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Abstract: This paper considers a discrete-time linear time invariant system in the presence of Gaussian
disturbances/noises and sparse sensor attacks. First, we propose an optimal decentralized multi-
sensor information fusion Kalman filter based on the observability decomposition when there is no
sensor attack. The proposed decentralized Kalman filter deploys a bank of local observers who utilize
their own single sensor information and generate the state estimate for the observable subspace. In the
absence of an attack, the state estimate achieves the minimum variance, and the computational process
does not suffer from the divergent error covariance matrix. Second, the decentralized Kalman filter
method is applied in the presence of sparse sensor attacks as well as Gaussian disturbances/noises.
Based on the redundant observability, an attack detection scheme by the χ2 test and a resilient state
estimation algorithm by the maximum likelihood decision rule among multiple hypotheses, are
presented. The secure state estimation algorithm finally produces a state estimate that is most likely
to have minimum variance with an unbiased mean. Simulation results on a motor controlled multiple
torsion system are provided to validate the effectiveness of the proposed algorithm.

Keywords: information fusion; decentralized Kalman filter; observability decomposition; attack
resilience; secure state estimation; redundant observability; sparse sensor attack

1. Introduction

As control systems operate through network communication and become more com-
plex due to increased connectivity, security against adversarial attacks is becoming more
important and receiving attention [1–4]. In fact, attacks on control systems took place in
reality [5–8], and many studies have been conducted on the security issues of systems
whose measurements have been compromised by adversaries because sensors are one of
the vulnerable points to malicious attackers in dynamical systems [9–15].

Among them, the state estimation problem when some of sensors are corrupted by
attackers, often called a sparse sensor attack, has been investigated, and several solutions
have been recently proposed [10–15]. The reference [10] introduces the basic concepts
of the secure state estimation problem and formulates it as a non-convex combinatorial
optimization problem. The problem is shown to be transformed into a convex optimization
problem by using the results developed in the field of compressed sensing [16,17] under
additional limiting assumptions. The relationship between this resilient state estimation
problem and the notion of strong observability was revealed in [11]. A necessary and
sufficient condition for the solvability of this problem is derived in [12,15] with the notion
of redundant observability, more specifically, it requires the redundancy of observability
twice as much as the sparsity of sensor attacks. A method to alleviate the computational
complexity of the logic for finding a combination of non-attacked sensors, is proposed
in [13,14]. In [15], the estimator is designed by a set of local observers with only a single
sensor, and the decoder uses an error correction algorithm to generate a final state estimate
based on the data collected from each local observer.
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In addition to sparse sensor attacks, disturbances and noises are considered to enhance
the robustness. First, bounded disturbances and noises are considered in [13,15,18], and
in particular, the reference [15] explicitly derives the estimation error with the system
parameters to provide an analysis of robustness. Second, zero-mean Gaussian white noises
and disturbances rather than bounded ones were considered in [19–21], and Kalman filters
were used to guarantee the state-estimation performance in a probabilistic manner. The
reference [19] proposed an estimator with Kalman filters that searches a reliable subset
of sensors and operates on the identified subset. A method of combining a secure state
estimator and the standard Kalman filter by using the secure state estimator as a pre-filter
for the Kalman filter when the set of attacked sensors changes over time, is proposed in [20].
It was shown in [21] that the optimal Kalman estimate can be decomposed into a weighted
sum of local estimates, where each estimate uses only a single sensor measurement and
that a secure state estimation can be achieved by a convex optimization under some
additional assumptions.

This paper considers a general discrete-time linear dynamical system that is corrupted
by sparse sensor attacks and Gaussian disturbances/noises. First, we construct local
observers on each single sensor and design those local observers with Kalman filters
using their own sensor data to cope with Gaussian disturbances/noises. The design of
local observers is fully decentralized since it does not utilize any information including
Kalman gains or error covariance matrices from other sensors as well as the sensor readings.
Furthermore, the local observer’s error covariance is guaranteed not to diverge since it is
constructed in the observable subspace based on the observability decomposition, and thus,
there is no numerical computational error in practice. Second, a novel information fusion
scheme is developed to counteract sparse sensor attacks while maintaining the minimum
variance properties. The information fusion center detects the presence of sensor attack
in the selected subset of sensors by the χ2 test, which is typically used in the area of fault
detection [22,23]. If the χ2 test concludes that there is an attack in the selected subset, a
search algorithm is launched to choose a new index set of sensors that is most likely to
be unattacked by the multiple hypothesis test. Each hypothesis produces a state estimate
with minimum variance, assuming that the index set is attack-free so that each estimate is
unbiased. Therefore, the information fusion scheme finally produces a state estimate that is
most likely to have the minimum variance and to be unbiased.

Assuming that there exist only Gaussian disturbances/noises without any attacks, a
basic information fusion Kalman filter scheme was proposed in [24,25]. The local observers
in [24,25] were designed using a Kalman filter for the entire state variable with a single
sensor, and a fusion algorithm generates the optimal state estimate with the minimum
variance. However, as highlighted in [26], some components of the error covariance
may diverge if a single-sensor system is not observable, and this can induce numerical
computation problems in practice. This problem can be solved by reducing the target state
space to an observable subspace and designing a Kalman filter for the reduced observable
subsystem. The idea of decomposing a single-sensor system into the observable subsystem
and the unobservable subsystem was proposed in [15] for the secure state estimator design
under bounded disturbances/noises, and in [27] for the distributed Luenberger observer
design of sensor networks. Hence, adopting this idea and designing the Kalman filter
for the observable subsystem, the problem of divergent error covariance does not occur,
and we derive the optimal information fusion algorithm even when the size of the local
information is different each other.

The contributions of this paper can be summarized as follows:

(1) The proposed algorithm successfully estimates the state variable under sparse sensor
attacks as well as Gaussian disturbances/noises. Our algorithm ensures the minimum
variance, while [19] simply guarantees that its covariance is no worse than the worst
case scenario with high probability;

(2) We only assume that the system is redundant observable, which is known as an
equivalent condition for the secure state estimation to be solvable under sparse sensor
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attacks. Note that [20] requires additional assumptions to reformulate the problem
as a convex problem, and further, the combination of Kalman filter and the secure
estimator implicitly supposes that the estimation error for the attack signal follows
a zero-mean Gaussian distribution, which may not be true when the attack signal is
intelligently designed in a coordinated way. The reference [21] needs the system matrix
to be nonsingular, and both references [20] and [21] have additional assumptions about
the closed-loop system;

(3) The construction of the local observer is completely decentralized, and the overall
size of the observer is relatively small. As the combinatorial logic is embedded in the
fusion center, we do not have to prepare all possible combinations of observers. Note
that [19] does not utilize any decomposition, and thus, it asks for all combinations of
observers. The local decomposition presented in [21] is not fully decentralized because
the decomposition is performed using the global information of the output matrix and
the Kalman gain;

(4) As a by-product obtained during the derivation process, the optimal decentralized
information fusion Kalman filter scheme is developed based on the observability
decomposition. Compared with the results in [24,25], the proposed scheme does not
suffer from the numerical computational errors resulting from the diverging error
covariance matrix. The algorithm in this paper guarantees that each error covariance
matrix in the local observer converges by the observability decomposition, and this
method can also be widely used for the multi-sensor information fusion Kalman filters
that do not consider any attacks.

The rest of the paper is organized as follows. The remaining of this section introduces
the notation used throughout the paper. The system model and problem formulation are
given in Section 2. Section 3 presents the optimal multi-sensor information fusion Kalman
filter based on the observability decomposition. We then give the attack detection algorithm
by χ2 test and the attack-resilient state estimation scheme by the multiple hypothesis test
in Section 4. Finally, simulation results with a servo motor system are given in Section 5,
and we provide our concluding remarks in Section 6. The preliminary results of this paper
were studied in [28].

Notation: Throughout this paper, the following notations are adopted. For a set S, the
number of elements in the set S is denoted by |S|. For a column vector y ∈ Rp and its
i-th element yi, supp(y) denotes the number of nonzero elements of the vector y, that is,
supp(y) := {i ∈ [p] : yi 6= 0} where the symbol [p] is used to represent the subset of natural
numbers {1, 2, · · · , p} ⊂ N. The number of nonzero elements of a vector y is defined by
the `0 norm, and it is written as ‖y‖0 := |supp(y)|. We say that the vector y is q-sparse if its
`0 norm is less than or equal to q, that is, ‖y‖0 ≤ q.

