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Abstract: Wearable technologies are small electronic and mobile devices with wireless communication
capabilities that can be worn on the body as a part of devices, accessories or clothes. Sensors
incorporated within wearable devices enable the collection of a broad spectrum of data that can be
processed and analysed by artificial intelligence (AI) systems. In this narrative review, we performed
a literature search of the MEDLINE, Embase and Scopus databases. We included any original studies
that used sensors to collect data for a sporting event and subsequently used an AI-based system
to process the data with diagnostic, treatment or monitoring intents. The included studies show
the use of AI in various sports including basketball, baseball and motor racing to improve athletic
performance. We classified the studies according to the stage of an event, including pre-event training
to guide performance and predict the possibility of injuries; during events to optimise performance
and inform strategies; and in diagnosing injuries after an event. Based on the included studies, AI
techniques to process data from sensors can detect patterns in physiological variables as well as
positional and kinematic data to inform how athletes can improve their performance. Although AI
has promising applications in sports medicine, there are several challenges that can hinder their
adoption. We have also identified avenues for future work that can provide solutions to overcome
these challenges.

Keywords: artificial intelligence; sports medicine; sensors; wearables

1. Introduction

Wearable technology refers to small electronic and mobile devices with wireless
communication capabilities that can be worn on the body as a part of gadgets, accessories
or clothes [1]. They are mechanical devices or intelligent mechatronic systems that often
incorporate sensors. The size of the global wearable technology market was valued at USD
40.65 billion in 2020 and is expected to rise further by 13.8% before 2028 [2]. This is primarily
due to increased availability, reduced costs and greater potential for their incorporation
into new domains, such as sports medicine. In healthcare, they provide a promising avenue
for the diagnosis, monitoring and management of medical conditions. They are useful in
collating data about physiological parameters by measuring blood pressure, heart rate,
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body temperature, electrocardiogram (ECG), electroencephalogram (EEG), sweat analysis
and movement data such as displacement, velocity and acceleration. Improvements in
design enable the capture of these data in a meaningful way for application in healthcare. For
example, the Oura ring has been validated using actigraphy methods as an accurate measure
to monitor sleep [3,4]. Apple Health is using the Apple Watch to collect data as a part of two
separate research studies, including the Apple Heart and Movement Study as well as the
Apple Hearing Study, to better inform the screening and risk assessment of conditions [5].
Overall, there is an increasing trend in the use of wearable devices in healthcare.

The intersection of large volumes of data and healthcare applications calls for the use
of artificial intelligence (AI) technology to improve how the data are handled, processed
and used. Russell and Norvig define artificial intelligence as the designing and building of
intelligent agents that receive precepts from the environment and take actions that affect
that environment [6]. In sports medicine, this can be better understood as technology that
emulates human tasks, often using machine learning as the method to learn from data how
to emulate these task. Machine learning (ML) is a subset of AI methodology that uses data
to classify, predict or gain useful inference without explicit instructions [7]. By inputting
data into ML systems, they can be trained to carry out tasks in supervised, unsupervised
or semi-supervised environments. ML-based algorithms have been used elsewhere in
healthcare research for both the diagnosis and monitoring of diseases [8]. Extending their
application to wearable technology and the data they collect can dramatically change the
way patient data are used. Previous work has demonstrated the utility of AI in chronic
conditions, such as cardiovascular conditions, cancers and neurological diseases. Sports
medicine can be an impactful domain for the integration of AI due to the increasing
prevalence of wearable technology. Of the various fields for their application in healthcare,
the use of sensors is most widespread in sports medicine, specifically in injury prevention,
risk management, performance optimisation and obtaining sporting advantages. However,
there is a paucity of work summarising the combined use of AI and wearable technology
use in sports medicine. Narrative reviews are useful to attain a broad perspective on a
topic using the most pivotal studies while retaining the scientific accuracy. In this narrative
review, we explore how artificial intelligence has been applied into wearable technologies
within healthcare.

2. Methods
2.1. Literature Search

The following databases were searched: MEDLINE (1946 until the first week of March
2022) via OvidSP; MEDLINE in-process and other non-indexed citations (latest issue) via
OvidSP; Ovid EMBASE (1974 to latest issue); (d) Scopus (1996 till present). The last search
was performed on 13 March 2022. Three separate searches were performed to include
all articles that evaluated the use of artificial intelligence and machine learning alongside
wearable devices for healthcare applications. Search terms used several strings, which
were linked by standard modifiers in the following order: wearable devices OR wearable
technology OR wearables OR healthcare sensors OR sports sensors OR smart wears OR
industrial wearable OR sports wearable OR heart rate monitors OR accelerometers. The
second search included the following terms: artificial intelligence OR AI OR data mining
OR deep learning OR machine learning OR ML. The third string included: sports OR
athlete OR sports medicine OR sports performance. The strings were then combined using
the AND modifier.

