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Abstract: Conventional biometrics have been employed in high-security user-authentication systems
for over 20 years now. However, some of these modalities face low-security issues in common
practice. Brainwave-based user authentication has emerged as a promising alternative method, as it
overcomes some of these drawbacks and allows for continuous user authentication. In the present
study, we address the problem of individual user variability, by proposing a data-driven Electroen-
cephalography (EEG)-based authentication method. We introduce machine learning techniques, in
order to reveal the optimal classification algorithm that best fits the data of each individual user, in
a fast and efficient manner. A set of 15 power spectral features (delta, theta, lower alpha, higher
alpha, and alpha) is extracted from three EEG channels. The results show that our approach can
reliably grant or deny access to the user (mean accuracy of 95.6%), while at the same time poses a
viable option for real-time applications, as the total time of the training procedure was kept under
one minute.

Keywords: biometrics; EEG; security; user authentication; machine learning; applied neuroscience

1. Introduction

As modern society has already transitioned into the era of information and technology,
security and privacy are becoming increasingly important. The need for effective user
authentication systems in a trusted and autonomous manner is more evident than ever, in
order to prevent intruder attacks or information leaks. The potential of using Electroen-
cephalography (EEG) signals as a biometric tool for person authentication is an area that
has attracted increased attention over the last decade [1–12], as it overcomes some of the
deficiencies that the already-established methods do present, such as ensuring the liveliness
of the user and allowing for continuous user authentication [13].

Biometrics, in general, are defined as the unique behavioral or physiological character-
istics that can be used for the identification of a person [14]. Authentication systems using
well-established biometric signals such as fingerprint, iris, voice, and gait recognition regu-
larly face low-security issues, as they are vulnerable to spoofing tools [5]. Such tools can be
artificially generated “gummy” fingers [15] for fooling fingerprint recognition, voice coders
for voice recognition, contact lenses for iris recognition, and adversarial attacks for gait
recognition [16]. In addition to these issues, conventional biometric-based authentication
systems may give rise to violent attacks in which the attacker forces the victim to provide
his/her biometric traits to the system (e.g., at a gunpoint threat, using a dismembered finger,
etc.). Other means of authentication, such as password-based techniques (something that
the person knows), may be easy to use but are also threatened by malicious attacks, such
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as the popular dictionary or brute force attack, and the exploitation of user mistakes [13],
while also being vulnerable to social-engineering related attacks. Additionally, token-based
authentication, which is connected to something that the user possesses, for example, a
key, a card, or a USB Dongle [17], can be proven inconvenient as the user needs to carry
the token every time that he/she requires access. Moreover, there is also the danger of the
object being stolen or mimicked by reverse-engineering techniques [17].

A user authentication method based on brainwave activity can address the aforemen-
tioned drawbacks, or complement them, and also provide solutions to high-level security
systems and systems with continuous authentication requirements [18]. Electroencephalog-
raphy (EEG) is a highly individualistic biometric that has high inter-subject variability and
low intra-subject variability [12]. Therefore, it can be used for the efficient identification and
authentication of a user and ensure shielding against intruders. Moreover, brainwaves are
an intrinsic characteristic that makes EEG strong against mimicking and identity theft, in
contrast with conventional biometrics stemming from the human body. In fact, an attacker
cannot force the user to authenticate himself, as stress and pressure seriously affect the EEG
signals [5], while the liveliness of the user is also ensured. Another important key factor of
EEG is that it features cognitive processes that can be detected unconsciously, providing
the opportunity for continuous user authentication.

During the last decade, a large number of publications have emerged, dealing with
EEG-based authentication techniques [1–12]. These works naturally strive to optimize the
accuracy and ease of use of the proposed approaches by typically relying on an efficient
combination of the EEG features that are chosen to represent the individual’s brain activity
on one hand, and the classifier that is used for the classification and the final decision of
the system to grant or deny access on the other. Pham et al. [13] used Autoregressive (AR)
linear parameters and Power Spectral Density (PSD) components (3–80 Hz), which were
fed into a Support Vector Machine (SVM) classifier, achieving an Equal Error Rate (EER)
as low as 0.002. The same authors later investigated the same combination in a different
frequency band (1–30 Hz) achieving an authentication system with 97% accuracy [19].