For an index set I ⊂ [p] and a vector y ∈ Rp (or a matrix C ∈ Rp×n), yI ∈ R|I| (or
CI ∈ R|I|×n) denotes the vector (or the matrix) obtained from y (or C) by eliminating all
i-th rows such that i ∈ I c. Similarly, for two index sets I ,J ⊂ [p] and a matrix P ∈ Rp×p,
PI ,J ∈ R|I|×|J | denotes the matrix obtained from P by eliminating all i-th rows and all j-th
columns such that i ∈ I c and j ∈ J c.

Let a finite sequence {µi} = {µ1, µ2, · · · , µp}with µ = ∑p
i=1 µi given. A stacked vector

z =
[
z>1 z>2 · · · z>p

]> ∈ Rµ is said to be partitioned by the sequence {µi} if zi ∈ Rµi for all

i ∈ [p]. For j ∈ [p], an index set I{µi}
j :=

{
(∑j−1

i=1 µi) + 1, (∑j−1
i=1 µi) + 2, · · · , ∑j

i=1 µi

}
⊂ [µ]

represents the j-th partition among total p partitions when a vector z ∈ Rµ is partitioned
by the sequence {µi}. This notation is extended to a subset J ⊂ [p] where I{µi}

J denotes⋃
j∈J I

{µi}
j . A vector z ∈ Rµ partitioned by the sequence {µi}, is said to be ({µi}-stacked)

q-sparse if

∣∣∣∣∣
{
j ∈ [p] : z

I{µi}
j

6= 0µj×1

}∣∣∣∣∣ ≤ q.
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2. System Modeling and Problem Formulation

The plant and the attack model under consideration are presented, and the problem
formulation is given in this section.

2.1. Plant Modeling with Gaussian Disturbances and Noises

A discrete-time linear time invariant (LTI) system under Gaussian disturbances and
noises given by

P :

{
x(k + 1) = Ax(k) + Bu(k) + d(k)

y(k) = Cx(k) + n(k)
(1)

is considered. In the plant dynamics of (1), x ∈ Rn is the state variable vector, u ∈ Rm is the
control input vector, and y ∈ Rp is the sensor output vector. Furthermore, the dynamics
is disrupted by the process disturbance d ∈ Rn, and the sensors are corrupted by the
measurement noise n ∈ Rp. There are a total of p sensors that measure the system outputs,
and the i-th sensor’s measurement at time k is denoted by

yi(k) = cix(k) + ni(k)

where ci is the i-th row of the output matrix C, which implies that C = [c>1 c>2 · · · c>p ]>.
Here, stochastic assumptions on the disturbance d(k), the noise n(k) and the initial state
x(0) of the system (1) are formally stated as follows.

Assumption 1. The disturbance d(k) and measurement noise n(k) are independent and identically
distributed (i.i.d.) white Gaussian process with zero-mean and covariance matrices Q and R,
respectively. More specifically,

d(k) ∼ N(0n×1, Q),

n(k) ∼ N(0p×1, R),

E[d(k)] = 0n×1, E[d(k)d>(t)] = Qδkt,

E[n(k)] = 0p×1, E[n(k)n>(t)] = Rδkt,

E[n(k)d>(t)] = Op×n,

where the symbol E[·] represents the expected value of a random variable and δkt is the Kronecker
delta function. Furthermore, the initial state x(0) is a Gaussian distributed random variable with
the mean x̄0 and covariance matrix P0,

x(0) ∼ N(x̄0, P0),

E[x(0)] = x̄0, E[(x(0)− x̄0)(x(0)− x̄0)
>] = P0,

and is independent of d(k) and n(k).

2.2. Attack Modeling with Sparse Sensor Attacks

Among various attack scenarios [3], we consider false data injection attacks on sensors.
Adversarial attackers can inject arbitrary inputs to some (not all) sensors so that a part
of the measurements is compromised. Some additive inputs may be induced by cyber or
physical tampering with the sensors, or adversaries may penetrate into the communication
network on the output side of the plant because those communication links are not secure.
In both cases, the attack is characterized by the attack vector a ∈ Rp as in

ya(k) = y(k) + a(k)

= Cx(k) + n(k) + a(k)

= Cx(k) + na(k)

(2)
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where ya ∈ Rp denotes sensor readings with a potential attack, while y ∈ Rp is the original
healthy sensor data affected by the measurement noise only. Similarly, na ∈ Rp represents
the total sensor contamination signal including both the noise n and the attack a.

Here, it is assumed that the adversaries can compromise only a part of the sensors, not
all of them. Assuming that the attacker’s resources are limited, we suppose that the attacker
can contaminate up to q out of p measurement outputs. Therefore, a formal condition on
the sparsity of the attack vector a can be given as follows.

Assumption 2. The sensor attack vector a(k) is q-sparse for all k ≥ 0, that is, ‖a(k)‖0 ≤ q, ∀k ≥ 0.
Moreover, it holds that

|{i ∈ [p] : ai(k) 6= 0 for some k ≥ 0}| ≤ q.

This assumption tells more than ‖a(k)‖0 ≤ q for all k ≥ 0, in the sense that the
compromised sensor channels are not altered for all time. In practice, this may be the case
because it takes quite a long time and much effort to infiltrate into a new sensor from a
malicious attacker’s point of view. Thus, without loss of generality, it can be assumed that
the attack channels remain the same in the long term although it is not revealed to the
controller which channels are attacked. However, if the attacked sensor channel changes
but does not change frequently, the resilient state estimation scheme to be presented is still
applicable. We will simply refer to this assumption as a “q-sparse sensor attack”.

2.3. Problem Formulation

For the given discrete-time LTI system (1) under Assumptions 1 and 2, this paper
investigates how to design an estimator that can recover the state variable x correctly. First,
the Gaussian distributed disturbances/noises are handled appropriately, and the optimality
in the sense of minimum variance should be recovered. Second, the security against the
sparse sensor attack is enhanced, and the attack-resilient estimation with the unbiased
state estimate should be achieved. More specifically, this paper considers the problem of
proposing a secure and robust state estimation algorithm that generates the estimate that is
most likely to have the minimum variance and to be unbiased. In this process, the concept
of “redundant observability”, which characterizes the ability of coping with the sparse
sensor attack, is utilized to ensure successful state estimation.

The basic condition for the observability of the system (1) with the attack model (2)
satisfying Assumption 2, is given in the following assumption. Note that the assumption
of “2q redundant observability” is an equivalent condition for the system to be observable
under q-sparse sensor attacks ([15], Proposition 2,3,6). Here, the state estimation problem
becomes challenging because this redundant observability does not guarantee for the entire
states to be recovered with only a single sensor.

Assumption 3. The system (1), or the pair (A, C), is 2q redundant observable. In other words,
each pair (A, CI ) is observable for any I ⊂ [p] satisfying |I| ≥ p− 2q.

3. Optimal Information Fusion Kalman Filter Based on Observability Decomposition
3.1. Kalman Observability Decomposition with Single Sensor

Since conventional Luenburger observers or Kalman filters typically have the form of

x̂(k + 1) = (A− KC)x̂(k) + Bu(k) + Kya(k),

the whole state estimates x̂ are affected by the single sensor attack signal due to the observer
gain K. In other words, any single non-zero component of a can alter all components of
the state estimate x̂. Hence, we design a collection of observers where each local observer
utilizes only a single sensor information so that an attack signal for one sensor channel only
interferes with the corresponding local observer and leaves other local observers unaffected.
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Consider a single-output system

Pi :

{
x(k + 1) = Ax(k) + Bu(k) + d(k)

ya
i (k) = cix(k) + na

i (k).
(3)

where the i-th component of ya(k) in (2), ya
i (k), is the output and the dynamics is given

by (1). Since the pair (A, ci) is not necessarily observable, an estimator of the system (3)
generally recovers only an (observable) portion of the full state x. The Kalman observability
decomposition, which clearly describes the observable portion of the system, is now briefly
introduced. For the single-output system (3), the observability matrix is written as

Gi :=


ci

ciA
ciA2

...
ciAn−1

, (4)

and we denote µi as the rank of the observability matrix Gi. The null space of Gi, N (Gi), is
the so-called unobservable subspace, and the column range space of G>i ,R(G>i ), is often
called the observable subspace.

