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Abstract: Multistep power consumption forecasting is smart grid electricity management’s most
decisive problem. Moreover, it is vital to develop operational strategies for electricity management
systems in smart cities for commercial and residential users. However, an efficient electricity load
forecasting model is required for accurate electric power management in an intelligent grid, leading
to customer financial benefits. In this article, we develop an innovative framework for short-term
electricity load forecasting, which includes two significant phases: data cleaning and a Residual
Convolutional Neural Network (R-CNN) with multilayered Long Short-Term Memory (ML-LSTM)
architecture. Data preprocessing strategies are applied in the first phase over raw data. A deep
R-CNN architecture is developed in the second phase to extract essential features from the refined
electricity consumption data. The output of R-CNN layers is fed into the ML-LSTM network to
learn the sequence information, and finally, fully connected layers are used for the forecasting. The
proposed model is evaluated over residential IHEPC and commercial PJM datasets and extensively
decreases the error rates compared to baseline models.

Keywords: electricity load forecasting; residual CNN; ML-LSTM; CNN-LSTM; electricity consumption

1. Introduction

Electricity load forecasting predicts future load based on single or multiple features or
parameters. Features could be of multiple types, such as an ongoing month, hour, weather
situation, electricity costs, economic conditions, geographical circumstances, etc. [1]. Elec-
tricity load forecasting is significantly increasing due to the development and extension of
the energy market, as they endorsed trading electricity for each hour. Profitable market
interactions could be enabled by accurate load forecasting [2] and leakage current predic-
tion [3], which helps power firms guarantee electricity stability and decrease electricity
wastage [4]. The electricity load prediction is handled through short-term electricity load
forecasting [5], which is particularly significant due to smart grid development [6].

The United States Energy Information Administration stated that from 2015–40 the
increase in power consumption would be boosted up to 28% [7], while the International
Energy Agency stated that buildings and building construction account for approximately
36% of the world’s total energy consumption. Stimulating building energy efficiency is vital
in the low carbon economy [8,9]. Accurate energy consumption forecasting is indispensable
for buildings’ energy-saving design and renovation. The scrutiny of dissimilarity among the
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energy consumption forecasting and the experimented data can also provide a foundation
for building operation monitoring. It can also provide a source for energy peak regulation
for large buildings [10,11]. In addition, some large-scale buildings are essential to secure
public resource supply in an area. Thus, accurate energy consumption forecasting can
sustain the resident energy allocation sectors.

The following few important points could establish accurate forecasting models of
consumption. First, it is crucial to precisely recognize the parameters that contain robust
effects on a state’s consumption and add these indicators to the prediction model. Further-
more, choosing an appropriate modeling procedure is also a significant point. The input
and output variables contain such a nonlinear relationship that it is very challenging to
express them mathematically. Principles to advance the prediction performance develop
conspicuously nowadays, instead of hypothetical principles in the model selection. In
the end, the vital point is that the methodology must be capable of producing effective
forecasting results.

Reviewing the literature in recent years, machine learning models are increasingly
used by scholars to forecast the short-term energy consumption of buildings. Additionally,
most scholars are adopting hybrid models due to their effective performance compared
to single models. However, energy consumption in buildings is exaggerated by various
factors and is extremely nonlinear. Thus, this area is still worthy and commendable to be
studied and explored further. This research work contributes the following points to the
current literature.

• The collected benchmark datasets contain a lot of missing values and outliers, which
occur due to defaulted meters, weather conditions, and abnormal customer consump-
tion. These abnormalities and redundancies in datasets lead the forecasting network
to ambiguous predictions. To resolve this problem, we performed data preprocessing
strategies, including outlier removal via the three sigma rules of thumb algorithm,
missing value via NAN interpolation method, and the normalization of the data using
the MinMax scaler.

• We present a deep R-CNN integrated with ML-LSTM for power forecasting using real
power consumption data. The motivation behind R-CNN with ML-LSTM is to extract
patterns and time-varied information from the input data for effective forecasting.

• The proposed model results in the lowest error rates of MAE, MSE, RMSE, and MAPE
and the highest R2 compared to recent literature. For the IHEPC dataset, the proposed
model achieved 0.0447, 0.0132, 0.002, 0.9759, and 1.024 for RMSE, MAE, MSE, R2, and
MAPE, respectively, over the hourly IHEPC dataset while these values are 0.0447,
0.0132, 0.002, 0.9759, and 1.024 over the IHEPC daily dataset. For the PJM dataset, the
proposed model achieved 0.0223, 0.0163, 0.0005, 0.9907, 0.5504 for RMSE, MAE, MSE,
R2, and MAPE, respectively. The lowest error metrics indicated the supremacy of the
proposed model over state-of-the-art methods.

