabelled data in the target domain. Yang et al. [17] extracted block samples
from the feature map of pedestrian images with the help of a chunked discriminative
feature-learning network to generate pseudo labels to learn differentiated block features,
demonstrating those local features. Xuan et al. [18] proposed a pseudo-label-generation
method based on intra–inter camera similarity and decomposed the sample similarity
computation into two stages: intra-camera computation and inter-camera computation.

Clustering-algorithm-based pseudo-label-generation has now become the main method
for creating pseudo labels in unsupervised learning person-re-identification scenarios. This
approach is simple to implement and can approach the performance of supervised learning
methods. Generating pseudo labels based on auxiliary information may consider whether
the auxiliary information and the identity information are strongly correlated, and this
method is less used.

2.2.2. Unsupervised Domain Adaptive Person Re-Identification

In recent years, unsupervised domain adaptation has become an important research
topic in the field of deep learning, and some work has also used unsupervised domain
adaptation to solve cross-domain person-re-identification tasks. Traditional domain adap-
tation methods [19,20] for solving inter-domain differences assume that the labelled source
and unlabelled target domains share the same class and use asymmetric multi-task learning
methods for dictionary learning to solve the domain-adaptation problem. Some deep
learning methods are now well suited to eliminate data discrepancies between source and
target domains [7,21–23].
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The first approach is based on image-style migration. Wei et al. [24] and Deng et al. [25]
reduced the domain gap between different datasets by designing a pedestrian-migration
generative adversarial network to transfer the source domain image style to the target
domain image. Chen et al. [26] utilised an instance-based context-mapping approach
to input arbitrary source domain data into a GAN network and target domain images,
generating images with the same identity as the source domain and the same context as
the target domain, never reducing the differences between the inter-domain data due to
the image context. The approach based on image-style migration is highly dependent on
the quality of the images generated by the generative adversarial networks; so, one of the
research challenges is to improve the quality of the generated images.

The second approach is a camera-awareness-based approach. To mitigate the ap-
pearance of pedestrians under different cameras that may be affected by environmental
factors such as viewpoint and illumination, camera-aware approaches are used to reduce
the feature-space domain shifts caused by crossed cameras, which can better capture the
similarity relationships between and within cameras. At this stage, Qi et al. [27] proposed a
camera-aware domain adaptive method based on adversarial learning so as to solve the
problem of inconsistent data distribution between the source and target domains due to
crossed cameras. To address the problem of large differences in identity recognition due
to camera viewpoint changes, Wang et al. [28] utilised a camera-aware Proxies method
based on camera-awareness and designed intra-camera and inter-camera contrast learning
components to effectively improve intra-camera and inter-camera identity recognition.
Luo et al. [29] used a camera-aware approach to constrain the commonly used neighbour-
hood invariance method to supervise the feature learning of the target domain identity
to bridge the gap between the source and target domains. The camera-awareness-based
approach is robust to camera changes but is somewhat limited by the lack of paired true
label information across camera samples.

The third approach is based on contrast learning. Contrast learning does not require
the use of a fully connected network layer for category mapping but only aids the calcu-
lation of classification losses within a larger training batch or with the help of external
category feature storage units. In recent times, the combination of clustering or KNN
nearest neighbour based methods and contrast learning has led to the acquisition of more
valid positive samples, thus making contrast learning more effective in unsupervised
representation learning tasks. Zhong et al. [30] selected valid positive instances through
learning sample invariance, camera invariance and nearest neighbour invariance. Yang
et al. [31] proposed a semi-supervised contrast-learning approach. For labelled images, the
distance to the cluster centres is reduced, and the distance to the other cluster centres and
unlabelled images is increased. Moreover, for unlabelled images, the distance to the nearest
neighbours is reduced, and the distance to the rest of the images is increased. Ge et al. [32]
designed a hybrid external storage unit for contrast learning using the clustering centre
features of the source domain data, the clustering centre features of the target domain
data and the features of the unclustered instances of the target domain data. Although the
features between the three different categories were considered, the updating process of the
storage unit was severely affected, and there was also a failure to consider the relationship
between multiple samples at the instance level. So, based on this paper, improvements
have been made.