One can define the similarity transformation as[
zi
wi

]
=

[
Zi
>

W>i

]
x (5)

where Zi ∈ Rn×µi is the matrix whose columns are th orthonormal basis of R(G>i ) and
Wi ∈ Rn×(n−µi) is the matrix whose columns are the orthonormal basis of N (Gi). Here, the
size of those matrices is determined by

µi = rank(Gi) = dim(R(G>i )) and n− µi = nullity(Gi) = dim(N (Gi)).

Note that the observable subspace R(G>i ) is the span of column vectors in Zi and the
unobservable subspaceN (Gi) is the span of column vectors in Wi. Since the matrix [Zi Wi]
is orthogonal, we have[

Zi
>

W>i

][
Zi Wi

]
=

[
Zi
>Zi Zi

>Wi

W>i Zi W>i Wi

]
=

[
Iµi×µi Oµi×(n−µi)

O(n−µi)×µi
I(n−µi)×(n−µi)

]
.

Moreover, because the unobservable subspace is A-invariant, any columns of AWi belong
toN (Gi) = R(Wi). Therefore, the Kalman observability decomposition of the system (3) is
obtained by the transformation (5) as

P ′i :



[
zi(k + 1)
wi(k + 1)

]
=

[
Zi
>AZi Oµi×(n−µi)

W>i AZi W>i AWi

][
zi(k)
wi(k)

]
+

[
Zi
>B

W>i B

]
u(k) +

[
Zi
>

W>i

]
d(k)

ya
i (k) =

[
ciZi 01×(n−µi)

][ zi(k)
wi(k)

]
+ na

i (k).

(6)

Finally, the state x ∈ Rn is decomposed into the observable sub-state zi ∈ Rµi and
the unobservable sub-state wi ∈ Rn−µi . Further, the observable part of (6) can simply be
written as

P o
i :

{
zi(k + 1) = Sizi(k) + Z>i Bu(k) + Z>i d(k)

ya
i (k) = tizi(k) + na

i (k)
(7)

where Si := Z>i AZi and ti := ciZi.
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3.2. Decentralized Multi-Sensor Kalman Filter

Even though the Kalman filter can be applied to unobservable linear systems, the error
covariance matrix may not converge in that case. According to ([29], Theorem 26), the detectabil-
ity of the system is a sufficient condition for the convergence of the error covariance matrix in
Kalman filtering. Since detectability is a slightly weaker concept than observability, the results
in this paper dealing with observability can be generalized to the concept of detectability with
slight modifications. The design of local state estimators for the observable subsystem (7) in the
form of Kalman filters using only single sensor information, is derived in this subsection. By its
construction, the pair (Z>i AZi, ciZi), or simply denoted as (Si, ti), is observable, and thus, the
error covariance matrix of the Kalman filter designed for the system (7) converges to a positive
semidefinite matrix ([29], Theorem 26).

Now, we design a decentralized Kalman filter with each single sensor output, which
constitutes the local observer. Then, the design of an information fusion scheme, which
collects all the information on state estimates and error covariance matrices from the
decentralized Kalman filters, will be discussed in the next subsection. For the simplicity
of the derivation, we assume that there are no attacks at this time, that is, a(k) ≡ 0. Thus,
na(k) and ya(k) are interpreted as n(k) and y(k), respectively, in this section.

Stochastic assumptions on the disturbance d(k) and the noise n(k) of the system (1)
are formally stated in Assumption 1 where the covariance matrix R of the measurement
noise n(k) is partitioned as

R =


R1 R12 · · · R1p
R21 R2 · · · R2p

...
...

. . .
...

Rp1 Rp2 · · · Rp

.

Finally, the assumption for each measurement noise ni(k) (which is the same as na
i (k) in

this section) of the system (3) can be written as follows:

ni(k) ∼ N(0, Ri),

E[ni(k)] = 0, E[ni(k)n>i (t)] = Riδkt,

E[ni(k)n>j (t)] = Rijδkt, if i 6= j,

E[ni(k)d>(t)] = 01×n.

The local observer is designed by a Kalman filter for the observable subsystem (7). To
this end, let ẑi(k|k− 1) be the estimate of zi(k) based on observations from ya(0) to ya(k− 1).
Similarly, ẑi(k|k) is the estimate of zi(k) after we process the measurement ya(k) at time
k. Following the conventional notations in a Kalman filter, we use the terms Pi(k|k− 1)
and Pi(k|k) to denote the estimation error covariance of ẑi(k|k− 1) and ẑi(k|k), respectively.
Thus, We have

Pi(k|k− 1) = E[(ẑi(k|k− 1)− zi(k))(ẑi(k|k− 1)− zi(k))>],

Pi(k|k) = E[(ẑi(k|k)− zi(k))(ẑi(k|k)− zi(k))>].
(8)

Then, the Kalman filter has the following form of

Oi : ẑi(k + 1|k + 1)

= Siẑi(k|k) + Z>i Bu(k) + Ki(k + 1)
(

ya
i (k + 1)− ti

(
Siẑi(k|k) + Z>i Bu(k)

))
= (I − Ki(k + 1)ti)

(
Siẑi(k|k) + Z>i Bu(k)

)
+ Ki(k + 1)ya

i (k + 1),

(9)
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where
ẑi(k + 1|k + 1) = ẑi(k + 1|k) + Ki(k + 1)(ya

i (k + 1)− tiẑi(k + 1|k))
ẑi(k + 1|k) = Siẑi(k|k) + Z>i Bu(k)

Ki(k + 1) = Pi(k + 1|k)t>i
(

tiPi(k + 1|k)t>i + Ri

)−1

Pi(k + 1|k) = SiPi(k|k)S>i + Z>i QZi

Pi(k + 1|k + 1) = (I − Ki(k + 1)ti)Pi(k + 1|k)

(10a)

(10b)

(10c)

(10d)

(10e)

with initial value of
ẑi(0|0) = Z>i x̄0, Pi(0|0) = Z>i P0Zi.

The above Equations (10) describe the recursive form of how the state estimate ẑi, the
Kalman gain Ki, and the error covariance matrix Pi evolve. The error covariance Pi of the
i-th local observer defined in (8), is governed by Equations (10d) and (10e), which ensure
that the covariance matrix Pi(k|k) can be calculated by the following recursive form:

Li : Pi(k + 1|k + 1) = (I − Ki(k + 1)ti)(SiPi(k|k)S>i + Z>i QZi) (11)

with the initial value of
Pi(0|0) = Z>i P0Zi.

Similarly, the error cross covariance Pij of the i-th and j-th local observers can be
defined by

Pij(k|k− 1) = E[(ẑi(k|k− 1)− zi(k))(ẑj(k|k− 1)− zj(k))>],

Pij(k|k) = E[(ẑi(k|k)− zi(k))(ẑj(k|k)− zj(k))>],
(12)

and the recursive formula for Pij is derived here. To this end, define the estimation error

z̃i(k + 1|k) := ẑi(k + 1|k)− zi(k + 1)

z̃i(k + 1|k + 1) := ẑi(k + 1|k + 1)− zi(k + 1),
(13)

and we have that

z̃i(k + 1|k) =
(

Siẑi(k|k) + Z>i Bu(k)
)
−
(

Sizi(k) + Z>i Bu(k) + Z>i d(k)
)

= Siz̃i(k|k)− Z>i d(k)

z̃i(k + 1|k + 1) =
(

ẑi(k + 1|k) + Ki(k + 1)(ya
i (k + 1)− tiẑi(k + 1|k))

)
− zi(k + 1)

= (I − Ki(k + 1)ti)z̃i(k + 1|k) + Ki(k + 1)na
i (k + 1).

(14a)

(14b)

By substituting (14a) into (14b), the dynamics of the error z̃i(k|k) is obtained as

Fi : z̃i(k + 1|k + 1) = (I − Ki(k + 1)ti)Siz̃i(k|k)− (I − Ki(k + 1)ti)Z>i d(k)

+ Ki(k + 1)na
i (k + 1).