Both AR and PSD are widely used in EEG authentication studies. Poulos et al. [20]
combined AR features with Kohonen’s Vector Quantizer (VQ) as the classifier, while Paran-
jape et al. [21] classified the same type of features with discriminant analysis algorithms. In
more recent studies, Thomas et al. [22] experimented with resting-state Eyes Open (EO)
and Eyes Closed (EC) EEG, extracting PSD features in the gamma band (30–50 Hz) and
used specific thresholds in order to grant (or deny) access to the user, finally achieving
EER = 0.019. Additionally, in many studies, external stimuli or specific imaginary tasks
were presented to the user, and the utility of specific features of the Event-Related Poten-
tials (ERPs) was assessed. For example, Valsaraj et al. [14] analyzed EEG data, looking for
characteristic features in the ERPs that were elicited from Motor Imagery (MI) and real
movements. By combining different MI actions and using AR and PSD, their proposed
authentication method reached an accuracy of 98.28%.

Another direction of research in this field uses the Neural Network (NN) classifier for
human identification and classification. From very early-stage studies, Poulos et al. [23]
employed the learning vector quantizer (LVQ) and spectral features reaching accuracies
ranging from 80% to 100%. Subsequently, the same researchers experimented on the
same classifier but with AR and bilinear model features [24], resulting in accuracies from
56% to 80%.

Later on, the back-propagation and the feed-forward Neural Networks gained promi-
nence, with Hema and Osman [25] achieving average accuracies between 80% and 90% by
using PSD features and feed-forward NN for their classification. Mu and Hu [26] reached
80% accuracy in their authentication system by choosing AR and Fischer distance as the
features and a back-propagation (BP) NN classifier. The Fischer distance was also drafted
in later studies, along with fuzzy entropy as the representative features when visual stimuli
(self-photos vs. non-self-photos) were introduced to the subject [5], and with the use of BP
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Neural Network as the classification theme, accuracies of 87.30% were achieved, with a
False Acceptance Rate (FAR) of 5.50% and a False Rejection Rate (FRR) of 5.60%.

The most recent studies in the area of EEG biometrics started utilizing novel methods
for optimizing the efficacy and reliability of the authentication system. Damaševicius [27]
proposed an EEG-based cryptographic authentication system, based on the fuzzy com-
mitment scheme and error-correcting Bose–Chaudhuri–Hocquenghem (BCH) codes. By
following a three-step cryptographic procedure (Encoding–Enrollment–Authentication),
and by using a cryptographic key and a number of codewords, their biometric cryptosystem
achieved an EER of 0.024, with TAR being 0.99. Breakthroughs in the area of deep learning
EEG authentication have also been proposed, as such techniques are often susceptible to
capturing recording-specific features rather than individual neural biomarkers [28], despite
their overall great usability. An answer to this problem was provided by Ozdenizci [28],
who introduced an adversarial inference approach for extracting session-invariant person-
discriminative features from the data, achieving up to 72% accuracy in across-session
person identification. Finally, the issue of EEG channel selection was targeted, as the more
electrodes used, the more complex the system becomes and the higher the discomfort for
the person to be authenticated. In this line, Alyasseri [29] approached the EEG channel
selection as an optimization problem, employing a binary version of the Grey Wolf Opti-
mizer (BGWO), which is a powerful metaheuristic swarm-based algorithm, together with
an SVM classifier. Their method managed to reduce the total number of channels from 64
to 23, and with this setup, the classifier achieved 94.13% accuracy (however, this method
was used for identification rather than authentication of a user).

Most of the current works have chosen a specific combination of targeted features and
a classifier in order to complete their analysis and achieve optimal accuracy. Nevertheless,
none of the proposed methods are user-specific, nor do they take into consideration the
specific characteristics, each time, of the given dataset. This may reduce the performance of
the implemented analysis and affect the classification accuracy. Hence, a practical method
that addresses this problem needs to be devised if we want to consider EEG signals as a
viable option for real-time human authentication, with advanced accuracy and reliability.
The present study proposes an EEG-based authentication system built around the spectral
features that characterize brain activity, and the implementation of a Machine Learning
(ML) algorithm for the classification of these features. Auto-WEKA software [30] is used in
order to ensure that the used algorithms are the most suitable for our data. More specifically,
15 power spectral density features are extracted from three central electrodes (Fz, Cz, Pz) in
five different frequency bands, for 15 subjects. The choice for the best descriptive features,
as well as the optimal choice of the ML algorithm, is then automatically appointed by
running Auto-WEKA.