3. Methods

In this section, we first introduce the overall structure of our proposed network model,
then briefly describe the preliminary elements of unsupervised person re-identification and
finally detail the specific details of each module.
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3.1. Overview

To address the problem in both stages of the unsupervised person-re-identification
task, we propose a framework based on attention-guided fine-grained feature-network and
symmetric-contrast learning (AFF_SCL), as shown in Figure 2.

In the first stage, inspired by the feature pyramid [10], we combine fine-grained fea-
tures and two attention mechanisms to propose an attention-based fine-grained feature
network (AFF) that guides the network to mine feature information from different gran-
ularities to achieve generalised and distinguishable representations, further improving
the neural network’s ability to extract more distinguishable features. As shown on the
left in Figure 2, we remove the average pooling layer and the fully connected layer after
Layer-4 on the basis of the ResNet-50 baseline, and remove the down-sampling operation to
obtain the global features of the people. In the global branch, in order to further capture the
overall information of the image, the global features are processed by the hybrid attention
module (CASAM) to focus on the people information of the whole image and reduce the
interference from the background, and then after attention processing the features are
fused with the original image to obtain the intermediate features. In the local branch, the
intermediate features are split from the channel dimension to obtain two local features, each
of which is processed by the channel-attention module (CAM) to explore the deep semantic
information, and then the features after the attention processing are stitched together to
obtain the final people-feature representation.
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Figure 2. Our AFF_SCL framework for the unsupervised person Re-ID pipeline. It consists of two
main stages: The left side of the dashed line represents our proposed the AFF module, including the
interaction of global and local branches; The right side of the dashed line represents the SCL module,
including the mean feature contrast loss, the hard sample contrast loss and a balancing loss.

As shown on the right in Figure 2, in the second stage, our proposed symmetric
contrast-learning (SCL) method based on mean samples and hard samples uses a hybrid
loss function to jointly construct a complete person-re-identification model for unsupervised
scenarios. The unlabelled pedestrian data in the target domain are fed into the AFF model
to extract features and, after obtaining all the target domain instance features the DBSCAN
clustering algorithm, is used to analyse the data distribution and obtain different clusters,



Sensors 2022, 22, 6978 8 of 19

generating a pseudo label for each class as the identity of that class. When selecting
class representatives from each class, mean features and hard sample features are used to
perform momentum with the help of storage units. Finally, a symmetric contrast loss is
designed to combine the mean-feature contrast loss and the hard-sample contrast loss. The
balancing loss is applied to reduce the difference between the mean feature and the hard
sample feature, and the model is iteratively trained to optimize the model’s parameters.

3.2. Preliminary

In an unsupervised person-re-identification task, given an unlabeled training set con-
sisting of n image samples X = {x1, x2, · · · , xn}, an encoder programmed for extracting
features from the input image learns Φ(θ; xi) without any available annotation. The param-
eters of Φ are iteratively optimized using the objective function. For inference, this feature
extractor can be applied to the graph library set of Nt images, G = {g1, g2, · · · , gNt} and
the query set, Q =

{
q1, q2, · · · , qNq

}
of Nq images. During the evaluation process, the

representation of the query image Φ(θ; qi) is used to search the graph library set, and more
features similar to q are searched from the graph library set G.

3.3. Attention-Guided Fine-Grained Feature Network

Channel slicing allows for semantic concept-to-concept matching, which can comple-
ment the feature representation extracted from spatial chunks and also does not suffer from
feature misalignment. As the CNN progresses, the final layer becomes more abstract, and
the output of the channel is a more semantic feature, potentially corresponding to concepts
such as hair colour, body type, etc. Therefore channel slicing has a strong advantage over
spatial chunking. In this paper, for the local feature-learning method we use image channel
slicing, which does not extract spatial local features of specific body parts but divides the
deep features represented by the deep network in the channel dimension into two local
features and forms independent channel groups. The semantic concepts of each channel
group can be correlated, and local feature learning arise performed separately, as shown on
the left side of the dashed line in Figure 3.

New sample feature

Global Feature Local Features

H

W

C

Channel splitting

C/2

C/2

H

W

People Image

Mean feature

Hard sample feature 

Pull

  Push

Figure 3. The (left) side of the dashed line indicates that we obtained the local features by splitting
the channel equally into two blocks. The (right) side of the dashed line indicates the relationship
between the new sample features and the different sample features.

In this paper, global features mainly are processed using hybrid attention and local
features, after channel segmentation is processed using channel attention.