2.2. Selection and Quality Assessment of Studies

Articles were screened for eligibility by SC and YM, and, where required, the third
co-author (VS) was consulted. Studies were included if they had investigated the use of AI
in wearable devices for healthcare applications, specifically in relation to sports medicine.
Studies with diagnostic, prognostic and monitoring intents were included. We classified
these studies into the phase of sporting event as before, during and after the event. Studies
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were excluded if they did not evaluate AI; did not use a wearable device or sensor to
collect data; were not carried out in the context of sports medicine; had incomplete data on
outcome measures; were not in the English language; or had incompatible designs including
letters, comments and reviews. Studies were assessed for robustness of methodology using
the quality assessment tool for diagnostic accuracy studies 2 (QUADAS-2). The QUADAS-2
comprises four domains covering patient selection, index test, reference standard and flow
of patients through the study and timing of the index test(s) and reference standard. Each
domain is evaluated in terms of the risk of bias, and the first three are also assessed for any
concerns regarding applicability. In doing so, it highlights aspects of the study design that
may be exposed to bias.

The database search yielded a total of 527 studies. After duplications were removed,
titles and abstracts of the remaining 374 studies were assessed for eligibility, and 273 studies
were removed. A further 80 studies were excluded after full-text review due to incompatible
outcome measures or study design (Figure 1). Of the remaining studies that discussed the
use of artificial intelligence in sensors for sports medicine, we classified them according to
each phase of an athlete’s journey, which typically consists of pre-event training, in-event
performance, injuries during events or training phases, and follow-up if athletes sustain
any injuries. Based on this journey, we categorised studies based on their ability to predict
the risk of injury during training or events; optimisation of performance; diagnosis of
injuries; and management of injuries in the aftermath (Table 1; Figure 2).
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Table 1. Studies reporting sensors’ use in the different phases of sports and the outcome measures.

Author Year Country Design Sample Size Sex (% of Males) Age Sport/Activity Outcome Measures Sensor Conclusion

Skazalski
et al. [9] 2018 Qatar

Comparing IMU
data with visual
observation of
jumps

14 100 Not
Specified Volleyball

1. Jump Count
recorded by IMU
device, compared with
visual observation
2. Jump height
recorded by IMU
device and compared
with visual
observation

Vert Classic (Model
#JEM) with Vert Coach
Application (version
2.0.6)

Vert device
demonstrates excellent
accuracy counting
volleyball-specific
jumps. Vert Device can
be used to monitor
athlete jump intensity

Chen et al.
[10] 2018 Taiwan

Using a Wearable
heat-stroke-
detection device
(WHDD) to monitor
a runner’s
physiological
information

1 100 35 Running

1. Galvanic skin
response. 2. Heart rate.
3. Body temperature.
4. Ambient
temperature.
5. Ambient humidity.
6. Predicted risk of
heat stroke. Above
measures all recorded
during a
predertemined
running programme

Custom WHDD with
GSR, MLX90614 and
SHT75 sensors.

WHDD detected the
trend in a runner’s
physiologcal
information in
advance of exercise
intensity. The WHDD
could specifically
prevent the occurrence
of heat stroke.

Lewis [11] 2018 USA Cross sectional
study 627 100 Not

specified Basketball

1. Injury events.
2. Player fatigue.
3. Performance load
(total rebounds and
field goal attempts).

Random-effects,
multi-level logistic
regression model

Higher levels of
fatigue and workload
led to greater injury
risk. With these
constant factors, a
higher injury risk was
associated with greater
NBA experience and
below average height.

Karnuta
et al. [12] 2020 USA Descriptive

Epidemiology Study 139,783 100 Not
Specified Baseball

Predictions for future
injury risk based on
logistic regression and
machine learning
algorithms.

Logistic regression,
random forest, k-nearest
neighbours, Naïve
Bayers, XGBoost, Top 3
Ensemble. Models were
built usnig scikit-learn
Python library (Version
0.20.3) and XGBoost
(Version 1.0.2)

Advanced machine
learning models
outperformed logistic
regression and
demonstrated fair
capability of
predicting whether a
publicy reportable
injury was likely
to occur.
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Table 1. Cont.

