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Abstract: Performance of photonic devices critically depends upon their efficiency on controlling
the flow of light therein. In the recent past, the implementation of plasmonics, two-dimensional
(2D) materials and metamaterials for enhanced light-matter interaction (through concepts such
as sub-wavelength light confinement and dynamic wavefront shape manipulation) led to diverse
applications belonging to spectroscopy, imaging and optical sensing etc. While 2D materials such as
graphene, MoS2 etc., are still being explored in optical sensing in last few years, the application of
plasmonics and metamaterials is limited owing to the involvement of noble metals having a constant
electron density. The capability of competently controlling the electron density of noble metals is
very limited. Further, due to absorption characteristics of metals, the plasmonic and metamaterial
devices suffer from large optical loss. Hence, the photonic devices (sensors, in particular) require that
an efficient dynamic control of light at nanoscale through field (electric or optical) variation using
substitute low-loss materials. One such option may be plasmonic metasurfaces. Metasurfaces are
arrays of optical antenna-like anisotropic structures (sub-wavelength size), which are designated to
control the amplitude and phase of reflected, scattered and transmitted components of incident light
radiation. The present review put forth recent development on metamaterial and metastructure-based
various sensors.

Keywords: metasurface; plasmonics; gas sensor; biosensor

1. Introduction

A single event has never defined the emergence of a new and emerging field of science.
This is also true for metamaterials, a field that has gradually accumulated knowledge
through consistent and dedicated research over the past century. A major factor in the de-
velopment of antenna was technologies related to wireless communication. The scalability
and efficiency of these antennas and the simplification of underlying physical modelling
have great advantages over isolated antennas, such as reducing their size to that of the
wavelength of the light. Natural optical devices control the wave front of light such as
polarization, phase and amplitude. According to classical optics, atoms and molecules
composing the medium shape the behaviour of light in naturally occurring materials. As
a result of refractive index differences in the media, refraction, reflection and diffraction
can all be controlled. However, natural materials tend to have small deviations in their
properties when manipulated optically [1–5]. Various types and configurations of chemical,
bio, gas and refractive index optical sensors have already been reported. There are advan-
tages to both fibre-based and waveguide-based sensors. Some SPR and LSPR sensors are
growing rapidly and opening up a lot of possibilities [6–12]. Through the integration of
metasurface, a whole new world of senses can be opened up. Sensitivity can be enhanced,
detection accuracy can be improved and the size can be compacted.

Metamaterials are subwavelength periodic metallic and dielectric structures, exhibiting
properties that cannot be found in nature, which couple to the electric and magnetic
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components of incident electromagnetic fields. Over the past 15 years, this micro- and nano-
structured artificial media class has attracted considerable attention and produced ground-
breaking electromagnetic and photonic phenomena. Despite their potential, however,
the high losses and strong dispersion associated with resonant responses and the use
of metallic structures and the difficulties of fabricating 3D structures at the micro-and
nanoscale have largely prevented the effective use of metamaterials. Through lithography
and nanoimprinting, it is possible to manufacture planar metamaterials and metasurfaces
with subwavelength thickness. Wave reflection losses can be greatly reduced by applying a
very thin layer in the wave propagation direction. With metasurfaces, optical wavefronts
can be modulated into any desired shape, and functional materials can be integrated to
accomplish various objectives (e.g., altering amplitude, phase, polarisation). Moreover,
nonlinearity is greatly enhanced and enables active control. There has been increasing
interest in 2D planar metamaterials, namely metasurfaces. They can provide many of the
same phenomena as metamaterials, except that they are a fraction of a wavelength thin,
easier to fabricate, theoretically simpler to realise, and have negligible losses. It has been
used to realise many optical devices. Usually, metasurfaces engineer the wavefront of light
by abrupt phase changes [13–18].