(15)

The errors z̃i(k|k) and z̃j(k|k) for i 6= j may be correlated; thus, by using (15), the
error cross covariance between z̃i(k|k) and z̃j(k|k) can be computed recursively. From the
recursive form of (15), note that z̃i(k|k) is a linear combination of elements in

{z̃i(0|0), d(0), · · · , d(k− 1), na
i (0), · · · , na

i (k)}. (16)

Therefore, by Assumption 1, we have (i) na
i (k + 1) and d(k) are orthogonal, (ii) z̃i(k|k) and

d(k) are orthogonal, and (iii) z̃i(k|k) and na
j (k + 1) are orthogonal. Using these facts, one
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can derive the recursive form of the error cross covariance between z̃i(k|k) and z̃j(k|k)
as follows:

Lij : Pij(k + 1|k + 1) = E[z̃i(k + 1|k + 1)z̃>j (k + 1|k + 1)]

= (I − Ki(k + 1)ti)
(

SiE[z̃i(k|k)z̃>j (k|k)]S>j + Z>i QZj

)
(I − Kj(k + 1)tj)>

+ Ki(k + 1)E[na
i (k + 1)na

j
>(k + 1)]K>j (k + 1)

= (I − Ki(k + 1)ti)
(

SiPij(k|k)S>j + Z>i QZj

)
(I − Kj(k + 1)tj)>

+ Ki(k + 1)RijK>j (k + 1),

(17)

with the initial value of
Pij(0|0) = Z>i P0Zj.

3.3. Optimal Information Fusion Based on Observability Decomposition

Based on the equivalence Z>i x = zi in (5) and the definition z̃i = ẑi − zi in (13), we have

ẑi = zi + z̃i = Z>i x + z̃i. (18)

Stacking Equations (18) for all i ∈ [p] leads to the following equation ofẑ1(k|k)
...

ẑp(k|k)

 =

z1(k)
...

zp(k)

+

z̃1(k|k)
...

z̃p(k|k)

 =

Z1
>

...
Zp
>

x(k) +

z̃1(k|k)
...

z̃p(k|k)

. (19)

Finally, (19) is written in a compact form as

ẑ(k|k) = Φx(k) + z̃(k|k) = Φx(k) + va(k) ∈ Rµ, (20)

where the matrix

Φ :=

Z1
>

...
Zp
>

 ∈ Rµ×n (21)

is composed of the similarity transformation matrices Zi’s and va(k) is used for a simple
notation of z̃(k|k). In Equation (20),

µ :=
p

∑
i=1

µi

denotes the size of the stacked vector.
It should be noted that all the information in (20) except the actual state x(k), are

known or accessible to us. In Section 3.1, the matrix Φ is generated from the orthonormal
basis of the observable subspaceR(G>i ) where Gi is the observability matrix given by (4).
In Section 3.2, each local observer Oi in (9) provides the state estimate ẑi for the observable
sub-state zi. Now, the stochastic properties of the last term

va(k) = z̃(k|k) =


z̃1(k|k)
z̃2(k|k)

...
z̃p(k|k)


are analyzed. First, its mean is zero because z̃i(k|k) is a linear combination of elements
in (16) by the Formula (15), and Assumption 1 ensures that every component in (16) has a
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zero mean. Second, the covariance matrix of va(k) can be obtained since the error covariance
matrix Pi is computed by each local observer Li in (11), and the error cross covariance
matrix Pij is generated by the second layer of the multi-sensor Kalman filter Lij in (17) with
collected information from local observers (see Figure 1 for the structure of the proposed
Kalman filter). In summary, we have

va(k) ∼ N
(
0µ×1, P(k|k)

)
, (22)

where

P(k|k)=


P1(k|k) P12(k|k) · · · P1p(k|k)
P21(k|k) P2(k|k) · · · P2p(k|k)

...
...

. . .
...

Pp1(k|k) Pp2(k|k) · · · Pp(k|k)

, (23)

which can be recursively computed by (11) and (17). Finally, Equation (20) depicts a linear
model with the measured data vector ẑ, the known matrix Φ, the noise vector va with a
zero-mean Gaussian distribution, and the unknown vector x to be estimated.

Based on the statistical estimation and detection theory [30,31], an elaborate derivation
process to recover the optimal estimate of x in (20), is now presented. The minimum variance
unbiased estimator (MVUE) for the data model (20) with va satisfying va ∼ N(0µ×1, P) is
introduced as follows.

Theorem 1 ([30], Theorem 4.2). For the measurement ẑ = Φx + va ∈ Rµ with x ∈ Rn and
va ∈ Rµ such that va ∼ N(0µ×1, P) for some P > 0, the minimum variance unbiased estimator
(MVUE) of x is

D : x̂MVUE =
(

Φ>P−1Φ
)−1

Φ>P−1ẑ (24)

and the corresponding covariance matrix of x̂MVUE is

Px̂MVUE =
(

Φ>P−1Φ
)−1

, (25)

which achieves the minimum covariance in the sense that Px̂MVUE ≤ Px̂ for any type of estimator x̂.

Proof. The results directly follows from the Gauss–Markov Theorem ([30], Theorem 6.1).
However, we provide a direct proof for the readers convenience, and it follows the pro-
cedure in the proof of ([24], Theorem 1) or ([25], Theorem 1). We introduce a linear
unbiased estimator

x̂ = Ωẑ

and, from the unbiased assumption, it follows that

E[x̂] = E[Ωẑ] = ΩE[Φx + va] = ΩΦE[x] = E[x].

Thus, we have
ΩΦ = In×n. (26)

Let the covariance matrix of the estimation error x̃ := x̂− x be Px. Then, the estimation
error x̃ is obtained that

x̃ = x̂− x = Ωẑ− x = Ωẑ−ΩΦx = Ω(ẑ−Φx) = Ωva,

and the covariance matrix Px can be computed as

Px = E
[

x̃x̃>
]
= E

[
Ωvava>Ω>

]
= ΩE

[
vava>

]
Ω> = ΩPΩ>.
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In order to find the minimum variance estimator, set the trace of the covariance matrix
Px as the performance index

J := tr(Px) = tr
(

ΩPΩ>
)

.

The Lagrangian [32] associated with J becomes

L = J + 2tr(Λ(ΩΦ− In×n))

where Λ ∈ Rn×n is a matrix representing the Lagrange multipliers. By solving

∂L
∂Ω

= On×µ,

we have
ΩP + Λ>Φ> = On×µ. (27)

Combining (26) and (27) results in the following equation of

[
Ω Λ>

][ P Φ
Φ> On×n

]
=
[
On×µ In×n

]
.

Therefore, the matrix inversion lemma ([33], Section 2.3) yields the solution as

[
Ω Λ>

]
=
[
On×µ In×n

][ P Φ
Φ> On×n

]−1

=
[(

Φ>P−1Φ
)−1

Φ>P−1 −
(
Φ>P−1Φ

)−1
]
.

Thus, we have Ω =
(
Φ>P−1Φ

)−1
Φ>P−1. Finally, the MVUE of x in (24), is obtained

from x̂MVUE = Ωẑ =
(
Φ>P−1Φ

)−1
Φ>P−1ẑ, and the corresponding covariance matrix

in (25) is computed by Px̂MVUE = ΩPΩ> =
(
Φ>P−1Φ

)−1
.

Theorem 1 explains how the optimal estimate is computed. The information fusion
center D calculates the MVUE by (24) and its covariance by (25). In summary, the whole
structure of the decentralized multi-sensor information fusion Kalman filter is shown in
Figure 1. The first layer is composed of the local observer Oi, which generates the estimate
ẑi and the Kalman gains Ki as given in (9) and (10). A part of the local observer Oi, denoted
as Li, provides the error covariance matrix Pi. The second layer Lij collects the Kalman gain
Ki’s from the first layer and gives the error cross covariance matrix Pij by (17). Finally, the
third layer operates as an optimal information fusion center D as described in Theorem 1
and computes the optimal estimate with the minimum covariance.

Figure 1. Structure of decentralized multi-sensor information fusion Kalman filter.
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Remark 1. Note that Gauss–Markov Theorem ([30], Theorem 6.1) gives the best linear unbiased
estimator (BLUE) for the measurement ẑ = Φx + va where va is a random variable, whose
probability density function (PDF) is not restricted to a Gaussian distribution, with a zero mean
and covariance P. Since the BLUE is also the MVUE for Gaussian data, the results of Theorem 1
also follow directly from the Gauss–Markov Theorem. The state estimate x̂MVUE given in Theorem 1
is the optimal estimate since it achieves the minimum variance with an unbiased mean. A special
case of Theorem 1 is considered in ([24], Theorem 1) and ([25], Theorem 1) for an information
fusion scheme; however, the scheme in [24,25] may not be successful for a system whose local
systems with a single sensor are not observable because the covariance matrix P could diverge
in that case, whereas the covariance matrix P does not diverge in our scheme due to the Kalman
observability decomposition.