2. Literature Review

Short-term load forecasting is a current research area, and numerous studies have been
conducted in the literature. These studies are mainly divided into four categories based on
the learning algorithm: physical, persistence, artificial intelligence (AI), and statistical. The
persistence model can predict future time series data behavior like electricity consumption
or forecasting but failed for several hour ahead predictions [12]. Therefore, persistence
models are not decisive for electricity forecasting. Physical models are based on mathe-
matical expressions that consider meteorological and historical data. N. Mohan et al. [13]
present a dynamic empirical model for short-term electricity forecasting based on a physical
model. These models are also unreliable for electricity forecasting due to the high mem-
ory, and computational space required [12]. As compared to physical models, statistical
models are less computationally expensive [14] and are typically based on autoregressive
methods, i.e., GARCH [15], ARIMA [16], and linear regression methods. These models
are based on linear data, while electricity consumption prediction or load forecasting is
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a nonlinear and complex problem. As presented in [12], the GARCH model can capture
uncertainty but has limited capability to capture non-stationary and nonlinear characteris-
tics of electricity consumption data. Several studies based on linear regression have also
been developed in previous studies. For instance, N. Fumo et al. proposed a linear and
multiple regression model for electricity load forecasting [17]. Similarly, [18,19] developed
multi-regression-based electricity load forecasting models. Statistical-based models cannot
capture uncertainty patterns directly but use other techniques, as presented in [20], to
reduce uncertainty. AI methods can learn nonlinear complex data, divided into shallow
and deep structure methods (DSM). The shallow-based methods like SVM [21], ANN [22],
wavelet neural networks [23], random forest [24], and ELM [25] performed poorly, except
for feature mining. Thus, improving the performance of these models additionally needs
feature extraction and selection methods, remaining a challenging problem [20,26].

The AI methods are further categorized into machine learning and deep learning. In
machine learning, several studies have been conducted in the literature for electricity load
forecasting. Chen et al. used SVR for power consumption forecasting using electricity
consumption and temperature data [27]. Similarly, in [28], an SVR-based hybrid electric-
ity forecasting model was developed. In this study, the SVR model was integrated with
adjusting the seasonal index and optimization algorithm fruity fly for better performance.
Zhong et al. [29] proposed a vector field base SVR model for energy prediction and trans-
formed the nonlinearity of the feature space into linearity to address the concern of the
nonlinearity of the model to the input data. C. Li et al. conducted a study based on Random
Forest Regression (RFR). First, the features are extracted in the frequency domain using fast
Fourier transformation and then used RFR model for simulation and prediction [30]. Simi-
larly, several deep learning models are developed for short-term electricity load forecasting.
W. Kong et al. used LSTM recurrent network for electricity forecasting [31]. Another
study [32] proposed bidirectional LSTM with an attention mechanism and rolling update
technique for electricity forecasting. A recurrent neural network (RNN), based on a pooling
mechanism, is developed in [20] to address the concern of overfitting.

Features extraction methods include different regular patterns, spectral analysis, and
noise. However, these methods reduce the accuracy for meter level load [20] and these
methods reduce the accuracy due to the low proportion of regular patterns in electricity data.
DSM, also called deep neural networks (DNNs), addressed the challenges in shallow-based
methods. DNN-based models are based on multi-layer processing and learn hierarchical
features from input data. For sequence and pattern learning, LSTM [20,26] and CNN [33]
are the most powerful architecture recently proposed. The long-tailed dependencies in raw
time series data LSTM cannot capture it [34].

Similarly, CNN networks cannot learn temporal features of power consumption. There-
fore, hybrid models are developed to forecast power consumption effectively. T. Y. Kim et al.
combine CNN with LSTM for power consumption prediction [35], while another study
presented in [36] used CNN with bidirectional LSTM. ZA Khan et al. developed a CNN-
LSTM-autoencoder-based model to predict short-term load forecasting [37]. Furthermore,
CNN with a GRU-based model is developed in [38]. These models address the problems
in DNN networks, but the prediction accuracy is unreliable for real-time implementation.
Therefore, we developed a two-stage framework for short-term electricity load forecasting
in this work. In the first stage, the raw electricity consumption data collected from a residen-
tial house is preprocessed to remove missing values, outliers, etc. This refined data is then
fed to our newly proposed R-CNN with ML-LSTM architecture to address the concerns of
DNNs and improve the forecasting performance for effective power management.