Aside from superlensing, slow light and cloaking devices, refractive index (RI) bio-
sensing is the most realistic and representative application of them all. A change in the
RI results from biomolecular interactions occurring in analyte layers. Sensors such as
the electromagnetic (EM) RI can be used in a variety of chemical and biological sensing
applications due to their unique capabilities for sensitive and label-free biochemical assays.
The resonant EM spectrum that is dominated by the environment can be vastly tuned by
engineering individual MAs (meta-atoms) and their arrangements. This resonant property
allows variation in the scattering output spectrum, which is used to measure the RI of the
surrounding biomolecular analytes. Therefore, certain wavelengths and certain sensitivity
levels have to be designed in mass setups. Additionally, RI sensors based on metamaterial
(MM)- and metastructure (MS)-based sensing platforms have several advantages over
conventional surface plasmon polariton (SPP)-based biosensors. MM- and MS-based RI
sensors have superior performance than SPP-based sensors, primarily due to fabrication
tolerance and signal stability, as RI variation is detected through macroscopic optical
responses, mainly reflection or transmission of focused input beams [13,14]. The second
advantage of periodic MAs is lower radiative damping and a higher quality factor, provided
by interesting physical mechanisms such as plasmonically induced transparency or Fano
resonances. A single nanophotonic RI sensor can expand its capabilities if it is combined
with MM or MS. Combining multiple MAs in a unit cell or supercell can result in multiple
resonances and a broad range of slow light effects, which are difficult to achieve in SPP
sensors [19–27].

An overview of recent advances in EM MM and MS applications for various sensors
is presented in this review. Sensor applications can be divided into two major categories:
RI sensing with an optical response and MS sensing with the properties of light itself.

2. Fundamentals of Metasurfaces

MMs and MSs have centred attention of research fraternity due to their anomalous
and tuneable properties. MMs are made up of periodic subwavelength metal/dielectric
structures. These structures resonantly couple to electric and magnetic fields of the incident
electromagnetic waves. Optical properties of MMs and MSs are decided by geometrical
parameters of their constituents, called MAs. MA can be composed of one or more sub-
wavelength sized nanostructures of noble metals or high index dielectrics. Smith [28] and
Pendry [29] designed first artificial materials predicted theoretically far earlier in 1968 by
Veselago [30]. After that many new exciting functionalities have been achieved in MMs
such as negative refractive index, nearly perfect absorption, transmission and reflection
which have potential applications in superlensing, electromagnetic cloaking etc. At present,
MSs (subwavelength thick metamaterials) are replacing MMs that make it possible to
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achieve new applications such as planar lenses, generalisation of Snell’s law, ultrathin
invisibility cloaks to name a few [31–33]. They are easy to fabricate and cost effective in
comparison to MMs. They can give spatially varying optical responses (e.g., amplitude,
phase, polarisation), which are used to manipulate wavefronts into desirable shapes. Due
to their strong wavefront modulation capability in the sub-wavelength domain, various
meta-devices have been introduced in recent years, such as meta-lens, absorber, vortex
beam generator, holograms and many more. Generally, MSs are characterised into two
classes: plasmonic (metallic) and dielectric MS. In plasmonic MSs, collective oscillations
of electrons in a metal give rise to resonance, called localised surface plasmon resonance
(LSPR). Plasmonic MSs have advantages such as the ability to sense analytes directly at the
metal surface where field is confined strongly. This intense field confinement enhances the
light matter interaction with the analyte which strongly alters the spectral response. These
exciting properties make MSs a prominent candidate for sensing applications. However,
metals offer significant joule heating which can alter the property of the analyte. Further-
more, high dissipation can also give rise to low quality factor (Q-factor) in a resonator.
Q-factor is a measure of the energy stored in the resonator relative to the energy lost in
radiation or joule heating. Low Q-factor limits the detection sensitivity. To resolve the loss
issue, MSs are designed using dielectric nanoparticles which support electric and magnetic
modes based on the Mie theory. Dielectric MSs have larger Q-factor in comparison to
plasmonic MSs due to the absence of joule heating. However, the modes supported by
dielectric MAs are less localised and have larger mode volume. For the sensing applications,
dielectric MSs could be advantageous if large analyte volume is being used. Whenever
MS is illuminated with a broad light source, the wavelength corresponding to the resonant
wavelength is reflected due to the strong scattering, while the other wavelengths will pass
through. When the incident light coincides with the resonant wavelength, the near fields
of the MSs are increased in accordance with the Q-factor of the resonance. Therefore, the
interaction between incident light and analyte will enhance. Q-factor can be improved
via Fano resonance. Fano resonance is a type of resonance which results in asymmetric
line-shape. This asymmetric line-shape is due to interference between two scattering
amplitudes, one lies in the continuum state and the other lies in the discrete state. In
2007, N. I. Zheludev’s group observed Fano resonance for the first time in the microwave
frequency range using asymmetric split rings (acting as resonator) for MS [34–44]. Here,
Fano resonance is achieved by breaking the symmetry of nanostructures. In subwavelength
nanostructures, dipole moments are excited which usually have broad spectral response. By
breaking symmetry, narrow ‘dark’ modes, which exist due to the higher order oscillations,
are excited and they interact with broad ‘bright’ mode [32]. Fano resonance depends on
the degree of asymmetry of the MSs and refractive index of surrounding materials. In
Fano resonance, sharp resonance peaks with high Q-factor are observed. Due to high
Q-factor, Fano resonance MSs are seeing immense research attention. The above discussed
mechanism of MSs can be used for various optical sensing applications such as refractive
index sensing, chemical sensing, bio sensing and gas sensing.