3.3.1. CASAM

For global branching, CASAM hybrid attention uses the idea of the Convolutional
Block Attention Module [33], which combines channel attention and spatial attention and
further refines and fuses image features by considering the multidimensional information
of people images. Firstly, the image feature F is first obtained in the channel attention
sub-module as feature FC, then the feature F is multiplied by FC to obtain the intermediate
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refinement feature F′ then sent to the spatial attention sub-module to obtain feature FS, and
finally FS is multiplied by F′ to obtain the final refinement feature F′′. The computational
equation of the complete attention module can be expressed as:

FC = σ(W1( W0(MaxPool(F))) + W1( W0(AvgPool(F)))) (1)

F′ = F⊗ FC (2)

FS = σ
(

conv 7×7([MaxPool
(

F′
)
; AvgPool

(
F′
)]))

(3)

F′′ = F′ ⊗ FS, (4)

where ⊗ denotes pixel-to-pixel multiplication, FC is the channel attention value, σ denotes
the sigmoid function, W0 and W1 are the weights in the multi-layer perceptron, FS is the
spatial attention value, and conv 7×7 is the convolution layer of size 7 × 7.

CASAM solves the problem of heterogeneity between features by refining and merging
the features extracted on the channel and spatial dimensions. For a people image, we need
to focus more on the foreground information in the image, while reducing the interference
of background information. The combination of channel attention and spatial attention
can be a good solution to this problem and is also suitable for handling global features
of people.

3.3.2. CAM

For local branching, the CAM attention module uses the idea of Squeeze-and-Excitation
networks, the basic idea of which is to make the network model ignore some less useful
features, learn adaptively, determine the role of features according to their importance and
enhance the feature channels that are useful for the task [34]. The Re-ID method requires
more original information to be retained for some similar people samples, then a large
amount of detailed feature information is needed to supplement it, so the CAM module is
introduced to simulate the interdependencies between the features of each channel, to find
more discriminative features and to improve the representation capability of the network.
The CAM module consists of three components. Squeezing: Features are squeezed using
global average pooling to transform a two-dimensional feature channel into a feature vector
and use this vector to obtain information. Excitation: This consists of two fully connected
layers and a sigmoid layer. The fully connected layer collects all the feature information,
while the sigmoid layer places the input data between 0 and 1 to obtain the weights of each
channel in the feature map. Fusion: The processed features are fused with the original
image and the weights are attached to the individual channels, which obtains channels of
different importance. It is expressed as:

GC = σ
(
W ′2 ReLU

(
W ′1 AvgPool(G)

))
(5)

G′ = G⊗ GC, (6)

where W ′1 and W ′2 are the weights in the multi-layer perceptron, σ denotes the sigmoid
function, and ReLU denotes the ReLU function.

The CAM module is easy to build, simple to use, relatively inexpensive to compute
and can be trained directly. Therefore, the integration of the CAM module into the network
architecture not only significantly improves the efficiency of the network, but also improves
the importance of focusing on the channels after the people-feature segmentation, which
can greatly improve the model’s ability to discriminate detailed information.

3.4. Symmetric Contrast Learning

To optimise the second stage of unsupervised learning and to improve the model’s
ability to discriminate features, contrast learning, as a type of metric learning, is mainly
used to increase the distance of negative sample pairs and decrease the distance of positive
sample pairs. Inspired by the noise contrast estimation loss function or the N-pair loss func-
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tion, some contrast learning loss functions have been successfully applied to unsupervised
representation learning tasks in recent years.

Thus, inspired by the literature [35], instance-level hard-sample contrast loss is in-
troduced to exploit the full feature potential of hard samples [36,37]. By hard samples,
we mean samples that are very different compared to samples in the same identity, sam-
ples that are very different in different identities, and, in short, samples that are hard to
distinguish from positive samples. As shown in Figure 3, calculating the clustered mean
features without considering the effect of noise caused by the wrong samples optimises
the trends of the features, making the same clusters more compact and enhancing identity
discrimination. However, introducing hard samples and comparing the inputted new
samples with hard positive samples belonging to the same clusters and hard negative
samples from other clusters, and thus learning to distinguish easily confused samples, can
be a good solution to the problem that similar samples cannot easily be distinguished.