3. Proposed Method

The overall architecture of R-CNN with ML-LSTM is shown in Figure 1 for short-term
electricity load forecasting. A two-stage framework is presented, which includes data
preprocessing and proposed R-CNN with ML-LSTM architecture. Data preprocessing
includes filling missing values removing outliers, and normalizing the data for efficient
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training. The second step comprises R-CNN with ML-LSTM architecture, where R-CNN is
employed for pattern learning. At the same time, the ML-LSTM layers are incorporated to
learn the sequential information of electricity consumption data. Each step of the proposed
framework is further explained in the following sub-sections.
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Figure 1. Proposed framework for electricity consumption forecasting.

3.1. Data Preprocessing

Smart meter sensors-based data generation contains outliers and missing values for
several reasons, such as meter faults, weather conditions, unmanageable supply, storage
issues, etc. [39], and must be preprocessed before training. Herein, we apply a unique
preprocessing step. For evaluating the proposed method, we used IHEC Dataset, which
includes the above-mentioned erroneous values. In addition, the performance is evaluated
over the PJM benchmark dataset. To remove the outlier values in the dataset, we used three
sigma rules [40] of thumb according to Equation (1).
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(Di) =

{
AVG(d) + 2.STD(d), i f di > avg(d) + std(d)

di, otherwise
(1)

where di is a vector or superset of A representing a value for power consumption in
duration, i.e., minute, hour, day, etc. At the same time, AVG(d) is the average of D, and
STD(D) represents the standard deviation of the D. A recovering interpolation method is
used as presented in Equation (2) for missing values.
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di−1 + di+1

2
, di ∈ nan, di−1, di+1 /∈ nan

0, di ∈ nan, di−1 or di+1 ∈ nan

di, di /∈ nan

(2)
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If di is missing or null, we placed it as a NAN. The IHEPC dataset was recorded in a
one minute resolution, while the PJM dataset was recorded in a one hour resolution. The
IHEPC dataset is down sampled for daily load forecasting into hourly resolutions. The
input datasets are resampled into low resolution (from minutes to hours) in downsampling.
The IHEPC dataset includes 2,075,259 recodes, down-sampled into 34,588 records for daily
load forecasting, as shown in Figure 2.
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After data cleaning, we apply the data transformation technique to transform the
cleaned data into a specific format more suitable for effective training. First, we use
the power transformation technique to remove shifts and transform the data into more
Gaussian-like. The power transformation includes Box–Cox [41] and Yeo–Johnson [42]. The
Box–Cox is sensitive to negative values, while Yeo–Johnson can support both negative and
positive values. In this work, we used the Box–Cox technique for power transformation to
remove a shift from the electricity data distribution. This work uses univariate electricity
load forecasting datasets, so the Box–Cox transformation for a single parameter is shown
in Equation (3).

d(λ)i =


d(λ)i − 1
λ

, i f D 6= 0

Ind, i f D = 0
(3)

Finally, the min–max data normalization technique converts the data into a specific
range because deep learning networks are sensitive to diverse data. The equation of
min–max normalization is shown in Equation (4).

Di =
d–dmin

dmax–dmin
(4)

where d is the actual data, while dmin is the minimum and dmax is the maximum values in
the dataset.

3.2. R-CNN with ML-LSTM

The proposed architecture integrates R-CNN with ML-LSTM for power load fore-
casting. R-CNN and ML-LSTM can store the complex fluctuating trends and extract
complicated features for electricity load forecasting. First, the R-CNN layers extract pat-
terns, which are then passed to ML-LSTM as input for learning. CNN is a well know
deep learning architecture consisting of four types of layers: convolutional, pooling, fully
connected, and regression [43,44]. The convolutional layers include multiple convolution
filters, which perform a convolutional operation between convolutional neuron weights
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and the input volume-connected region, which generates a feature map [45,46]. The basic
equation of the convolutional layer operation is shown in Equation (5).

C
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units to update the earlier hidden state, aiming to understand temporal relationships in 

the sequence. The three gates unit’s mechanism is incorporated to determine each 
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o must be
shared with the overall input region, known as weight sharing. During model building, the
weight sharing significantly decreases the cost of calculation time and training parameter
numbers. After convolution, the pooling operation is performed. The pooling layer reduces
feature map resolution for input feature aggregation [47,48]. The output of the pooling
layer is shown in Equation (6).
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where (i, j) ε Pm,n, ε Pm,n is the region of location of i, j. CNN has three types of pooling
layers: max, min, and average poling. The CNN’s general network comprises several
convolutional and pooling layers. Before the regression, the fully connected layers are
typically set where every neuron in the previous layer is connected to every other in the
next layer. The main purpose of the fully connected layer is to represent the learned feature
distribution to a single space for high-level reasoning. The regression layer is the final
output of the CNN model.