The rest of the paper is organized as follows. Section 2 presents the dataset, equipment,
features, and classification methods used in the study. In Section 3, we present the results
for the 15 subjects tested herein, while in Section 4, we provide a discussion of our findings
in light of the current literature and a conclusion of our work.

2. Materials and Methods
2.1. Participants

The sample of participants consisted of 15 individuals, and more specifically, 8 males
and 7 females with a mean age of 23.2 ± 5.5 for the males and 21.2 ± 3.4 for the females. The
criteria that were set for exclusion from participation concerned the history of neurological
and psychiatric illness, substance abuse history, medication, and any other coexisting
factors that could affect the brain’s neurophysiology. All participants had normal or
corrected to normal vision and were asked to not consume alcohol or caffeine the day prior
to their participation. All the experiments were performed at the same time, to the best
possible extent. This research was approved by the Ethical Committee of Aston University.
Participation was anonymous and confidential.
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2.2. EEG Data Acquisition

EEG measurements were recorded from 128 electrodes distributed across the scalp
according to the EGI Geodesic EEG System (GES) and with reference electrodes positioned
at the mastoids. The correct EEG Geodesic net size was soaked in a saline solution for 5 min
and applied to their head. The recordings were performed with an EGI GES 300 system.
All electrode impedances were maintained at less than 5 kΩ. The sampling rate for all
measurements was 250 Hz. After each experiment, the nets were disinfected in order
to maintain high hygienic standards. The data used for the purposes of this work were
recorded during a resting state with their eyes opened (30 s where participants were asked
to keep their eyes open and fixate on a cross appearing at the center of the screen) in order
to simulate a real scenario of user identification, and only Fz, Cz, and Pz were further used.

2.3. Preprocessing and Feature Extraction

All EEG signals were referenced according to the linked earlobe montage [31], filtered
at the frequency range of 0.5–40 Hz, and submitted to the Adaptive Mixture ICA (AMICA)
algorithm [32], and the REG ICA [33,34] methodology was used to clean the independent
components from artifacts. Specifically ocular artifacts, which are the most troublesome
in eyes-open conditions, were cross-validated using the EEGLAB’s [35] toolbox called
ICLABEL [36].

The cleaned EEG signals were divided into 500 random segments of 4 s each, in
order to increase the external validity of the current study. For each segment, the power
of five different brain waves was computed (delta [0–4 Hz], theta [4–8 Hz], lower alpha
[8–10 Hz], higher alpha [10–12 Hz], and alpha [8–12 Hz]). This resulted in a feature-set of 15
(3 channels × 5 bands) features per subject with 500 instances.

2.4. Classification Procedure

In order to replicate a realistic scenario, classification was performed on an individual
basis. Thus, for each participant (user), a separate dataset of 1000 instances was formed,
where half of the instances were derived from the 500 random segments from the user
and the other 500 were randomly chosen from the remaining 14 participants. In an ideal
scenario, a robust user authentication algorithm should grant access to the 500 instances
that come from the user and deny access to the remaining 500 instances coming from the
other 14 users. This procedure resulted in 15 different user-specific datasets that were
further imported into WEKA [37], where Auto-WEKA [30] was used, with 1 min as the
time limit for training. The default time limit was reduced from 15 min to only 1 min
keeping in mind the usability of our approach (Figure 1). The accuracy was computed
using the 10-fold cross-validation scheme, which means that the data were divided into
10 random subsets of 100 instances. Nine of these were used as the training set and one
as the testing set. After the development of the classifier, its accuracy was defined by the
correct classification of the test set’s instances. This procedure was repeated 10 times in
order to account for the sampling bias. Each time, a new test set was used, and the overall
accuracy was determined by averaging the accuracies found.