3. Application of Metasurfaces in Analyte Sensing
3.1. Bio Sensing

MMs and MSs have opened new frontiers in many research areas. In particular, in
the sensing field, sensors based on these artificially engineered materials have an edge
due to high sensitivity and selective detection and measurement of biomarkers exploited
majorly for accurate and early diagnosis of disease conditions. MSs and MMs introduce
novel functionalities to conventional plasmonic sensors by enhancing sensitivity, limit
of detection and allowing low-cost fabrication, giving rise to hybrid sensing paradigm.
There are two primary types of plasmonic excitations, surface plasmon polariton (SPP)
and localised surface plasmon resonance (LSPR). The surface plasmon resonance (SPR)
sensors have been extensively investigated over the past few decades, resulting in many
research articles and several commercial implementations [45,46]. LSPR is produced by the



Sensors 2022, 22, 6896 4 of 29

oscillation of free electrons at confined metal (Au, Ag, Cu, Pt, etc.)–dielectric interface, such
as in metal nanoparticles, upon excitation by p-polarised light [47]. Some salient features
of plasmonic sensors include real-time monitoring of binding dynamics of biomarkers
on the device surface, reusability, fast response, straightforward sample treatments and
label-free detection at the point of care. However, conventional SPR instruments have
several limitations, including a lack of multiplexing capability and hence low throughput,
dependence on the specific binding surface, chemical inertness to metal surfaces leading
to reduced sensitivity, lack of wireless operation and risk of data misinterpretation [48].
Typically, despite the availability of different combinations of metal and dielectric materials,
substantial modulation of optical properties is not feasible, thereby lacking manoeuvra-
bility. In contrast, composite structures such as metamaterial and MS-based structures
with negative permittivity, permeability and perfect absorption, can be utilised to tailor
the optical properties near the metal-dielectric interface [49]. Plasmonic MS-based sensors
follow the fundamentals of optical properties near the MS-dielectric boundary. Russian
physicist Victor Veselago first introduced the theoretical approach of negative refractive
index (RI) material in 1968 [28]. The MM-based RI sensor was experimentally demon-
strated at microwave frequency in 2000 [31]. The MM-based plasmonic biosensor has been
successfully implemented in 2D and 3D nanostructures for different bio-analyte detection.
These sensors have drawn much attention due to their ultrahigh sensitivity compared to
conventional plasmonic biosensors [50]. Plasmonics and their meta configurations have
been utilised to detect a variety of viruses, including hepatitis B [51], Zika Virus [52], HIV
DNA [53], SARS-CoV-2 [54] and malaria [55]. This section presents a review of recent
meta-surfaced and meta-structured sensors for biosensing applications. This section is
subdivided into subsections based on the type of metastructure/metasurfaces used for
biosensing applications. The advantages and disadvantages (where applicable) of various
biosensors are then compared in Table 1 at the end of this section.

3.1.1. LC Resonator-Based Biosensors in THz/GHz Regime

Plasmonic MSs are composed of novel metals and tailoring their optical and geometric
properties will allow the detection of biomarkers and biomolecules with high sensitivity.
Such structures that operate in the terahertz/gigahertz (THz/GHz) frequency region, are
suitable for label-free and contactless sensing of different viruses, bacteria and cancer
biomarkers. The MM-based plasmonic sensor is generally modelled as an LC circuit, where
L stands for inductance and C stands for capacitance. The target analytes and biomolecules
bind to the nanoscale gaps of the MS, exhibiting a shift in the resonance frequency. This shift
in frequency/wavelength depends on the counts, concentration and binding properties
of biomolecules at the metallic surface. For instance, a MM-based plasmonic sensor was
proposed by Lee et al. to detect biotin and streptavidin. A split ring resonator (SRR)
was fabricated on a printed circuit board (PCB) with copper (Cu), nickel (Ni) and gold
(Au) as the metals [56]. A surface electric current was generated on the LC resonator
surface upon excitation by a time-varying magnetic field. Biotin and streptavidin molecules
bound covalently to the metallic gap, manifesting as a change in the capacitance of the LC
resonator and consequently resulting in a resonance shift proportional to the concentration
of the biomolecules. The observed resonance shifts were 120 MHz and 40 MHz for biotin
and streptavidin, respectively.