Due to the strong feature extraction ability, CNN architectures are extensively applied
for image classification, video classification, time series, etc. Similarly, in time-series fore-
casting, these models are used for traffic [49,50], renewables [51], election prediction [52],
and power forecasting [53]. Recent studies of image classification show the crucial per-
formance of CNNs. As the network depth increases to a certain level, the degradation
problem occurs in which the model performance is saturated. The experimentation shows
that saturation is an optimization problem that is not caused by overfitting. To address the
degradation concern, R-CNN architecture has been developed [54]. The conventional CNN
learns the data in a linear mechanism, i.e., a direct function
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(a), but the R-CNN learns it
differently, defined as H(a) =
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(a) + a.
The ResNet solves the degradation problem and performs satisfactory results over

image recognition data, but electricity consumption is time series sequential data. The CNN
architecture cannot learn the sequential features of power consumption data. Therefore,
the R-CNN with ML-LSTM architecture is developed in this research study for future
electricity load forecasting. The R-CNN layers extract spatial information from electricity
consumption data. The extracted features of R-CNN are then fed to ML-LSTM as input for
temporal learning.

The output of R-CNN is then forwarded to ML-LSTM architecture, that is responsible
for storing time information. The ML-LSTM maintains long-term memory by merging its
units to update the earlier hidden state, aiming to understand temporal relationships in the
sequence. The three gates unit’s mechanism is incorporated to determine each memory
unit state through multiplication operations. The input gate, output gate, and forget gate
represent each gate unit in the LSTM. The memory cells are updated with an activation.
The operation of each gate in the LSTM can be shown in Equations (7)–(9), and the output
of each gate is represented by i, f , and o notation, while ∂ is the activation function, w
represents the weight, and
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3.3. Architecture Design

The proposed R-CNN with ML-LSTM is based on three types of layers: R-CNN, ML-
LSTM, and fully connected layers. The kernel size, filter numbers, and strides are adjustable
in R-CNN layers according to the model’s performance. Many learning speeds, changes,
and performance can happen by adjusting these parameters varying on the input data [55].
We can confirm the performance change by increasing or decreasing these parameters. We
used a different kernel size in each layer to minimize the loss of temporal information. The
data pass through the residual R-CNN layer, followed by the pooling layer for pattern
learning. The output is then fed to the ML-LSTM for sequence learning, which is then
forwarded to fully connected (FC) layers for final forecasting. Table 1 shows the layer type,
the kernel’s size, and R-CNN parameters with the ML-LSTM network.

Table 1. The internal architecture of R-CNN and ML-LSTM.

Layer Filter-Size Kernel-Size Layer-Parameter

Input - -
Convolutional

(conv)_1 32 7 10,816

conv_2 32 5 20,544
Add [conv_1, conv_2] - -

conv_3 64 3 12,352
Add [conv_2, conv_3] - -

Convolutional_4 128 1 4160
Add [conv_3, conv_4] - -

LSTM 100 - 66,000
LSTM 100 - 80,400
LSTM 100 - 80,400

FC 128 - 12,928
FC 60 - 7740

Total parameters 295,340

4. Results

The experimental setup, evaluation metrics, dataset, performance assessment over
hourly data, and performance assessment over daily data of R-CNN with the ML-LSTM
model are briefly discussed in the following section.

4.1. Experimental Setup

To validate the effectiveness of the proposed approach, the IHEPC dataset is used to
implement comprehensive experiments. The R-CNN with ML-LSTM is trained over an
Intel-Core-i7 CPU having 32GB RAM and GEFORCE-GTX-2060-GPU in Windows 10. The
implementation was performed in Python 3.5 using the Keras framework.

4.2. Evaluation Metrics

The model performance is evaluated on mean square error (MSE), mean absolute
error (MAE), root mean square error (RMSE), coefficient of determination (R2), and mean
absolute percentage error (MAPE) metrics. MAE computes the closeness between actual
and forecasted values, MSE calculates square error, RMSE is the square root of MSE, R2

exhibits model fitting effect ranging from 0 to 1 where closer to 1 indicates best prediction
performance, and MAPE is the absolute ratio error for all samples. The mathematical
equations of each metric are demonstrated in Equations (10)–(12) Where yi is the actual
power consumption value and ŷi is the forecasted value.