Therefore, on the premise that hard samples can provide a large amount of information
for training, using contrast learning improves intra-class compactness and inter-class
separability, improves the final discriminative power of the neural network and speeds up
the convergence of the network. In this paper, a combination of mean-feature contrast loss
and hard-sample contrast loss is used to select mean features and hard sample features
when selecting representative features for storage unit updates to tap into the discriminative
differentiation ability of the model.

In this paper, we use a state-of-the-art contrast learning method using the InfoNCE
loss function [38], as shown in Equation (7), to minimise the distance between samples of
the same identity and maximise the distance between samples of different identities.

Lq = − log
exp(query · class+)/τ

∑K
i=0 exp(query, classi)/τ

, (7)

where query is a query feature, and class+ is a positive feature that is selected from can-
didate classes class1, class2, . . ., classK with the same label as query. τ is a temperature
hyperparameter that controls the similarity scale. Thus, by combining the mean-feature
contrast loss (cluster-level loss) and the hard-sample-feature contrast loss (instance-level
loss), while introducing a balancing loss, a total loss function is proposed, as shown in
Equation (8).

Ltotal = λ1Lhard + λ2Lave + Lb, (8)

where λ is a balancing factor with default settings of 0.75 for λ1 and 0.25 for λ2. In the
following sections, we will describe the above loss formulae in more detail.

3.4.1. Mean-Feature Contrast Loss

Some instance-level memory-storage approaches require maintaining each instance
feature of the dataset and updating the corresponding memory storage with its own in-
stance features in each small batch, suffering from inconsistent memory-storage updates. In
each training iteration, a smaller cluster may have a higher proportion of instances updated
and take longer than a larger cluster due to the unbalanced distribution of cluster sizes.
Different instances in the same cluster will, therefore, have different update states. Unlike
previous approaches to instance-level memory storage, this paper uses mean features
to reserve one representative feature for each cluster, rather than reserving all instance
features. Regardless of whether the clusters are large or small, the corresponding storage
units are updated, ensuring consistency in the updating of features within the same cluster.
During the training process, we sample P personas and a fixed number of K instances of
each persona. As a result, a total number of P × K query images is obtained in small batches
of training.
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The mean feature contrast loss is shown in Equation (9), where q is the current query
sample feature, ci denotes the cluster centre feature of class i, and τ is a temperature
hyperparameter.

Lave = − log
exp(q · c+)/τ

∑K
i=0 exp(q, ci)/τ

(9)

The clustering centroids c1, c2, . . ., cK are calculated and stored in the memory of the
mean feature contrast loss, for which they are updated in the following way.

ci ← m · ci + (1−m) · c̄i, (10)

where ci is the mean of the i-th class of instance characteristics in the small-batch process,
and m is the momentum update factor.

3.4.2. Hard-Sample Feature Contrast Loss

Specifically, the most difficult instance feature in each person’s identity is selected for
storage and then dynamically updated for each class. The hard-sample feature contrast
loss function is shown in Equation (11), where q is the current query sample, qi

hard is the
hard sample in class i, and τ is a temperature hyperparameter.

Lhard = − log
exp

(
q · q+hard

)
/τ

∑K
i=0 exp

(
q, qi

hard
)
/τ

(11)

The feature update is shown in Equations (12) and (13).

qi
hard ← arg min

q
q · ci, q ∈ Qi (12)

qi
hard ← m · qi

hard + (1−m) · q̄i
hard, (13)

where the hard sample is the instance with the least similarity to the clustering feature. We
use the dot product as a measure of similarity, and m is the momentum update factor. Qi is
the set of features of instances with identity i in the current small batch.

3.4.3. Balance Loss

In the training process, in order to balance the mean features and hard sample features,
a consistency-loss balancing loss Lb based on a distance metric is used to constrain the
two features generated in the storage unit prediction, reducing the imbalance between
the features, while the loss also accelerates the convergence of the model and reduces the
training time, as shown in Equation (14).

Lb(x) = Lb(c− qhard) =
1
4

{
α
b (b|x|+ 1) ln(b|x|+ 1)− α|x|, i f |x| < 1
γ|x|+ γ

b − α, otherwise,
(14)

where α = 0.9, γ = α ln(b + 1) = 1.5 [39].

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets To validate the effectiveness of our proposed model, we conducted experi-
ments on two mainstream datasets, as is shown in Table 1. Market-1501 [40]: This contains
the identities of 1501 individuals and 32,668 images generated from six camera views
automatically cropped by the people detector of DPM. DukeMTMC-reID [41]: This is a
subset of the DukeMTMC dataset. These images were generated from eight camera views
by manual annotation and contain the identities of 1812 individuals and 36,411 images.