2.5. Evaluation

The evaluation of the proposed methodology was based on three classical measure-
ments in the area of EEG biometrics, namely the False Acceptance Rate (FAR), the False
Rejection Rate (FRR), and the Equal Error Rate (EER). The classification accuracy will also
be reported and compared to previous works. The EER is defined as the point where the
FAR and the FRR become equal. The lower the value of the EER, the more accurate the
classification. So, mathematically:

EER = FAR(T*) = FRR(T*)

where T* = arg min((|FAR(T)-FRR(T)|).
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Figure 1. System illustration of the two different phases of the classifier. First, there is a training
phase where the server computes the optimal classification algorithm, and then there is a usage phase
(test phase) where the system grants or denies access to the user based on this classifier.

In the proposed system, the user wears a wireless and wearable EEG headset that
sends the raw EEG signals (~30 s) to the terminal authentication app. The app computes
the 15 features with 500 instances mentioned above, which are uploaded to the server. The
server forms a dataset consisting of 500 instances of the user and a random selection of
another 500 instances from other users that are stored in the database. Then, the server
computes the optimal, user-specific, classification algorithm and returns it to the terminal
app. The aforementioned procedure lasts approximately 1 min and runs only once (upper
schema). Since the classifier is saved in the terminal app, the app can grant or deny access
to the user using the provided EEG data.

3. Results

Table 1 presents the authentication results after the proposed method was implemented
on the 15 subjects. Mean accuracy of 95.6% was obtained for all subjects. In 13 out of the
15 subjects, the accuracy was above 94%, promoting the high level of performance of the
system. The highest accuracy was obtained for the first subject (100%), while the lowest
levels of accuracy were observed for the fourth subject (87%), which seems to be an outlier
and indicates that much better overall results could be obtained if we excluded this subject
from our analysis.

Table 1. Authentication results. The classification accuracy, sensitivity, and specificity across the
15 subjects for the 500 instances coming from the EEG of each user and the 500 randomly chosen
instances coming from the remaining 14 subjects, which should be treated as the impostor signals.

GRANT ACCESS DENY ACCESS Sensitivity Specificity
SUBJECT GRANT DENY GRANT DENY TAR FAR TRR FRR Accuracy

SS01 500 0 0 500 1 0 1 0 100%
SS02 436 64 16 484 0.872 0.032 0.968 0.128 92%
SS03 493 7 25 475 0.986 0.05 0.95 0.014 97%
SS04 420 80 49 451 0.84 0.098 0.902 0.16 87%
SS05 474 26 7 493 0.948 0.014 0.986 0.052 97%
SS06 450 50 8 492 0.9 0.016 0.984 0.1 94%
SS07 475 25 9 491 0.95 0.018 0.982 0.05 97%
SS08 476 24 14 486 0.952 0.028 0.972 0.048 96%
SS09 469 31 8 492 0.938 0.016 0.984 0.062 96%
SS10 482 18 7 493 0.964 0.014 0.986 0.036 98%
SS11 466 34 9 491 0.932 0.018 0.982 0.068 96%
SS12 472 28 6 494 0.944 0.012 0.988 0.056 97%
SS13 465 35 8 492 0.93 0.016 0.984 0.07 96%
SS14 478 22 0 500 0.956 0 1 0.044 98%
SS15 451 49 8 492 0.902 0.016 0.984 0.098 94%
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This observation was statistically tested with the Shapiro–Wilk normality test, as the
data went from non-normally distributed (W = 0.84, p = 0.01) to normally distributed
(W = 0.93, p = 0.41) after excluding the results for subject 14. Nevertheless, by inspecting
the cumulative distribution plot of the accuracy distribution of all 15 patients (Figure 2),
we can observe that in 50% of the subjects, the accuracy is above 96%, while only 10% of
the subjects have accuracies lower than 90%.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 11 
 

 