Kashiwagi et al. proposed a similar THz metamaterial made with an array of SRRs,
using inkjet printing of silver nanoparticles [57]. Inkjet printing provided a simple, robust
and cost-effective way of fabricating the SRR arrays on flexible paper and plastic substrates,
as is shown in Figure 1a–c. In this work, six different designs with line widths of 50 µm,
100 µm and 150 µm, and capacitive gaps of 50 µm and 100 µm were fabricated and analysed.
A total of 48 SRR sensors were fabricated per six different SRR patterns. The fabrication
error was minimal for 100 µm and 150 µm line widths and 100 µm capacitive gap. The
resonance frequencies were observed at 0.27 THz and 0.37 THz using THz time-domain
spectroscopy (THz-TDS) characterisation. Figure 1d,e demonstrates the transmission
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spectra of the SRRs for x- and y-polarised incident waves. A good agreement was observed
between the simulation and experimental results, as is evident from the transmission
spectra shown in Figure 1d,e. This multi-resonance sensor can be utilised for low-cost
biosensing applications such as viruses, proteins and other biomarker detection.

Table 1. Performance comparison of metamaterial-based biosensors.

References Advantages/Disadvantages Target Analyte Sensor Configuration Sensitivity
Frequency (f)/Analyte

Concentration Range/Limit
of Detection (LOD)

[21] (+) Easy to fabricate at low cost. biotin and streptavidin
Copper (Cu), Nickel
(Ni), and gold (Au)

printed on PCB
- f range: 10.64 GHz to

10.84 GHz

[22] (+) Low cost and easy inject
printing-based fabrication

No specific
analyte stated

Ag nanoparticles on
paper and

plastic substrate.
- f range: 0.1 THz to 0.5 THz

[24]

(+) Minimal number of virus
particles can be

detected efficiently
(-) Sophisticated e-beam

lithography was used to fabricate
the structure

60 nm of PRD1 virus
and 30 nm of MS2 virus

Metamaterial structure
formed by 3 nm-thick

Cr followed by
97 nm-thick gold

6 GHz·µm2/particle to
80 GHz·µm2/particle f range: 0.5 THz to 1.5 THz

[25]

(+) Faster detection in both air
and aqueous environments

(+) Can detect small number of
microorganisms

(-) Sophisticated e-beam
evaporation-based metal

deposition and photolithography

Yeasts and Escherichia
coli BL21 (DE3),

Neurospora sitophila
(neurospora) and

Aspergillus
niger (niger)

Cr (2 nm) and Au
(98 nm) metal films

deposited on
Si substrate

~11.6 GHz/number
density

f range: 0.5 THz to 3 THz
LOD: 107 units/mL

[29]

(+) Higher sensitivity for four LC
resonator-based SRRs as

compared to a single
LC resonator

Bovine Serum Albumin
Aluminium layer

deposition by metal
evaporation method

85 GHz/RIU f range: 0.2 THz to 1.2 THz
LOD: 1.5 µmol/L

[30] (+) Enhanced sensitivity by
adding AuNPs

The epidermal growth
factor receptor

(EGFR) antibody

Cr (20 nm) and Au
(100 nm) bilayer film

coated with AuNPs and
arranged in a

bow-tie configuration

1.5 to 3.9 GHz/pM f range: 2.2 THz to 2.4 THz
Conc. Range: 10 fM to 10 pM

[33]
(+) Better performance because of
the SiNx Film as compared to the

bare Si substrate

Doped and undoped
protein thin films

(silk fibroin)

200 nm gold patterned
on 400 nm thick SiNx

film deposited on
Si wafer

4.05 × 10−2 GHz/nm. f range: 0.1 THz to 1.2 THz

[34] (+) High Q factor

Alpha-fetoprotein (AFP)
and Glutamine

transferase isozymes II
(GGT-II)

The 200-nm thickness of
gold on the Si wafer

3.8 GHz/(mu/mL) for
GGT-II and

562.6 GHz/(µg /mL)
for AFP

f range: 0.4 THz to 1.2 THz

[39]