Sensors 2022, 22, 6978 12 of 19

Table 1. The detailed information of datasets used in the paper.

Dataset Train Sets (IDs/Images) Test Sets (IDs/Images) Query Images Cameras Total Images

Market-1501 [40] 751/12,936 750/19,732 3368 6 32,668
DukeMTMC-reID [41] 702/16,522 702/19,889 2228 8 36,441

Evaluation metrics For Re-ID, Rank-n (n = 1, 5, 10), Cumulative Match Characteristic
(CMC) curves and mean Average Precision (mAP) are commonly used as evaluation metrics
to measure the performance of the algorithm. Rank-n represents the probability that all
query images have matching images in the first n images in the ranking result. CMC
represents the probability curve of Rank-n, whose horizontal coordinate indicates finding a
match among the first n candidate images, and whose vertical coordinate represents the
probability that a matching image appears among the first n candidate images. The mean
average precision (mAP) indicates the average precision of the successful retrieval for all
query images. It can be seen that mAP measures not only the accuracy of feature extraction,
but also the accuracy of classification results and can provide a comprehensive assessment
of the performance of the person-re-identification algorithm.

4.2. Implementation Details

In this section, experiments will be implemented on two datasets, Market-1501 and
DukeMTMC-reID. Features are extracted using the AFF network, and the model is ini-
tialised using parameters pre-trained on ImageNet. For the training stage, pre-processing
operations such as random erasure were performed on the training images. The image
size was set to 256 × 128, and the size of each batch was set to 128 images containing
16 pedestrian identities, with 8 instances drawn for each person. The initial learning rate
was set to 3.5× 10−4 and reduced to 1/10 of the previous value every 20 epochs out of
a total of 60 epochs. The optimiser was set to Adam optimiser, and the training weights
were decayed to 5× 10−4. Clustering was performed using DBSCAN, with a clustering
hyperparameter minPts of 4, a Jaccard distance hyperparameter K1 value of 30 and a K2
value of 6. Experiments were performed in Pytorch1.7, and two NVIDIA TITAN RTX GPUs
were trained and tested.

4.3. Comparison with Existing Methods

In this section, we will compare the two settings from USL and UDA with the exist-
ing methods.

The USL method corresponds to the fully unsupervised person re-identification in the
research line. Such methods rely entirely on the discriminatory ability of the pedestrian
features extracted by the model and are also influenced by the performance of the clustering
algorithm in the unsupervised learning stage. Therefore, the method in this paper addresses
these two aspects for improved research, and the superiority of the method in this paper
can be seen in Table 2.

Earlier approaches such as BUC [5] and DBC [42] improve on clustering methods by
ignoring the uniqueness represented by the features, and the identification of pedestrian
identities can greatly affect the clustering effect; MMCL [43] and JVTC [44] use multi-label
classification, which undoubtedly increases the complexity of the model and also ignores
the optimisation of the model’s ability to extract features. In contrast to the SpCL [32]
approach, which uses the contrast learning framework, all instances of the target domain
are put into the storage unit when storing features and only rely on the mean features to
guide the model, increasing the probability of introducing noisy samples into the model.
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Table 2. Comparison of USL methods on Market1501 and DukeMTMC-reID.

Methods Year Market-1501 DukeMTMC-reID
mAP Rank-1 mAP Rank-1

SSL [45] 2020 37.8 71.7 28.6 52.5
BUC [5] 2019 38.3 66.2 27.5 47.4
DBC [42] 2019 41.3 69.2 30.0 51.5

MMCL [43] 2020 45.5 80.3 40.2 65.2
JVTC [44] 2020 41.8 72.9 42.2 67.6
HCT [6] 2020 56.4 80.0 50.7 69.6

DSCE [16] 2021 61.7 83.9 53.8 73.8
CycAs [46] 2020 64.8 84.8 60.1 77.9

IICS [18] 2021 72.9 89.5 64.4 80.0
SpCL [32] 2020 73.1 88.1 65.3 81.2

Ours - 78.8 90.9 68.6 82.4

Therefore, as can be seen from Table 2, compared with other excellent algorithms, the
method in this paper also has certain superiority. mAP and Rank-1 reached 78.8% and
90.9% on the Market-1501 dataset and 68.6% and 82.4% on the DukeMTMC-reID dataset,
fully verifying the proposed validity and rationality of the proposed idea.