4. Attack Resilient and Secure State Estimation by Decentralized Kalman Filter
4.1. Effect of Sparse Sensor Attack on Information Fusion Kalman FIlter

In the previous section, we assumed that all sensors were attack-free, that is, a(k) ≡ 0.
Hence, na

i (k) and ya
i (k) in (3) and (7) were regarded as non-attacked noise ni(k) and output

yi(k), respectively. The effects of a sparse sensor attack satisfying Assumption 2 on the
information fusion Kalman filter developed in Section 3 are investigated in this subsection.

By linearity, the Kalman filter in (10) can be divided into two parts with ẑi =: gi + ei as in

gi(k + 1|k + 1) := gi(k + 1|k) + Ki(k + 1)(yi(k + 1)− tigi(k + 1|k)),
ei(k + 1|k + 1) := ei(k + 1|k) + Ki(k + 1)(ai(k + 1)− tiei(k + 1|k)),

gi(k + 1|k) := Sigi(k|k) + Z>i Bu(k),

ei(k + 1|k) := Siei(k|k).

(28a)

(28b)

(28c)

(28d)

Note that gi(k + 1|k + 1) and ei(k + 1|k + 1) have the same dynamics with (10a), while the
incoming signal ya

i (k + 1) is divided into two parts with yi(k + 1) and ai(k + 1) assigned to
the dynamics of gi(k + 1|k + 1) and ei(k + 1|k + 1), respectively. Similarly, gi(k + 1|k) and
ei(k + 1|k) have the same dynamics with (10b), whereas the incoming signal u(k) is solely
assigned to the dynamics of gi(k + 1|k). By setting the initial conditions as

gi(0|0) = ẑi(0|0) = Z>i x̄0 and ei(0|0) = 0µi×1,

it easily follows from (10a) and (10b) that

ẑi(k + 1|k + 1) = gi(k + 1|k + 1) + ei(k + 1|k + 1),

ẑi(k + 1|k) = gi(k + 1|k) + ei(k + 1|k).
(29)

Finally, the local observer Oi in (9) is divided into Oy
i and Oa

i , as follows:

Oy
i : gi(k + 1|k + 1) = (I − Ki(k + 1)ti)

(
Sigi(k|k) + Z>i Bu(k)

)
+ Ki(k + 1)yi(k + 1),

Oa
i : ei(k + 1|k + 1) = (I − Ki(k + 1)ti)Siei(k|k) + Ki(k + 1)ai(k + 1).

(30a)

(30b)

Now, define the attack-free estimation error

vi(k + 1|k + 1) := gi(k + 1|k + 1)− zi(k + 1),

vi(k + 1|k) := gi(k + 1|k)− zi(k + 1),
(31)
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and we have that

vi(k + 1|k) =
(

Sigi(k|k) + Z>i Bu(k)
)
−
(

Sizi(k) + Z>i Bu(k) + Z>i d(k)
)

= Sivi(k|k)− Z>i d(k)

vi(k + 1|k + 1) =
(

gi(k + 1|k) + Ki(k + 1)(yi(k + 1)− tigi(k + 1|k))
)
− zi(k + 1)

= (I − Ki(k + 1)ti)vi(k + 1|k) + Ki(k + 1)ni(k + 1)

= (I − Ki(k + 1)ti)Sivi(k|k)− (I − Ki(k + 1)ti)Z>i d(k)

+ Ki(k + 1)ni(k + 1),

(32a)

(32b)

(32c)

which is the same as (14) and (15) with na
i replaced by ni. By (29) and (31), the total

state-estimation error defined in (13) satisfies

z̃i(k + 1|k + 1) = vi(k + 1|k + 1) + ei(k + 1|k + 1), (33)

and, from (30b) and (32c), its dynamic equation is given as follows:

Fi : z̃i(k + 1|k + 1) = (I − Ki(k + 1)ti)Siz̃i(k|k)− (I − Ki(k + 1)ti)Z>i d(k)

+ Ki(k + 1)ni(k + 1) + Ki(k + 1)ai(k + 1),
(34)

which is a rewrite of (15) using the fact na
i = ni + ai.

For notational simplicity, ẑi(k|k), vi(k|k), and ei(k|k) are denoted by ẑi(k), vi(k), and
ei(k), respectively. Then, Equation (19) becomesẑ1(k)

...
ẑp(k)

 =

Z1
>

...
Zp
>

x(k) +

v1(k)
...

vp(k)

+

e1(k)
...

ep(k)

, (35)

which can be written in a compact form as

ẑ(k) = Φx(k) + v(k) + e(k) ∈ Rµ. (36)

The above Equation (36) is nothing but (20) with va replaced by v + e. The properties of
v are exactly identical with those of va in (22) because the derivation in (22) is under the
assumption of a ≡ 0 meaning e ≡ 0 in this case. Thus, we have

v(k) ∼ N
(
0µ×1, P(k)

)
, (37)

where P(k) simply denotes P(k|k) in (23). The attack-induced signal e(k) = [e>1 (k), · · · , e>p (k)]>

evolves according to Equation (30b) (or equivalently (28b) and (28d)) with an initial value
of ei(0) = ei(0|0) = 0µi×1. Therefore, we have ei ≡ 0µi×1 for the healthy sensor with
ai ≡ 0, while ei 6≡ 0µi×1 generally holds for the attacked sensor with ai 6≡ 0. Finally, the
stacked error vector e ∈ Rµ partitioned by the sequence {µi}, is ({µi}-stacked) q-sparse by
Assumption 2.

4.2. Detection of Sparse Sensor Attack

In the previous subsection, the measurement data have the form ẑ = Φx + v + e ∈ Rµ

with unknown signals x, v, and e where the noise-induced signal v can be considered as a
random variable whose distribution is N(0µ×1, P) and the attack-induced signal e is ({µi}-
stacked) q-sparse. To investigate the properties of the matrix Φ in the measurement data,
we borrow the definition of ({µi}-stacked) q-error detectability and its characterization
from [15]. There is a slight modification in the following Definition 1 and Lemma 1 from [15].
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They do not append any additional zeros, whereas [15] adds additional zeros to match the
size of all partitioned vectors and matrices.

Definition 1 ([15], Definition 1). [-15]For a finite sequence {µi} = {µ1, µ2, · · · , µp} with
µ = ∑p

i=1 µi, a coding matrix Φ ∈ Rµ×n is said to be ({µi}-stacked) q-error detectable if, for all
x, x′ ∈ Rn and ({µi}-stacked) q-sparse e ∈ Rµ such that Φx + e = Φx′, it holds that x = x′.

Accordingly, the matrix Φ ∈ Rµ×n is not ({µi}-stacked) q-error detectable if and only
if there exist x, x′ ∈ Rn satisfying x 6= x′, and ({µi}-stacked) q-sparse e ∈ Rµ such that
Φx + e = Φx′. In other words, the matrix Φ ∈ Rµ×n is ({µi}-stacked) q-error undetectable
if and only if there exist a non-zero xe ∈ Rn and ({µi}-stacked) q-sparse e ∈ Rµ such that
Φxe = e. Typically, in terms of vectors, the vector e ∈ Rµ is said to be undetectable with
respect to Φ ∈ Rµ×n if e = Φxe ∈ Rµ for some xe ∈ Rn.

Lemma 1 ([15], Proposition 1). For a finite sequence {µi} = {µ1, µ2, · · · , µp} with µ = ∑p
i=1 µi

and a matrix Φ ∈ Rµ×n, the followings are equivalent:
(i) The matrix Φ ∈ Rµ×n is ({µi}-stacked) q-error detectable.
(ii) For every set J ⊂ [p] satisfying |J | ≥ p− q, Φ

I{µi}
J

has full column rank.

(iii) For any x ∈ Rn where x 6= 0n×1, the vector Φx ∈ Rµ is not ({µi}-stacked) q-sparse.

With the estimate x̂ of x obtained by MVUE of (24) in Theorem 1, we can calculate
the estimated output Φx̂ and generate a residual signal r, which is a difference between
the real measurement and the estimated output, that is, r := ẑ−Φx̂. Then, the residual
r becomes another random variable whose distribution is also Gaussian. Finally, the
mean and covariance of the Gaussian distributed random variable r is computed in the
following theorem.