SS03 493 7 25 475 0.986 0.05 0.95 0.014 97% 
SS04 420 80 49 451 0.84 0.098 0.902 0.16 87% 
SS05 474 26 7 493 0.948 0.014 0.986 0.052 97% 
SS06 450 50 8 492 0.9 0.016 0.984 0.1 94% 
SS07 475 25 9 491 0.95 0.018 0.982 0.05 97% 
SS08 476 24 14 486 0.952 0.028 0.972 0.048 96% 
SS09 469 31 8 492 0.938 0.016 0.984 0.062 96% 
SS10 482 18 7 493 0.964 0.014 0.986 0.036 98% 
SS11 466 34 9 491 0.932 0.018 0.982 0.068 96% 
SS12 472 28 6 494 0.944 0.012 0.988 0.056 97% 
SS13 465 35 8 492 0.93 0.016 0.984 0.07 96% 
SS14 478 22 0 500 0.956 0 1 0.044 98% 
SS15 451 49 8 492 0.902 0.016 0.984 0.098 94% 

This observation was statistically tested with the Shapiro–Wilk normality test, as the 
data went from non-normally distributed (W = 0.84, p = 0.01) to normally distributed (W 
= 0.93, p = 0.41) after excluding the results for subject 14. Nevertheless, by inspecting the 
cumulative distribution plot of the accuracy distribution of all 15 patients (Figure 2), we 
can observe that in 50% of the subjects, the accuracy is above 96%, while only 10% of the 
subjects have accuracies lower than 90%. 

 
Figure 2. Cumulative distribution plot of accuracy distribution in subject classification. 

The mean sensitivity of the system, which is expressed by the means of the True Pos-
itive Rate (TAR), was 0.93 (±0.04). For TAR, we define the ratio of the user’s instances that 
were correctly given access to the system against the total number of instances (500). In 
addition, the specificity of our proposed system, which is assessed through the True Neg-
ative Rate (TRR), was 0.98 (±0.02). The TRR is the number of intruder instances that are 
correctly denied by the system against the total 500 instances, forbidding access to the 
individual. In Figure 3 you can see the distributions of both sensitivity and specificity, as 
well as their relationship.  

Figure 2. Cumulative distribution plot of accuracy distribution in subject classification.

The mean sensitivity of the system, which is expressed by the means of the True
Positive Rate (TAR), was 0.93 (±0.04). For TAR, we define the ratio of the user’s instances
that were correctly given access to the system against the total number of instances (500).
In addition, the specificity of our proposed system, which is assessed through the True
Negative Rate (TRR), was 0.98 (±0.02). The TRR is the number of intruder instances that
are correctly denied by the system against the total 500 instances, forbidding access to the
individual. In Figure 3 you can see the distributions of both sensitivity and specificity, as
well as their relationship.
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sensitivity and specificity across the 15 subjects, while from the scatterplot, it is obvious that one
subject was an outlier indicating that our results would be much better by excluding this subject.

Furthermore, we employed statistical analysis, despite the very obvious results, in
order to prove the efficacy of our approach statistically. The accuracy, FAR, and FRR were
tested using a one-sample t-test or a one-sample Wilcoxon W test when the variables were
not normally distributed. According to the Shapiro–Wilk test of normality, only FAR is
normally distributed (W = 0.944, p = 0.437), while accuracy (W = 0.835, p = 0.011) and
FRR (W = 0.705, p = 0.001) are not normally distributed. So, for FAR, the one-sample t-test
revealed that our approach has significantly lower FAR (M = 0.06, SD = 0.04) than random
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guessing, t(14) = −40.4, p = 0.001. On the other hand, the W test for accuracy revealed
that our approach has significantly higher accuracy (M = 95.6%, SD = 2.9%) than random
guessing W(14) = 120, p = 0.001, while FRR was significantly lower (M = 0.02, SD = 0.01)
than random guessing W(14) = 0, p = 0.001. The mean Equal Error Rate (EER) of the system,
across the 15 subjects, was found to be equal to 0.064.

4. Discussion and Conclusions

The usage of EEG signals in human authentication systems has proven to be a very
effective technique as it overcomes most of the drawbacks that conventional biometric
tools, such as iris, fingerprint, or voice-based applications, present in everyday practice.
Some of the advantages of using brainwaves include their suitability for continuous user
authentication systems, as they pose nonconscious biometrics, and the fact that they can
be utilized in high-level security facilities, ensuring the liveliness of the person requiring
access and averting intruder attacks.