MAE =
∑n

i=1|yi − ŷi|
n

(10)
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MSE =
∑n

i=1(yi − ŷi)
2

n
(11)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(12)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (13)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (14)

4.3. Datasets

The R-CNN with ML-LSTM model is evaluated over the UCI repository’s IHEPC and
PJM datasets. The IHEPC comprises nine attributes: date and time variables, active and
reactive power, voltage, intensity, and three submetering variables. Description of IHEPC
attributes and their unit are shown in Table 2. The IHEPC dataset was collected from a
residential building in France between the period of 2006 to 2010. PJM (Pennsylvania-New
Jersey-Maryland) is a regional transmission society that operates the eastern electricity grid
of the US. The PJM transmits the electricity to several US regions, including Maryland,
Michigan, Delaware, etc. The power consumption data are stored on PJM’s official website,
which is recorded in one-hour resolution in megawatts.

Table 2. IHEPC dataset attributes and units.

Attributes Description Units

Date and time Comprise the range of
datetime values dd/mm/yyyy and hh:mm:ss

Global active, reactive power
and intensity

Minutely averaged Global
active1, reactive Power2, and

intensity3 values
kilowatt (Kw)1,2

Ampere (A)3

Voltage Minutely averaged voltage
values Volt(V)

4.4. Comparative Analysis

The performance of R-CNN with the ML-LSTM model is compared to other models
over residential electricity consumption IHEPC and regional electricity forecasting PJM
datasets. The performance of the proposed model over these datasets and its comparison
with other models are clarified in the subsequent sections.

5. Evaluation of IHEPC Dataset

The supremacy of the proposed model over the IHEPC dataset is evaluated on hourly
and daily load forecasting, whereas the R-CNN with ML-LSTM achieved satisfactory
results. The performance of the test dataset for daily and hourly load forecasting is shown
in Figure 3a,b. The comparison with other baseline methods for hourly load forecasting
is presented in Table 3. For hourly load forecasting, the results are compared with linear
regression [35], ANN [56], CNN [37], CNN-LSTM [35], CNN-BDLSTM [36], CNNLSTM-
autoencoder [37], SE-AE [57], GRU [58], FCRBM [59], CNNESN [60], residual CNN stacked
LSTM [61], CNN-BiGRU [62], CNN-GRU [63], STLF-Net [64], residual GRU [65] and
Khan et al. [66]. Compared to all these studies, R-CNN with ML-LSTM achieved lower
error rates of 0.0325, 0.0144, 0.0011, 0.9841, and 1.024 for RMSE, MAE, MSE, R2, and MAPE,
respectively.
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Table 3. Performance comparison of R-CNN and ML-LSTM with state-of-the-art over hourly
IHEPC dataset.

Method RMSE MAE MSE R2 MAPE

Linear regression
[35] 0.6570 0.5022 0.4247 - 83.74

ANN [56] 1.15 1.08 - - -
CNN [37] 0.67 0.47 0.37 - -

CNNLSTM [35] 0.595 0.3317 0.3549 - 32.83
CNN-BDLSTM [36] 0.565 0.346 0.319 - 29.10

CNNLSTM-
autoencoder

[37]
0.47 0.31 0.19 - -

SE-AE [57] - 0.395 0.384 - -
GRU [58] 0.41 0.19 0.17 - 34.48

FCRBM [59] 0.666 - - −0.0925
CNNESN [60] 0.0472 0.0266 0.0022 - -
Residual CNN

Stacked LSTM [61] 0.058 0.003 0.038 - -

CNN-BiGRU [62] 0.42 0.29 0.18 - -
CNN-GRU [63] 0.47 0.33 0.22 - -
STLF-Net [64] 0.4386 0.2674 0.1924 - 36.24

Residual GRU [65] 0.4186 0.2635 0.1753 - -
ESN-CNN [66] 0.2153 0.1137 0.0463 - -

Proposed 0.0325 0.0144 0.0011 0.9841 1.024

The performance of the proposed model over the hourly resolution of data also secured
the lowest error rate compared to the baseline model. For a precedent, the performance
over the daily resolution of data is compared with regression [35], CNN [37], LSTM [35],
CNN-LSTM [35], and FCRBM [59], where the details results of each study are given in
Table 4. Comparatively, the R-CNN with ML-LSTM model also reduces the error rates over
the daily dataset and achieved 0.0447, 0.0132, 0.002, 0.9759, and 2.457 for RMSE, MAE, MSE,
R2, and MAPE, respectively, for daily load forecasting.