Theorem 2. For the measurement ẑ = Φx + v + e ∈ Rµ where Φ ∈ Rµ×n has full column rank
and v satisfies v ∼ N(0µ×1, P) with P > 0, let x̂ = Ψẑ =

(
Φ>P−1Φ

)−1
Φ>P−1ẑ and

r := ẑ−Φx̂ = (Iµ×µ −ΦΨ)ẑ = (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)ẑ, (38)

where Ψ := (Φ>P−1Φ)−1Φ>P−1. Then, the residual r is Gaussian distributed with mean
(Iµ×µ −ΦΨ)e and covariance (Iµ×µ −ΦΨ)P,

r ∼ N
(
(Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)e, P−Φ(Φ>P−1Φ)−1Φ>

)
. (39)

Furthermore, e = Φxe ∈ Rµ for some xe ∈ Rn if and only if the mean of r, E[r](= (Iµ×µ−ΦΨ)e),
satisfies E[r] = 0µ×1. In other words, e is undetectable with respect to Φ if and only if E[r] = 0µ×1.

Proof. First, the mean of r is computed as follows.

E[r] = E[(Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)ẑ]

= (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)E[Φx + v + e]

= (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)(Φx + e)

= (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)e = (Iµ×µ −ΦΨ)e

(40)

Second, because it easily follows that

r− E[r] = (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)(ẑ− e)

= (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)(Φx + v)

= (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)v = (Iµ×µ −ΦΨ)v,
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the covariance matrix is calculated as

E[(r− E[r])(r− E[r])>] = E[(Iµ×µ −ΦΨ)vv>(Iµ×µ −ΦΨ)>]

= (Iµ×µ −ΦΨ)E[vv>](Iµ×µ −ΦΨ)> = (Iµ×µ −ΦΨ)P(Iµ×µ −ΦΨ)>

= (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)P(Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)>

= P−Φ(Φ>P−1Φ)−1Φ> = (Iµ×µ −ΦΨ)P.

Moreover, note that

E[r] = (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)E[ẑ]

because of (40), and
E[ẑ] = E[Φx + v + e] = Φx + e.

Since Φ(Φ>P−1Φ)−1Φ>P−1 is a projection matrix and it projects E[ẑ] onto the range space of
Φ, R(Φ), we have E[ẑ] = Φx + e /∈ R(Φ) if and only if E[ẑ] 6= Φ(Φ>P−1Φ)−1Φ>P−1E[ẑ].
This implies that e /∈ R(Φ) if and only if (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)E[ẑ] 6= 0µ×1. This
completes the proof.

Theorem 2 clarifies the mean and covariance of the Gaussian random variable r, and
further, characterization of undetectable attacks with statistical analysis is also given. Now,
one can derive a detection criterion of ({µi}-stacked) q-sparse errors based on the property
of the residual signal r, assuming that Φ ∈ Rµ×n is ({µi}-stacked) q-error detectable and
that e ∈ Rµ is actually ({µi}-stacked) q-sparse. This detection strategy is summarized in
the following theorem.

Theorem 3. For a finite sequence {µi} = {µ1, µ2, · · · , µp} with µ = ∑p
i=1 µi and the measure-

ment ẑ = Φx + v + e ∈ Rµ where Φ ∈ Rµ×n is ({µi}-stacked) q-error detectable, e ∈ Rµ is
({µi}-stacked) q-sparse, and v ∈ Rµ satisfies v ∼ N(0µ×1, P) with P > 0, let

r = ẑ−Φx̂ = ẑ−ΦΨẑ = (Iµ×µ −ΦΨ)ẑ = (Iµ×µ −Φ(Φ>P−1Φ)−1Φ>P−1)ẑ

be given. Then, e = 0µ×1 if and only if E[r] = 0µ×1. Moreover, when e = 0µ×1, the vector x is
exactly recovered by the expectation value of x̂ = Ψẑ = (Φ>P−1Φ)−1Φ>P−1ẑ, that is, x = E[x̂],
which means that x̂ is an unbiased estimate of x.

Proof. From Theorem 2, the ({µi}-stacked) q-sparse e satisfies e = Φxe ∈ Rµ for some
xe ∈ Rn if and only if E[r] = 0µ×1. However, any non-zero e = Φxe ∈ Rµ for some xe ∈ Rn

is not ({µi}-stacked) q-sparse by Lemma 1. (iii) since Φ ∈ Rµ×n is ({µi}-stacked) q-error
detectable. Therefore, the ({µi}-stacked) q-sparse e = Φxe ∈ Rµ should be zero, and the
result directly follows. Furthermore, the property of an unbiased estimate (with minimum
variance) is easily obtained from Theorem 1.

From the observation of Theorems 2 and 3, the problem of detecting a non-zero ({µi}-
stacked) q-sparse error signal e with a ({µi}-stacked) q-error detectable coding matrix
Φ ∈ Rµ×n can be rephrased as: Given the residual signal r, which comes from the Gaussian
distribution N(E[r], P − Φ(Φ>P−1Φ)−1Φ>), determine if E[r] = 0µ×1 or E[r] 6= 0µ×1.
Therefore, the statistical decision theory [31] is helpful in this situation. More precisely, the
χ2 test for fault detection [22,23], which is widely used to detect unwanted error signals,
such as faults or attacks, can be applied.

One can simply apply the χ2 test to detect the presence of error signals in the
({µi}-stacked) measurement ẑ given by (36), and its operating scheme is summarized
in Algorithm 1. Initially, the attack detection alarm indicator f is set to 0, and then the resid-
ual r is computed according to Equation (38). Without any error signal (that is, e = 0µ×1),
the residual r follows a Gaussian distribution N(0, P−Φ(Φ>P−1Φ)−1Φ>), which is shown
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in (39). Now, define the standardized residual ζ :=
(

P−Φ(Φ>P−1Φ)−1Φ>)
)− 1

2 r whose
distribution becomes N(0µ×1, Iµ×µ). Thus, the 2-norm of ζ denoted by g := ζ>ζ is an
observation from a random variable g, which satisfies a χ2 distribution with µ degrees of
freedom (DOF),

g ∼ χ2
µ.

This means that g cannot be far away from zero. Finally, when g is greater than a threshold
∆TH , the attack detection alarm is triggered by setting f = 1. Here, ∆TH is the predeter-
mined threshold value, and it decides the probability of false alarm and the probability of
error detection. For example, when the threshold ∆TH is chosen such that

∫ ∆TH

0
pg(x)dx = 1− δ, (41)

where pg(x) denotes the PDF of the χ2
µ distribution, the probability of false alarm becomes

δ. As the probability of false alarm δ becomes smaller, the probability of error detection
also decreases, which implies that there is a trade-off between the small false alarm and the
high error detection ratio. Thus, one needs to choose ∆TH as a good compromise between
these two conflicting requirements.

Algorithm 1 Detection scheme based on the χ2 test

Input: ẑ
Output: f
Initialization: f = 0

1: x̂MVUE = (Φ>P−1Φ)−1Φ>P−1ẑ
2: r = ẑ−Φx̂MVUE

3: ζ =
(

P−Φ(Φ>P−1Φ)−1Φ>)
)− 1

2 r
4: g = ζ>ζ
5: if g ≤ ∆TH then
6: f = 0
7: else if g > ∆TH then
8: f = 1
9: end if

4.3. Secure State Estimation under a Sparse Sensor Attack

In this subsection, an attack-resilient and secure state estimation scheme, which re-
constructs the optimal estimate for the state x under Assumptions 1–3, is developed. First,
characterization of the matrix Φ defined in (21) under Assumption 3 is given as follows.

Lemma 2 ([15], Proposition 1,2,3,6). For a finite sequence {µi} = {µ1, µ2, · · · , µp} with
µi = rank(Gi) for i ∈ [p] where Gi is the observability matrix given in (4), the followings
are equivalent:
(i) The pair (A, C) is 2q redundant observable.
(ii) The matrix Φ is ({µi}-stacked) 2q-error detectable.
(iii) For every set J ⊂ [p] satisfying |J | ≥ p− 2q, Φ

I{µi}
J

has full column rank.

(iv) The pair (A, C) is observable under q-sparse sensor attacks.