Despite the increasing number of studies in this field and the numerous different
approaches (Table 2), from trying to find the optimal combination of features (AR models,
PSD components, etc.) and classification algorithms (LDA, SVM, CNN, etc.), to the use of
innovative measures such as fuzzy entropy and exploiting eye blinking signals, no studies,
to the best of our knowledge, have taken into account the individual characteristics of the
dataset in use. In this paper, we computed the PSD of the EEG signal in five different bands
(delta [0–4 Hz], theta [4–8 Hz], lower alpha [8–10 Hz], higher alpha [10–12 Hz], and alpha
[8–12 Hz]) from three central electrodes (Fz, Pz, and Cz) resulting in 15 different features
for each subject.

The novelty of our method is that we introduced the use of the machine learning
algorithm “WEKA” as an extra step after the feature extraction stage, in order to appoint
the optimal feature set and classification algorithm for each individual. As a result, we
achieved an overall mean accuracy of 95.6%, with a mean FAR of 0.023, a mean FRR of
0.065, and an EER of 0.064. Another important feature of the proposed methodology is that
the EEG signal was recorded from only three central electrodes and for just 30 s, making
the system very efficient. In addition, the total time for the EEG signal recording, feature
extraction, and auto-WEKA algorithm selection was kept under one minute. This study
reflects the limitations and implications of real-life practices and aims to provide solutions
for the practical use of such EEG-based authentication systems.

Table 2. Previous EEG-based user authentication studies.

Paper No. of
Subjects

No. of EEG
Channels Features Accuracy

[19] 40 8 AR linear parameters and PSD
components (1–30 Hz) 97.10%

[38] 10 2 (Fp1 & Fp2) Fuzzy entropy and Fisher distance 87.30%
[12] 8 9 Low-frequency SSVEP components 96.78%

[39] 10 10 Wavelet Packet Decomposition and
Correlation-based features 95%

[3] 32 1

Wavelet based (time-frequency)
features: (1) mean (2) standard

deviation (3) entropy for the wavelets
of the five frequency bands

94.04%

[14] 25 4 AR linear parameters,
PSD components 98.28%

[1] 5 14

(1) AR coefficients (2) PSD components
(3) total power (4) interhemispheric

power differences (5) interhemispheric
linear complexity

97.69%

[11] 10
18 + 5

subject-specific
channels

The difference between the averaged
signals in response to self-face 86.10%



Sensors 2022, 22, 6929 8 of 10

In order for our report to be comprehensive, a comparison with the rapidly growing
deep learning authentication techniques would be fruitful. Deep learning models have
the advantage of reliably capturing the high-dimensional feature representation of the
signals and the possible relationship between internal features through the non-linear deep
structure [40]. Another great advantage of deep learning techniques is that they can be
performed based only on the original data, bypassing the complex pre-processing stage
and feature extraction processes. Considering accuracy, deep learning methods can reach
some outstanding performances. For example, Mao [41] achieved 97% accuracy by feeding
the raw EEG data of 100 subjects into a CNN. However, deep learning models tend to
have much higher computational costs than simpler machine learning ones. For example,
in his model, although achieving an accuracy of 91.44%, a previous author [42] had an
average time of 28.5 minutes for implementing their deep-learning-based authentication
technique. In real-life applications, such time slots are prohibitive. In comparison, our
proposed method poses a very reliable alternative, as it combines a mean accuracy of 95.6%
with an overall running time of 60 s.

Finally, regarding future directions, EEG-based user authentication has some general
issues that need to be addressed. For example, if the user is not interested in being authen-
ticated, then his/her brainwaves can be altered, leading to failures of the authentication
system. Furthermore, regarding our approach and proposed methodology, further datasets
need to be examined, and more specifically, a larger number of participants need to be
tested on the system, as the rather limited number of subjects (15) in the present study poses
aa problem for safely generalizing our results, threatening the external validity of the study.
At last, the fact that we only assessed spectral features in our study may not fully exploit the
capabilities of the personalized user authentication system, the implementation of which
may be further refined by the introduction of hybrid spectral-time domain features. The
possibility of using some of the recently emerged and increasingly used deep learning
algorithms, together with the advancements that have been introduced for their refinement
such as the adversarial inference approach [28], can also provide higher accuracies despite
the likely increased computational cost.
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