(+) FOM > 330
(+) Sensitivity several folds

higher than the conventional
plasmonic sensor

Streptavidin-biotin Au nanorod on
alumina matrix >30,000 nm/RIU f range: 200 THz to 749 THz

LOD: 300 nM

[40]

(+) high FOM of 590
(+) capable of detecting lower

molecular-weight
(<500 Da) biomolecules

Biotin, BSA

gold–Al2O3 and
grating-coupled

hyperbolic
metamaterial structure

30,000 nm/RIU f range: 150 THz to 600 THz
Conc. Range: 10 pM to 1 µM

Further, Tao et al. proposed a cost-effective, disposable and easy-to-use SRR sensor
on a paper substrate for quantitative analysis of blood glucose, useful for on-site detection
and analysis in low resource settings [58]. Three LC resonator structures were fabricated,
two purely electric resonators (i.e., polarisation-sensitive and nonsensitive polarisation
resonators, both with a unit cell size of 100 µm × 100 µm) and a canonical SRR (with a unit
cell size of 50 µm × 50 µm). A photoresist-free shadow mask deposition technique was used
to fabricate the structures. The prototype structure was tested with glucose concentrations
ranging from 3 mmol L−1 to 30 mmol L−1. SRR-based sensors also play a vital role in virus
detection. Park et al. proposed an SRR sensor for detecting low concentration bacteriophage
viruses with sizes ranging from 60 nm (PRD1 double-stranded DNA Virus) to 30 nm (MS2
single-stranded RNA virus) [59]. Since the size of these viruses was less than the scattering
cross-section of the incident THz wave, the shift in LC resonance frequency was owing to
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the variations in the dielectric constant of the split gap in the SRR array. Upon binding of
the virus particles to the split gap, the dielectric constant was changed, which resulted in a
shift in the resonance frequency, a phenomenon that was observed by the same research
group in another work [60]. The SRR structure reported in [59] was fabricated using e-beam
lithography followed by the e-beam deposition of thin films of gold (97 nm) and Cr (3 nm)
with a linewidth of 4 µm, as shown in Figure 2. Solutions containing PRD1 and MS2 viruses
with a density of 109/mL were used to quantify the sensor’s sensitivity. About 10 µL of the
virus solution was drop cast on a 10 mm2 surface area. It was observed that the sensitivity
to the PRD1 virus increased from 6 GHz µm2/particle to 80 GHz µm2/particle (almost
13-fold improvement) as the gap width decreased from 3 µm to 200 nm.
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simulated TE-modes at resonance frequencies [57]. © 2018, AIP Advance.

The detection of microorganisms has been studied for decades. Several organisms,
such as bacteria and fungi, are responsible for life-threatening diseases in humans, including
tuberculosis, asthma [61], gonorrhoea and meningitis [62]. Therefore, early identification
of these microorganisms is crucial to preventing the spread of infections and treating
them efficiently. Park et al. reported a THz biosensor to facilitate accurate and faster
detection of such organisms. A detailed overview of the device is provided in [60] and
illustrated in Figure 3. The THz wave propagation through the MM sensor was analysed
in response to fungi, which was bound to the metamaterial resonator split gap (length
2–3 µm). SEM images of the penicillia-coated metastructure are portrayed in Figure 3a,b.
Furthermore, the work was extended by detecting the E. coli bacteria in an aqueous medium.
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Figure 3c denotes a schematic of the experimental setup and Figure 3d shows the percent
transmission change in different media. Moreover, antibody functionalisation was found
to be crucial for improved sensitivity. Figure 3e,f depicts the transmission spectra with and
without anti-E. coli functionalisation on the sensor surface. The shift in resonance frequency
was minimal without anti-E. coli functionalisation [60].
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Figure 3. Sensing microorganisms using THz metamaterials. (a) A schematic representation of sensing
of microorganisms with THz metamaterials. (b) A colour-enhanced SEM image of metamaterials
coated by penicillia. The inset shows a magnified image of the fungi located in the micro-gap.
(c) A schematic of bacteria (E. coli.) detection in an aqueous solution. The Si substrate was coated
with antibodies specific to E. coli. (d) Transmittance spectra of the E. coli-coated (density of 0.078 µm2)
quartz substrate in aqueous (red line) and ambient (black line) conditions. (e) THz transmission
before (blue line) and after (red line) the deposition of E. coli on the functionalised metamaterials in
aqueous environments. Inset shows the dark-field microscopic image after the deposition of E. coli.
(f) THz transmission before (blue line) and after (red line) the deposition of E. coli on the sensor
without the antibody functionalisation. Inset shows the dark-field microscopic image after the
deposition of E. coli. [60] Copyright © 2014 Springer Nature, S. J. Park, et al.