Note that the redundancy for observability is 2q, which is twice the sparsity of the
attack signal. This is the key point of constructing the state estimation algorithm. We can
examine each subset Jk ⊂ [p] of sensors whose size is p− q. In other words, we have (pq)

number of subsets J1,J2, · · · ,J(pq) where Jk ⊂ [p] and |Jk| = p− q for k = 1, 2, · · · , (pq).
Since Φ is ({µi}-stacked) 2q-error detectable by Assumption 3 and Lemma 2.(ii), it easily
follows that Φ

I{µi}
Jk

is q-error detectable for Jk with |Jk| = p− q. This means that, even after
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removing any q sensors, the remaining outputs still have q redundancy for observability.
Therefore, the detection scheme of Theorem 3, which relies on the ({µi}-stacked) q-error
detectability of the coding matrix, can be applied for each subset Jk ⊂ [p] satisfying
|Jk| = p− q.

The configuration of the secure state estimator, which replaces the information fusion
center D in Figure 1, is sketched in Figure 2, and its operation is described in Algorithm 2.
Before explaining the operation, let Ψ denote (Φ>P−1Φ)−1Φ>P−1 where Φ and P are
given in (21) and (23), respectively. Furthermore, the notation for a sub-matrix is slightly
abused for simplicity. For example, PJ , ΦJ , and ΨJ denote

P
I{µi}
J , I{µi}

J
, Φ

I{µi}
J

, and

(
Φ>
I{µi}
J

(
P
I{µi}
J ,I{µi}

J

)−1
Φ
I{µi}
J

)−1

Φ>
I{µi}
J

(
P
I{µi}
J ,I{µi}

J

)−1
,

respectively, where I{µi}
J :=

⋃
j∈J

{
(∑j−1

i=1 µi) + 1, (∑j−1
i=1 µi) + 2, · · · , ∑j

i=1 µi

}
. Recall that

P
I{µi}
J ,I{µi}

J
denotes the matrix obtained from P by eliminating all i-th rows and all j-th

columns such that i 6∈ I{µi}
J and j 6∈ I{µi}

J .

Figure 2. Configuration of the resilient estimation scheme with Gaussian disturbance/noise.

Initially, an attack-free index set J ∗, a state estimate x̂, a standardized residual’s
norm g, and a fault alarm signal f , are set to [p], Ψẑ, 0, and 0, respectively. The algorithm
continually checks if there is any attack in the index set J ∗ based on Algorithm 1. For
the given index set J ∗, the algorithm essentially calculates the MVUE x̂ = ΨJ ∗ ẑJ ∗ , the

residual r = ẑJ ∗ − ΦJ ∗ x̂, the standardized residual ζ = (PJ ∗ −ΦJ ∗ΨJ ∗PJ ∗)
− 1

2 r, and
its 2-norm g = ζ>ζ only with the measurement and covariance data from the subset
J ∗ ⊂ [p]. Recall from Theorem 2 that, if ej = e

I{µi}
j

= 0µj×1 for all j ∈ J ∗, we have

r ∼ N(0µJ ∗×1, PJ ∗ −ΦJ ∗ΨJ ∗PJ ∗) where µJ ∗ := ∑j∈J ∗ µj =
∣∣∣I{µi}
J ∗

∣∣∣, and thus, g = ζ>ζ is

an observation from a random variable gJ ∗ , which satisfies a χ2 distribution with µJ ∗ DOF,

gJ ∗ ∼ χ2
µJ ∗

. (42)

Therefore, g is used to detect the presence of attack in the subset J ∗ by the χ2 test.
We compare g with the threshold ∆J

∗
TH , which is designed before running the algorithm
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and determines the probability of false alarm and the probability of error detection. If
g ≤ ∆J

∗
TH , the index set J ∗ is declared to be attack-free by setting f = 0 and the algorithm

simply maintains the selected optimal index set J ∗. Otherwise, when g is greater than the
threshold ∆J

∗
TH , the attack detection alarm is triggered by setting f = 1, and the algorithm

starts the process of searching new attack-free index set.

Algorithm 2 Operation of the resilient estimation with Gaussian disturbance/noise

Input: ẑ1, ẑ2, · · · , ẑp, P1, P12, · · · , Pp(p−1), Pp
Output: J ∗, x̂, g, f
Initialization: J ∗ = [p], x̂ = Ψẑ, g = 0, f = 0

1: while system (1) is running do
2: x̂ = ΨJ ∗ ẑJ ∗
3: r = ẑJ ∗ −ΦJ ∗ x̂

4: ζ = (PJ ∗ −ΦJ ∗ΨJ ∗PJ ∗)
− 1

2 r
5: g = ζ>ζ

6: if g ≤ ∆J
∗

TH then
7: f = 0
8: else if g > ∆J

∗
TH then

9: f = 1
10: for J ⊂ [p] satisfying |J | = p− q do
11: x̂J = ΨJ ẑJ
12: rJ = ẑJ −ΦJ x̂J

13: ζJ = (PJ −ΦJΨJ PJ )
− 1

2 rJ

14: gJ = ζJ
>

ζJ

15: end for
16: J ∗ = arg max

J⊂[p]
|J |=p−q

pgJ

(
gJ
)

17: end if
18: end while

In order to find a new attack-free index set and, consequently, to recover the state x
from the new index set, we search all subsets Jk’s in [p] whose size is p− q. For a detailed
explanation, let {

J1,J2, · · · ,J(pq)
}

be the set {J ⊂ [p] : |J | = p− q}. For each subset Jk where k ∈
[
(pq)
]
, the computing

module Ck calculates the MVUE x̂Jk = ΨJk ẑJk , the residual rJk = ẑJk − ΦJk x̂Jk , the

standardized residual ζJk =
(

PJk −ΦJkΨJkPJk
)− 1

2 rJk , and its 2-norm gJk = ζJk
>

ζJk

only with the measurement and covariance data from the subset Jk. Now, the new optimal
subset J ∗ is decided by the maximum likelihood (ML) decision rule with the values of
gJk ’s, and the selector S chooses the optimal index set J ∗ by the ML decision rule. To this
end, we wish to distinguish between (pq) hypotheses, H1,H2, · · · ,H(pq)

, which are given
as follows:

Hk : the set Jk is attack-free, i.e., ej = e
I{µi}
j

= 0µj×1 for all j ∈ Jk.

Let us denote gk as a random variable such that gJk is a single observation from gk,
whereas gJk denotes a random variable such that

gJk ∼ χ2
µJk
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with µJk := ∑j∈Jk µj =
∣∣∣I{µi}
Jk

∣∣∣ and pgJk
is the PDF of the χ2

µJk
distribution. Note that,

if the sensors indexed by Jk are attack-free, then the random variable gk as well as gJk
follows the χ2 distribution with µJk DOF. The ML decision rule choose the hypothesisHk∗

and the corresponding optimal index set Jk∗ that maximize the likelihood pgk

(
gJk ;Hk

)
,

which is the PDF of gk being equal to the observation gJk under the hypothesisHk (that
is, under the condition that there is no attack signal in the measurements indexed by Jk).
Therefore, we have

J ∗ = Jk∗ = arg max
k∈[(pq)]

pgk

(
gJk ;Hk

)
= arg max

J⊂[p]
|J |=p−q

pgJ

(
gJ
)

,

where the last equality comes from the fact that gk ∼ χ2
µJk

under the hypothesisHk so that

it follows the PDF of the χ2 distribution. Therefore, from the index set Jk∗ corresponding
to the ML hypothesisHk∗ , the MVUE of the newly selected optimal index set J ∗(= Jk∗),
x̂J
∗
, becomes the final suboptimal estimate of x.

Remark 2. The proposed algorithm selects the subset of sensors J ∗ ⊂ [p], which is most likely to
be attack-free with |J ∗| = p− q. Moreover, if the selected set J ∗ is actually attack-free, it gives
the minimum variance with unbiased estimation. In short, Algorithm 2 generates a state estimate,
which is most likely to have minimum variance with unbiased mean. However, we say that it is
a suboptimal estimate of x instead of the optimal estimate because the decentralized multi-sensor
information fusion Kalman filter cannot ensure to achieve the centralized optimal covariance even
without attack as illustrated in ([24], Section 5).