We also compare our method with some existing UDA person-re-identification method,
which makes full use of the labelled source-domain dataset, by adding the labelled source
domain data to the training along with the unlabelled target domain data when training
the model and testing it on the target domain dataset. As a result, better results are usually
achieved than those achieved with the USL person-re-identification method. The symmetric
contrast loss can also be easily generalised to the UDA person-re-identification method.
However, as we do not have a feature-enhancement method such as image-style migration
for the source domain dataset, we are not concerned with how to use the labelled source-
domain dataset, and the labelled source dataset is not very helpful. Table 3 shows that,
even with more training data, our pure unsupervised person-re-identification method still
has a higher mapping than the UDA person-re-identification method.

Table 3. Comparison of UDA methods on Market1501 and DukeMTMC-reID.

Methods Year D → M M → D
mAP Rank-1 mAP Rank-1

SSG [15] 2019 58.3 80.0 53.4 73.0
AE [7] 2020 58.0 81.6 46.7 67.9

MMT [21] 2020 65.1 78.0 71.2 87.7
DAAL [23] 2020 67.8 86.4 63.9 77.6
GPR [29] 2020 71.5 88.1 65.2 79.5

MEB-Net [22] 2020 76.0 89.0 66.1 79.6

Ours - 77.7 91.0 66.5 80.7

4.4. Ablation Studies

Impact of Loss Function. According to the method proposed in this paper for the
selection of clustering features when selecting different features to design different loss
perspectives, this paper tested four different losses. The experimental results are shown in
Table 4. It can be seen that this paper’s proposed combination of mean feature contrast loss
and hard sample contrast loss method has advantages.

Impact of Hyper-Parameter λ. λ is the balancing factor, which plays an important role
in influencing the weights of the mean sample loss and the hard-sample loss. λ1 denotes
the hard-sample loss parameter and λ2 denotes the clustering mean-feature loss parameter.
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Table 4. Impact of Loss Function on Market1501.

Loss Market-1501
mAP Rank-1

Baseline loss (cross-entropy + triples) 55.8 75.3
Mean feature contrast loss 70.6 86.9
Hard sample contrast loss 76.3 89.3

Total loss 78.8 90.9

As can be seen from Table 5, combining these two contrasting losses and increasing
the diversity within the class clearly results in better performance. In addition, when
λ1 = 0.75 and λ2 = 0.25, the experiment obtained the best performance in mAP by 78.8%,
which shows that the information of hard samples can help a lot in the improvement
of unsupervised clustering, and it can also be seen that the balance loss can effectively
regulate the differences between features. Therefore, the symmetric-contrast learning
method proposed in this paper has significant advantages over other methods in the
training process.

Table 5. Impact of Hyper-Parameter λ on Market1501.

λ1 λ2
Market-1501

mAP Rank-1

0 1 68.5 85.4
0.25 0.75 70.4 86.0
0.5 0.5 75.7 88.9

0.75 0.25 78.8 90.9
1 0 73.7 87.9

Impact of eps. eps is a parameter within the clustering algorithm DBSCAN repre-
senting the radius of the clusters selected for clustering, which affects the final number
of clusters. If the value of d is chosen to be too small, a larger portion of the data will be
considered to be outliers. If too large a value is chosen, the clusters will be merged, and
most of the data points will be located in the same cluster. Ultimately, it will affect the
performance of the algorithm. We analysed the impact of d on the performance of the
Market-1501 and DukeMTMC-reID datasets. We can see from Figure 4 that the value of
d has a relatively large impact on the results, and the value of d for the optimal results
is different for different datasets. The best performance is achieved on the Market-1501
dataset when d = 0.65. The best performance on the DukeMTMC-reID dataset is achieved
when d = 0.7.

Figure 4. The result of mAP and Rank-1 on Market1501 and DukeMTMC-reID.

Impact of Batch Size and k. In Table 6, ‘Batch size’ denotes the batch size, and k
denotes the number of instance samples per identity sampled, from which it can be seen
that, as the Batch size and k increase proportionally, the performance of the model increases
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further, which can also reflect from the side that increasing the diversity of samples has a
great effect on improving the discriminative power of the model. Due to the GPU memory,
this experiment validates that the upper limit of Batch size is 256.