Author Year Country Design Sample Size Sex (% of Males) Age Sport/Activity Outcome Measures Sensor Conclusion

Novatchkov
and Baca
[13]

2013 Austria Descriptive Study 15 53 24.6 Weight Training

Force displacement
parameters measured
from a weght leg press
machine

Weight leg press
machine equipped wht a
load cell (PW10A or
PW12C3, Hottinger
Baldwin) and a rotary
encoder (DP18,
Altmann). Modelling of
signals by multilayer
pattern recognition
networks based on the
Levenberg-Marquardt
algorthm.

Computer based
feedback frameworks
can be used for
analysis of
performance during
workouts.

Ghasemzadeh
et al. [14] 2009 USA

Quantitative
analysis of golf
swings using BSN

4 75 20–35 Golf

Degrees of wrist
rotation during
segments of a golf
swing

TelosB from Xbow

Body Sensor Networks
can provide
information on the
quality of a golf swing
with respect to the
angle of the wrist
rotation

Bloomfield
et al. [15] 2019 Canada Cross sectional

study 68 34 65.6 ± 9.1 Timed-up-and-
go tests

Post-operative
recovery custom wearable system

Wearable sensors
during instrument
functional tests during
clinical visits and
using machine
learning to parse
complex patterns can
reveal clinically
relevant parameters

Coutts et al.
[16] 2020 UK Prospective cohort

study
100 in trial 1;
799 Iin trial 2 38; 224 18–38; 18–69 Cycling

Heart rate; Perceived
Stress Scale;
Depression Anxiety
Stress Scale; State and
Trait Anxiety

Biobeam band; Deep
Neural Networks
(LSTMs)

Classification accuracy
of up to 85% with the
current AI model and
biosensor.
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3. Before the Event: Prediction of Athlete’s Injury Risk

In the studies included, both conventional statistical and AI-based methods were
used. Similar to ML methods, statistical methods can be applied to raw data once a
relationship is identified. Although some might argue linear and logistic regression are
themselves ML techniques, there are important distinctions to be made between classical
statistical learning and machine learning [27]. Most studies use ML or statistical models for
inferences or predictions about biological systems. Statistical methods achieve this purpose
by creating and fitting a project-specific probability model, which enables us to compute a
quantitative measure of confidence that a discovered relationship describes a “true” effect
that is unlikely to result from noise [28]. In contrast, ML focuses on using general-purpose
learning algorithms to find patterns in larger and richer datasets [29]. This makes them
useful to deal with “wide data” where the number of input variables is greater than the
number of subjects. ML also makes fewer assumptions about the data generation systems.
Compared to conventional statistics, which was initially designed for data with fewer input
variables and sample sizes, ML can handle larger sample sizes [30,31]. As the number of
input variables and associations between them increases, the model that describes them
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becomes more complicated, which blurs the boundaries between conventional statistics and
ML [32]. Nevertheless, both techniques are invaluable in understanding the relationships
existing within biological systems.

In professional sports, missed athletic events due to injury is expensive. Missed games
due to injuries led to a revenue loss of USD 344 million during the 2014–2015 National
Basketball Association season, while over USD 521 million was spent by the National
Football League in the management of injured players [11,33]. AI technology has the
potential to predict the risk of some injuries during the training phase. Several studies
have evaluated the use of commercially available devices to collect training data among
users and validated their use in the non-professional population. For example, Skazalski
et al. showed that the commercially available Vert device was able to track an athletes’
progress to estimate the likelihood of injury among volleyball players during training and
competition [9]. In another study, Chen et al. used a wearable heat-stroke-detection device
with physical sensors to measure galvanic skin response, heart rate and body temperature
for the prediction of heat strokes in exercising individuals [10]. Rodriguez et al. compared
a combination of the dynamic Bayesian mixture model (DBMM), convolutional neural
networks (CNN) and long short-term memory (LSTM) network to process physiological
and positional data as sequential features for action recognition. They defined seven
different actions, including running; running with the ball; passing; walking; walking
with the ball; shooting; and jumping during football, and reported classification accuracies
up to 80.54%. Karnuta et al. used six different algorithms (LR, random forest, k-nearest
neighbours, naïve Bayes, XGBoost, and top 3 ensemble) to create 84 different models to
predict seven clinical outcomes, namely, next-season injury, next-season knee injury, next-
season back injury, next-season hand injury, next-season foot/ankle injury, next-season
shoulder injury and next-season elbow injury. The models had predictive accuracies of
70% and 94.6% accuracy for baseball and hockey players, respectively, and outperformed
conventional regression models in 93% of cases [12]. Although this may be due to the
diversity and granularity of data processed, this advantage is not always present, and
there can be instances where conventional statistical methods may be favourable. Given
the burgeoning market for wearable devices for the prediction of injuries, the use of AI
is a worthwhile investment in selected contexts to build risk prediction and stratification
models with better reliability.