Additionally, Chen et al. demonstrate an active metamaterial device capable of efficient
real-time control and manipulation of THz radiation [63]. Li et al. proposed high-sensitive
LC resonator structures to measure the high molecular weight protein BSA (bovine serum
albumin) [64]. The reported biosensor had four identical LC resonators in a unit cell and
was fabricated using a surface micromachining process with aluminium as the metal layer.
The fabricated sensor had an overall dimension of 10 mm × 10 mm. The sensitivity of
the biosensor was found to be 85 GHz/RIU, and a maximum resonance frequency shift
of 50 GHz was observed at a concentration of 765 µmol/L. The sensor was capable of
measuring the BSA concentration down to 1.5 µmol/L. The high sensitivity was achieved
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owing to the four identical LC resonators, which outperformed a single resonance-based
LC structure [64].

The sensitivity of MM-based THz biosensors can be further enhanced by adding gold
nanoparticles (AuNPs) to a metal film. In this regard, Liu and his colleagues provided an
efficient approach to increasing sensitivity to EGFR (epidermal growth factor receptor) in
the THz regime using a bow-tie metamaterial array [65]. EGFR is critical in the diagnosis
and prognosis of tumour tissues, cancer cell-like gastrointestinal cancer, lung cancer and
oral squamous cell carcinoma regrowth rate [66,67]. The proposed MM-based biosensor
reported in [65] had a bow-tie structure comprising an array of chromium (20 nm) and
gold (Au) (100 nm) bilayer films coated with AuNPs, which provided an extraordinary
sensing performance. The geometrical design along with the chemical functionalisation on
the metamaterial structure are depicted in Figure 4a,b. Furthermore, shifts in the resonance
frequency were analysed for different AuNP diameters. It was evident that increasing the
diameter of the AuNPs enhanced the resonance frequency shifts. Figure 4c–e demonstrate
the transmission spectra of the bow-tie structure in response to varying concentrations
of EGFR when coated with AuNP sizes of 5 nm, 15 nm and 25 nm. The frequency shift
increased with increasing AuNPs size when the sensor was functionalized with antibody.
Figure 4f portrays the frequency shifts with EGFR concentrations with and without antibody
functionalisation for different AuNPs size. The authors suggested that the sensitivity could
be tailored by optimising the MM design with a low absorption substrate such as a thin
film of silicon nitride instead of the bulk Si substrate [68]. Besides protein detection, this
design can be also reconfigured for detecting cancer cells and bacteria [65]. A different type
of bow-tie plasmonic antenna apertures was also reported in [69].
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Figure 4. (a) Chemical binding of the antibody (Ab) molecules on the metamaterial surface. (b) The
physical structure of the sensor with AuNPs introduced on the bow-tie structure. (c) The transmission
spectra of a 5 nm AuNP-Ab functionalised sensor in response to EGFR. (d) The transmission spectra
of a 15 nm AuNP-Ab functionalised sensor in response to EGFR. (e) The transmission spectra of a
25 nm AuNP-Ab functionalised sensor in response to EGFR. (f) Shifts in the resonance frequency
for Ab functionalised bare metal structure (black line), 5 nm AuNP-Ab (blue line), 15 nm AuNP-Ab
(purple line) and 25 nm AuNP-Ab (red line) functionalised metal structures [65] © 2021 Optical
Society of America.

The water absorption bands in the THz regime (the translational mode centred around
~6 THz and rotational modes spanning from 10–20 THz) interfere with the detection of
low concentration analytes such as protein, virus and bacteria in a microfluidic channel,
thereby necessitating the reconfiguration of the sensing structure or selection of appropriate
wavelength regime [70]. Geng et al. integrated a microfluidic chip with an SRR-based