Remark 3. Note that Algorithm 2 needs to prepare (pq) candidates and compare all those candidates.
The time complexity of the error correction algorithm depends on the number of combinations
(pq), and thus, it has the polynomial time complexity of O(pmin{q, p−q}). Therefore, the proposed
algorithm may not be scalable for very large p with q ≈ p/2 due to the combinatorial nature of the
algorithm. The time complexity could be reduced by imposing additional restrictive assumptions as
done in [20,21] which reformulate the problem into a convex optimization problem. However, in our
scheme demanding minimal assumptions, the comibinatorial algorithm only needs to operate when
an attack is detected. In addition, most of the time, only the attack detection algorithm requiring
a small amount of computation, is executed. Another advantage of the proposed algorithm is that
its space complexity is linear with the number of sensors p, that is, O(p). The total memory size
required for local observers is ∑p

i=1 µi ≤ np, whereas if all possible combinations of estimator
candidates are configured as real observers, the observer’s size becomes n(pq).

5. Simulation Results

We consider a motor-controlled multi-DOF torsion system [34] as depicted in Figure 3.
A continuous-time state-space model of the system when the control input is the torque τ
(N·m) generated by the servo motor is given by

P ′c :

{
ẋ(t) = A′cx(t) + B′cτ(t) + d(t)

y(t) = Ccx(t) + n(t)
(43)
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with the matrices

A′c =



0 1 0 0 0 0
− k1

J1
− b1

J1

k1
J1

0 0 0
0 0 0 1 0 0
k1
J2

0 − k1+k2
J2

− b2
J2

k2
J2

0
0 0 0 0 0 1
0 0 k2

J3
0 − k2

J3
− b3

J3


, B′c =



0
1
J1
0
0
0
0


,

Cc =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 −1 0 0 0
0 0 1 0 −1 0

,

(44)

where

x :=



θ1
θ̇1
θ2
θ̇2
θ3
θ̇3

 and y :=


θ1
θ2
θ3

θ1 − θ2
θ2 − θ3


are the state variable and the output measurement, respectively. Here, the unit for angular
positions θ’s and the unit for angular velocities θ̇’s are (rad) and (rad/s), respectively. The
parameters are borrowed from [34], and we have that J1 = 0.0022, J2 = J3 = 0.000545 (kg·m2)
for the moment of inertia, b1 = 0.015, b2 = b3 = 0.0015 (N·m/(rad/s)) for the viscous
damping ratio, and k1 = k2 = 1 (N·m/rad) for the flexible stiffness.

Note that the dynamics are the same as those of the three inertia system considered in [15];
however, Figure 3 additionally considers the servo motor system given as follows:

τ =
ηgKgηmkt(u− Kgkm θ̇1)

Rm
, (45)

which generates the torque τ (N·m) from the input voltage of u (V). The parameters
for the servo system are also borrowed from [34], and we have that ηg = 0.9 for the
gearbox efficiency, Kg = 70 for the total gear ratio, ηm = 0.69 for the motor efficiency,
kt = 0.00768 (N·m/A) for the motor current torque constant, km = 0.00768 (V/(rad/s))
for the motor back electromotive force (EMF) constant, and Rm = 2.6 (Ω) for the motor
armature resistance. Thus, the final continuous-time plant with the voltage u (V) as an
input signal is obtained as

Pc :

{
ẋ(t) = Acx(t) + Bcu(t) + d(t)

y(t) = Ccx(t) + n(t)
(46)

with the matrices

Ac =



0 1 0 0 0 0

− k1
J1
− b1

J1
− ηgK2

gηmktkm
Rm

1
J1

k1
J1

0 0 0
0 0 0 1 0 0
k1
J2

0 − k1+k2
J2

− b2
J2

k2
J2

0
0 0 0 0 0 1
0 0 k2

J3
0 − k2

J3
− b3

J3


, Bc =



0
ηgKgηmkt

Rm
1
J1

0
0
0
0


, (47)
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and the same Cc as in (44). Finally, the zero-order hold equivalent model of (46) is used for
the discrete-time model P in (1), and the matrices are calculated by

A := eAcTs , B :=
( ∫ Ts

0
eAcτdτ

)
Bc, C := Cc (48)

with the sampling time of Ts = 0.002 (s). By examining all possible combinations of sensors,
it follows that the system P in (1) with A and C given in (48) is 2-redundant observable,
and hence it is observable under 1-sparse sensor attack by Lemma 2.

Figure 3. Motor control system of multi-DOF torsion modules.

In addition, the disturbance d and the noise n are assumed to satisfy Assumption 1 with

Q = 0.0012 ×



1 0 0 0 0 0
0 9 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, R = 0.0012 ×


1 0 0 1 0
0 1 0 −1 1
0 0 1 0 −1
1 −1 0 3 −1
0 1 −1 −1 3

,

and the initial state x(0) of the system (46) satisfies x(0) ∼ N(x̄0, P0) as stated in Assump-
tion 1 with the mean x̄0 and the covariance P0 given by

x̄0 =



0
0
0
0
0
0

, P0 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

The simulation is performed under 1-sparse sensor attack on the third sensor with the
signal shown in Figure 4b, which is made to mimic the motion pattern by the natural frequency
as observed in Figure 4c,d. Moreover, the attack starts at 2 second, which is the same time when
the square pulse input u is injected into the system as described in Figure 4a. Even under the
attack signal, the resilient state estimation with multi-sensor information fusion Kalman filter
based on the observability decomposition developed in Sections 3 and 4 works well. The states
are recovered with a small error as demonstrated in Figure 4c,d, which are the state estimation
results for θ3 and θ̇3, respectively.
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Figure 4. Plot of signals in a multi-DOF torsion system.
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In this simulation, the threshold ∆TH for the attack detection is chosen by δ = 0.05 in (41)
so that the cumulative density function (CDF) satisfies

∫ ∆TH
0 pgJ ∗ (x)dx = 0.95 where pgJ ∗ is the

PDF of a random variable gJ ∗ , which satisfies a χ2 distribution with µJ ∗ DOF, as stated in (42).
Since Figure 4e shows that the 2-norm of the standardized residual, g, exceeds the threshold
∆TH at the instant of 2 second, which is the initiation time of the attack, it is judged that there
is an attack (the lines from 8 to 9 in Algorithm 2) and the estimation scheme begins to search
the indices of attack-free sensors (the lines from 10 to 16 in Algorithm 2). As a result of the
search algorithm, a new set of sensor indices is found by the ML decision rule (the line 16 in
Algorithm 2), and the attacked third senor is excluded from 2 second as depicted in Figure 4f.

6. Conclusions

In this paper, the multi-sensor information fusion Kalman filter proposed in [24,25]
was improved using the observability decomposition to ensure the convergence of the error
covariance matrix of each local observer. The local observer of a decentralized Kalman
filter with only a single sensor was designed for an observable subspace instead of the
entire n-dimensional state vector without any global information. Then, the proposed
decentralized information fusion Kalman filter was applied to the secure state estimation
problem where some of sensors were compromised by a malicious attacker.

To cope with the zero-mean Gaussian distributed disturbances/noises, a local Kalman
filter replaced the partial Luenberger observer designed in [15], where bounded distur-
bances/noises were considered in the state estimation problem under sparse sensor attacks.
When there was no attack, the proposed algorithm guaranteed an optimal state estimate in
the sense of minimum variance, and it generated a state estimate that was most likely to
have the minimum variance with an unbiased mean in the presence of sparse sensor attacks.

The proposed algorithm can be applied to cyber-physical systems, including complex
sensor networks operating based on linear dynamics under sparse sensor attacks as well
as Gaussian disturbances/noises. We imposed the minimal assumption of the redundant
observability, which is known to be the equivalent condition to solve the problem. Fur-
thermore, the computational time was alleviated by running only a relatively light attack
detection scheme for most of the execution time, and the memory size of the observer was
reduced by constructing local observers only for observable subspaces.

One possible direction of future research is to develop a distributed attack-resilient
state estimator. While this paper proposed a decentralized Kalman filter scheme, the fusion
center collects all the data from each sensors. Although the construction of local Kalman
filters is decentralized, the information fusion method is still centralized. Therefore, it is
necessary to develop a fully distributed attack-resilient state estimation technique for a
general sensor network without any central information fusion center.
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Abbreviations
The following abbreviations are used in this manuscript:

LTI Linear Time Invariant
i.i.d. independent and identically distributed
MVUE Minimum Variance Unbiased Estimator
BLUE Best Linear Unbiased Estimator
PDF Probability Density Function
DOF Degrees Of Freedom
ML Maximum Likelihood
EMF ElectroMotive Force
CDF Cumulative Density Function
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