Table 6. Impact of Batch Size and k on Market1501.

Batch Size k Market-1501
mAP Rank-1

64 4 75.6 89.0
128 8 78.8 90.9
256 16 79.6 91.4

Impact of AFF and Model Size Analysis. As it involves the processing of features, in
order to fully demonstrate the effectiveness of the AFF module, we embed the module into
the supervised model, using a reid-strong-baseline. The best results are achieved by using
CASAM attention for Local branches and CAM attention for Global branches. It can also
be seen in Table 7 that the coarse-grained to fine-grained feature-fusion approach has better
performance, because it first focuses on pedestrian features from global features to reduce
the interference of other factors such as background, and then the local segmentation does
channel attention, which can focus on the semantic information of some deep features,
such as backpacks, hair, etc. This semantic information plays a key role in improving the
model’s performance, further proving that the AFF model can handle the Re-ID task in
different scenarios.

Table 7. Impact of AFF on Market1501.

Methods Year Market-1501
mAP Rank-1 Rank-5 Rank-10

Baseline 1 2019 81.7 92.0 - -
MGN [3] 2018 86.9 95.7 98.3 99.0
HPM [4] 2019 82.7 94.2 97.5 98.5

MHN-6(PCB) [11] 2019 85.0 95.1 98.1 98.9
HOReID [47] 2020 84.9 94.2 - -

GRL [48] 2021 80.5 91.7 - -

Baseline + L - 86.8 94.5 98.4 99.0
Baseline + G - 87.4 94.9 98.1 98.9

Baseline + AFF - 88.2 95.0 98.3 98.9
1 https://github.com/michuanhaohao/reid-strong-baseline.

We also analysed the size of the model, and we used floating-point operations (FLOPs),
parameters (Params) and memory to illustrate the space and time complexity of our model
and some related models, and the results are listed in Table 8. Compared to the multi-branch
network MGN [3], our approach has close memory but substantially fewer parameters and
reduced FLOPs. MHN [11] requires the computation of complex higher-order attention
distributions, so its FLOPs are almost more than twice as large as ours. As can be seen
from the table, the more branches the model has, the larger the number of parameters and
the amount of computation the model has. It is thus introduced that the size of the model
in this paper meets the requirement of a lightweight and practical model for practical
application scenarios and has some practicality.

https://github.com/michuanhaohao/reid-strong-baseline
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Table 8. Model Size Analysis. The unit of Params is M, the unit of Memory is MB, and the unit of
FLOPs is G.

Methods Params FLOPs Memory

MHN-6(PCB) [11] 30.36 24.55 186.18
MGN [3] 74.38 11.94 179.55

Ours 26.70 9.17 186.26

5. Discussion

In the latest literature review [49], it is elaborated that, in most of the current research
on unsupervised person-re-identification tasks, basically only one stage in the task is
improved, which is one of the pain points that needs to be addressed urgently, so this
paper proposes the AFF_SCL framework based on this, and the two stages are improved
separately. Multiple attention methods are applied in the AFF model, and a hybrid loss
is designed in the SCL method. Although the accuracy of the model surpasses that of the
single-stage improvement method, it is certainly a little more complex in terms of the size
and computation of the model than the single-stage improvement method.

Therefore, in future work, we will focus on how to use a lightweight and powerful
feature extractor in the feature-extraction stage and how to reduce the difference between
the target and source domains and the reliance on annotated data in the unsupervised
learning stage, which is more suitable for real industrial scenarios.

6. Conclusions

In this paper’s work, we have made improvements in both stages of the unsupervised
person-re-identification task simultaneously. In the first stage, an attention-guided fine-
grained feature network (AFF) is proposed to achieve a generalised and distinguishable fea-
ture representation by mining global and local feature information, using attention-focused
semantic information, while migrating the module to a supervised baseline, confirming its
validity. In the second stage, a symmetric contrast learning (SCL) module is proposed to
replace the traditional loss function to fully exploit the potential of the sample information.
Finally, this unsupervised person-re-identification framework (AFF_SCL) is tested on the
Market-1501 and DukeMTMC-reID datasets, and the experiments demonstrate that the
framework can be used for the multi-scene task of person re-identification with certain
superiority and generalisation capability.
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