Athletes undergo high levels of mental and physical stress, especially in preparation for
high-stakes sports events. AI tools may have the ability to use vital signs to identify levels
of stress, anxiety and depression among sportspersons. For example, Coutts et al. recorded
heart rate variability using fitness bands with biosensors and trained deep neural networks
to characterize one’s mental health with up to 83% accuracy [16]. The earliest wearable
devices tracked heart rate but were unable to meaningfully interpret it towards clinically
relevant outcomes. Traditional methods of analysing heart rate variability have shown
poor predictive performance, primarily due to their inability to handle large quantities
of complex data collected. Using a long short-term memory (LTSM) network, a type of
recurrent neural network (RNN) designed for time series analysis, the authors developed
a reliable ML model that predicted stress level based on heart rate variability. In another
study, Uematsu used a combination of an LTSM network, logistic regression and support
vector machines (SVM) to forecast stress levels using 1231 overlapping 8-day sequences of
data from 142 participants [17,34]. Overall, AI-based devices may be used to track athletes’
well-being and aid in optimising their performance, not just their physical health.

4. Before and during the Event: Optimisation of Athletic Performance

The generation of large volumes of data by wearable sensors allows for identifying
patterns in athletic performance. Continuous real-time data before, during and after
training as well as during the event can be analysed to modify and improve athletic
performance. For example, Novatchkov et al. described the use of sensors to monitor force,
displacement, velocity and duration variables during resistance training sessions, and



Sensors 2022, 22, 6920 8 of 11

pointed out ways to improve the technique of weight-lifters [13]. Sensors are most useful
in identifying patterns in complex movements. For example, several studies have used AI
algorithms to analyse hand–wrist motions, posture and stances as well as 3D positional
systems to improve golfing performance [14]. As of 2011, the TaylorMade golf database
has datasets for over 500,000 golf swings, all of which can be used to improve the swing
technique of golfers. A similar effort has also been carried out in baseball, basketball, cricket
and long-distance running [18–20]. For example, Li et al. describe a bespoke “artificial
intelligence assistance system” to aid in-game decision making on three layers, namely,
database, processing and display layers. The database layer compiles tactical data to build
a data warehouse, which is used by the processing layer to output a visual display of the
processed data into decisions. The authors also describe dynamic modes, which require
inputting of in-game parameters to calculate the probability of various situations, and
choose the best substitution, the best tactical combination and other data. Such a wearable
platform provided real-time corrective feedback based on multidimensional physiological
data collected from a body sensor network [21]. In doing so, sensors transform themselves
into wearable coaches that direct the athlete’s movements [35].

Perhaps, the most chaotic sports environment is that of professional racing such as
the Formula 1 Grand Prix, where AI can be especially useful. Racing events generate
large volumes of continuous data on both drivers and vehicles. AI-based systems not
only use data to inform how driving performance can be improved, but are also used
to run simulations of different race decisions and strategies (pit stops, tyre changes, use
of drag reduction systems). This has led to notable collaborations between racing teams
and software companies, with the notable example being the Red Bull–Oracle brands [36].
Overall, both individual and team sports present unstable environments that are challenging
to coach. Using sensors, we are able to understand the events better due to the large volume
of data collected. Simple statistical analysis of these data that were previously unmeasured
generate improvements in how these sports are played, even without the use of AI, and can
solve the problem. Although AI has the potential to multiply this impact, it is important to
acknowledge that AI is not an easy solution to manifest, and, furthermore, to address the fact
that AI requires an immense volume of effort and resources to create, validate and apply these
methods for real-life application in sports. Hence, we should better select the specific issues
and problems we want to use AI to tackle and apply it in a more tailored manner.

5. After the Event: AI-Based Wearable Devices as Diagnostic Systems

The basis of machine learning lies in the processing of large amounts of data via
algorithms that engage in various types of learning to detect or identify patterns, which is
also a central tenet of diagnostics. Certainly, several studies have shown how automatised
pattern recognition can be used in both numerical data and visual images to diagnose
diseases. Wearable devices have been extensively used to monitor athletes and attain an
assessment of their physical health. There have been notable reports of cardiovascular
and respiratory conditions that have either led to the harm of athletes or prevented their
participation in sports. In response, developers have created several wearable devices to
monitor heart rate and blood pressure continuously to identify major aberrations that may
signify a notable cardiac event, including arrythmias [22–24]. Studies have also shown
how AI can be used to not only predict cardiovascular events but also their long-term
impact such as heart failure, adding more utility to the diagnostic potential of wearable
devices [25].