Sensors 2022, 22, 6896 9 of 29

metamaterial sensor to detect Alpha-fetoprotein (AFP) and glutamine transferase isozymes
II (GGT-II) for early diagnosis of liver cancer [71]. Figure 5a,b depict the schematic of the
proposed MM sensor integrated with a microfluidic chip and its equivalent electrical circuit
modelling with inductance and capacitance. Fabrication steps of the SRR structure included
RCA standard cleaning, lithography, deposition and lift-off, followed by the deposition
of a 200 nm-thick gold metallic layer using radio magnetron sputtering. Afterward, a
polydimethylsiloxane (PDMS) microfluidic channel was introduced to the surface in order
to control the sample volume needed for surface functionalisation. The results at each
fabrication step are highlighted in Figure 5c–g. The PDMS channel was peeled off prior
to the THz testing owing to the low transmission of PDMS in THz (less than 50%) and
high absorption of THz energy by water. The proposed design was analysed for three
different gaps in the SRRs (gap widths of 2 µm, 4 µm and 6 µm). The characteristics of
the sensing performance were determined by FDTD simulation. With an increase in the
refractive index of the ambient medium, there was a blueshift in the resonance frequency.
Furthermore, an asymmetry was introduced to increase the Fano resonance of the SRR
sensor, which had a significant impact on the Q factor. Total resonance shifts of 19 GHz
and 14.2 GHz were observed for 5 µm/mL of GGT-II antigen and 0.02524 µg/mL of AFP,
respectively, with the SRR having two gaps. The sensitivity was found promising for
detecting cancer biomarkers.

3.1.2. Hyperbolic Metamaterials (HMMs)

SPR and LSPR sensors require bulky optical elements, including a prism, unsuitable
for label-free, point-of-care applications. LSPR, SPR and SRR-based metamaterial sensors
generally exhibit sensitivity around ≈ 2 × 102 nm

RIU [72,73]. Although grating-coupled SPR
sensors are not bulky, the sensitivity is lower than prism-coupled SPRs. Hence, it is very
challenging to detect highly diluted biomarkers. Recently, nanorod MMs showed ultra-high
sensitivity with promising biosensing applications [74]. Sreekanth et al. demonstrated a
plasmonic biosensor based on HMMs with sensitivity in visible and near-infrared regions
of the electromagnetic spectrum [75]. The HMMs were coupled with 2D gold diffraction
gratings, with an advantage of high tunability in the sensitivity and mode of operation
(from visible to NIR) achieved by modulating the geometry and grating parameters. The
structure was composed of 16 alternating layers of gold and Al2O3 (10 nm) thin films [68].
A metallic layer was added to the HMMs to diffract the incident wave that produced a
wide range of wavevectors inside the HMMs. The structure was demonstrated to detect
different concentrations of BSA and biotin ranging from 10 pM to 1 µM. One significant
finding from this work is the nonlinear variation of the wavelength shifts with analyte
concentrations. The sensor could detect low molecular-weight (244 Da) molecules down
to picomolar levels. The highest sensitivity of this proposed biosensor was 30,000 nm

RIU
with a figure of merit (FOM) of 590. FOM is defined as (∆λ/∆η) (1/∆ω), where ∆λ is the
wavelength shift, ∆η is the change in the RI of the analyte medium and ∆ω is the full width
at half-maximum at the resonance wavelength. In conclusion, hyperbolic metamaterials
have considerable prospects in biosensing owing to their ultrahigh sensitivity and ultralow
detection limit.