Table 4. Performance comparison of R-CNN and ML-LSTM with state-of-the-art over daily IHEPC dataset.

Method RMSE MAE MSE R2 MAPE

Linear regression
[35] 0.5026 0.3915 0.2526 - 52.69

CNN [37] 0.07 0.05 0.006 - -
LSTM [35] 0.4905 0.4125 0.2406 - 3872

CNN-LSTM [35] 0.3221 0.2569 0.1037 37.83
FCRBM [59] 0.828 - - 0.3304

Proposed 0.0447 0.0132 0.002 0.9795 2.457
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6. Evaluation of the PJM Dataset

The superiority of R-CNN with ML-LSTM is also evaluated over several PJM datasets
for daily load forecasting. The PJM benchmark includes 14 datasets of electricity load
forecasting, while for the experimentation, we chose 10 datasets from the PJM as selected
by [61]. In the literature, we found the comparison for 10 regions dataset, which is demon-
strated in Table 5, where the proposed model acquired the lowest error rate for each dataset.
The performance of R-CNN with ML-LSTM is compared with Mujeeb et al. [67], Gao
et al. [68], Chou et al. [69], Khan et al. [61], and Han et al. [58]. The R-CNN with ML-LSTM
secures the lower error metrics for all datasets, where the details are given in Table 5, while
the prediction results for all datasets in the PJM region are shown in Figure 4.

Table 5. Performance comparison of the proposed model with state-of-the-art forecasting methods
over the PJM hourly dataset.

Dataset Method RMSE MAE MSE R2 MAPE

AEP

Mujeeb et al.
[67] 0.386 - - - 1.08

Gao et al. [68] 0.49 - - - 1.14
Han et al. [58] 0.054 - - - -
Khan et al. [61] 0.031 0.001 0.027 - -

Proposed 0.0223 0.0163 0.0005 0.9907 0.5504

DAYTON
Khan et al. [61] 0.046 0.033 0.002 - -

Proposed 0.0206 0.0144 0.0004 0.9911 0.4982

COMED
Khan et al. [61] 0.044 0.030 0.002 - -

Proposed 0.0216 0.0131 0.0005 0.9906 0.5475

DOM
Khan et al. [61] 0.057 0.039 0.003 - -

Proposed 0.0212 0.0138 0.0005 0.9905 0.5987

DEOK
Khan et al. [61] 0.053 0.036 0.003 - -

Proposed 0.0174 0.0129 0.0003 0.9932 0.3974

EKPC
Khan et al. [61] 0.055 0.034 0.003 - -

Proposed 0.0274 0.0202 0.0008 0.9882 0.7965

DUQ
Khan et al. [61] 0.054 0.041 0.003 - -

Proposed 0.0430 0.0277 0.0009 0.9975 0.8234

PJME
Khan et al. [61] 0.043 0.031 0.002 - -

Proposed 0.0199 0.0128 0.0004 0.9913 0.4721

NI
Khan et al. [61] 0.050 0.033 0.002 - -

Proposed 0.0178 0.0129 0.0003 0.9930 0.3748

PJMW
Khan et al. [61] 0.038 0.027 0.001 - -

Proposed 0.0145 0.0102 0.0002 0.9949 0.2864
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7. Conclusions

A two-phase framework is proposed in this work for power load forecasting. Data
cleaning is the first phase of our framework where data preprocessing strategies are applied
over raw data to make it clean for effective training. Secondly, a deep R-CNN with ML-
LSTM architecture is developed where the R-CNN learns patterns from electricity data, and
the outputs are fed to ML-LSTM layers. Electricity consumption comprises time series data
that include spatial and temporal features. The R-CNN layers extract spatial features in this
work, while the ML-LSTM architecture is incorporated for sequence learning. The proposed
model was tested over residential and commercial benchmark datasets and conducted with
satisfactory results. For residential power consumption forecasting, IHEPC data was used,
while the PJM dataset was used for commercial evaluation. The experiments are performed
for daily and hourly power consumption forecasting and extensively decrease the error
rates. In the future, the proposed model will be tested over medium-term and long-term
electricity load forecasting. In addition, we will integrate environmental sensor data that
help to predict future electricity consumption. Furthermore, we also intend to investigate
the performance of the R-CNN and ML-LSTM in other prediction domains such as fault
prediction, renewable power generation prediction, and traffic flow prediction.
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