6. After the Event: An Opportunity to Improve Patient Experience

Globally, patient experience has grown increasingly important in the quest for provid-
ing patient-centred care. For example, the publication of the Next Stage Review by Lord
Darzi has emphasised the importance of patient-reported outcome measures (PROMs) to
evaluate the quality of healthcare service provision in the UK [37,38]. In the post-injury
phase, athletes often undergo a period of rehabilitation, physiotherapy and treatment



Sensors 2022, 22, 6920 9 of 11

where wearable technology can be of use. In one study, Bloomfield et al. used machine
learning to analyse data from wearable devices post total knee arthroplasty [15]. The
various metrics obtained from the devices were modelled to correlate higher PROMS in
the cohort that also had better post-operative functional clinical outcomes. In later work,
Nwachukwu et al. developed an algorithm based on the LASSO regression technique and
trained the model on 898 patients with femoroacetabular impingement [26]. The AI model
was able to show that factors such as mood disorders, the prolonged duration of symptoms
and high preoperative outcome scores were predictive of PROMS specific to hip surgery.
Through this, AI-based wearable technology has an important role in the peri-operative
rehabilitation of patients undergoing specific procedures. Not only do AI systems predict
post-operative course, but they are also able to correlate them with the minimally clinically
important difference (MCID) [39]. MCID refers to the minimum change in PROM scores
that patients perceive as beneficial or clinically meaningful. Identifying patients who are at
risk of not achieving a PROM-related MCID in the pre- and post-operative phases can be
important in allocating more resources to monitor this cohort of patients and provide them
with more support. In this regard, AI can improve clinical decision making and patient
care by informing presurgical discussions of likely outcomes.

7. Challenges and Areas of Future Work

There are many challenges that face the incorporation of AI into wearable devices [40].
Firstly, obtaining high-quality data is difficult with wearable technology given the variations
in spatial temporal and data resolution, which becomes more complicated when one or
more devices have to be unified to collect multiple data types to generate a full picture of the
body. There is also an inherent bias towards collecting data from only those who can afford
these sensors, which creates a socio-economic bias in the models [41]. Other challenges
such as missing data, outliers, signal noise and artifacts can introduce large variations and
produce erroneous algorithms. For example, sensors that monitor heart rate also have to
discern artefacts created by arm motion during physical activity. More complex sensors
that can collect and transmit cleaner data need to be developed to overcome this. Even if
high-quality data are collected, the transmission of the data from wearable technology to
processing platforms is both time and resource intensive. Perhaps, the biggest and most
difficult challenge to tackle is ensuring that the data are handled with the highest level
of security. Furthermore, wearable devices are privy to an existing problem within most
healthcare systems, where different healthcare databases are not connected. When patients
use different devices to capture different types of data, the complexity of the data generated
can be better managed if device-to-device communication between wearable devices with
different computational power is achieved.

The integration of AI technology and wearable devices into healthcare systems requires
us to define their role, their capabilities and limits, all of which will require more input from
various stakeholders, including hospitals, patients, programmers, policy makers, insurance
companies and companies that produce wearables. Perhaps the biggest challenge to their
adoption will be patient acceptability. About 50% of consumers who buy a wearable stop
using it, and this happens within six months in approximately a third of them [42,43]. One
study showed that just 50% of patients felt the use of AI within wearable technology was
an important opportunity, and 11% even noted it as a harm [44]. The surveyed patients
were concerned that technology could exploit and misuse their data and dampen the
human element aspect of healthcare. More efforts to educate the public on how AI helps
physicians, their abilities and restrictions are necessary to increase patient acceptability and
user adoption.

8. Conclusions

Artificial intelligence is a promising avenue for integration into wearable technology.
While the use of AI brings with it a separate set of challenges, it also has numerous
advantages in its ability to translate the use of wearable technology on a large scale. AI can
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improve the way injury prediction models work; increase the diagnostic accuracy of risk
stratification systems; provide a reliable method for the continuous monitoring of patient
health data; and enhance the quality of the patient’s experience. However, at this point, the
technology and logistics underlying wearable devices themselves are still at early stages
and need further work. Further work is necessary from physicians, programmers, policy
makers and makers of wearable devices to overcome the logistical and practical barriers,
and to ensure that wearable devices are smoothly incorporated into the digital platforms of
healthcare systems.
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