3.2. Gas Sensing

Gas sensors (also known as gas detectors) are electronic devices that detect and identify
gases, including CO2, SO2, NOx and toxic and explosive gases. Gas sensors are employed
in factories and manufacturing facilities to identify gas leaks and detect smoke and carbon
monoxide emissions at home. Japan implemented the first semiconductor oxide-based gas
sensors in the 1970s [76], current-type oxygen sensors [77] and ceramic humidity sensors
for automatic cooking ovens [78]. Currently, semiconductor, electrolyte or catalytic com-
bustion type sensors detect gases such as methane, propane, carbon monoxide, ammonia,
hydrogen sulphide, oxygen, nitrogen dioxide, ozone, etc. These gas sensors are used in
safety industries for the detection of explosives [79], indoor air quality/HVAC industries,
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medical and life-science industries [80,81], aerospace industries, agriculture industries [82],
modified atmosphere packaging (MAP) industries, transportation industries, fire suppres-
sion testing, university research applications and many more. Different types of sensors
have already been studied for various applications and schemes, such as acoustic gas
sensors, carbon nanotube (CNT) sensors, catalytic gas sensors, electrochemical gas sensors,
thermal conductivity-based gas sensors, optical gas sensors, metal oxide semiconductor
(MOS)-based gas sensors, organic chemiresistive gas sensors, piezoelectric gas sensors,
photonic crystal-based gas sensors, micro-electro-mechanical systems (MEMS) and meta-
material absorber systems [83]. The electrochemical sensors can detect a wide range of
gases at low concentrations. Although optical fibre-based gas sensors provide dynamic
monitoring with high repeatability and reusability, they are still susceptible to ambient
light interference [84]. In contrast, the semiconductor gas sensors are mechanically ro-
bust [85] but exhibit nonlinear responses under environmental variations such as humidity
changes [86].
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Figure 5. (a) The sketch of THz SRR biosensor integrated with a microfluidics chip. (b) RLC
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with microfluidics. © 2017 Springer Nature, Zhaoxin Geng, et al. [71].
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One approach to improving gas sensing performance is manufacturing artificially
engineered MM absorbers [87]. MM-based sensing can be realised in the microwave, tera-
hertz (THz), infrared (IR), visible and ultraviolet (UV) regimes. Due to controllable optical
parameters, the performance is enhanced by introducing plasmonics in a metal-insulator-
metal (MIM) structure [88]. Planar MIM (p-MIM) and vertical MIM (v-MIM) structures
are reported in the literature, but these structures inhibit interaction of the target analyte
with the hot spot region [89]. A vertically oriented channel MIM (c-MIM) structure was
proposed by Su et al. to overcome this limitation [90], where a plasmonic molecular region
(hot spot region) was introduced to provide enhanced sensitivity. This c-MIM structure was
demonstrated to detect carbon dioxide and butane gases. The higher sensitivity resulted
from the presence of a gap between the metal conductors. As a result, s-excited polaritons
were coupled in the gap, and this phenomenon is called channel plasmon polaritons [91].
Furthermore, Fano-like resonance was evident due to the combined response from plas-
monic resonance and the molecular vibration effect, which improved the sensitivity [90].
The device could detect butane gas down to 20 ppm. However, the current Occupational
Safety and Health Administration (OSHA) permissible exposure limit for n-butane is
800 ppm as an 8-h time-weighted average [92].

Much work has been conducted on mid-infrared gas detection using optical sensing
modality. For example, a metamaterial perfect absorber (MPA)-based CO2 gas sensor
was reported with a sensitivity of 22.4 ± 0.5 ppm·Hz−0.5 [93]. Figure 6a illustrates the
metamaterial thermal emitter, and Figure 6b shows the schematic design of the unit cell of
the LC resonator. Figure 6c,d denote the detector chip and the SEM image of the sensor cell.

This section is subdivided into subsections based on the type of metastructure/metasu-
rfaces used in gas sensing applications. Owing to the limited literature available for
metastructure-based gas sensors, this section is focused on CO2, NO2 and H2 gases, where
CO2 is a potent greenhouse gas, NO2 is a toxic pollutant that contributes to producing
tropospheric ozone and H2 that is a highly flammable gas. Finally, the performances of
various gas sensors are compared in Table 2 at the end of this section. Moreover, a critical
analysis of advantages and disadvantages (where applicable) of each sensor technology
is provided.

3.2.1. Metamaterial Perfect Absorber/Emitter

Global warming is increasing at an alarming rate, and the primary antagonist that is
responsible is CO2 [94,95]. Additionally, the CO2 flow control needs to be maintained in
health science and industry operations. According to a probability analysis, the long-term
limit for CO2 lies within 300–500 ppm for 25 percent risk tolerance [96]. Therefore, novel
gas sensors must be designed to detect CO2 levels in this range and beyond. Toward
this end, a MS-based perfect absorber design was reported to detect CO2 at its signature
absorption band of 4.26 µm [97]. The sensor was fabricated by depositing a perfect absorber
comprised of silicon nano-cylindrical meta-atoms (MAs) on a gold layer [97]. Moreover, a
thin layer of polyhexamethylene biguanide (PHMB) polymer was utilised as the CO2 gas
absorption layer on top of the MS. The underlying physics is the absorption and desorption
of CO2 gas molecules onto the PHMB layer, resulting in a corresponding change in the RI
of the polymer layer. Subsequently, there was a blue shift in the resonance wavelength.
Figure 7a,b depict the sensor structure and reflection spectra for increasing concentrations
of CO2, respectively. It was evident that there was a blue shift in the resonance wavelength
with increasing gas concentrations, resulting in a sensitivity of 17.3 pm/ppm. Moreover,
the sensor had a wide detection range from 0–524 ppm. Although these results were based
on FDTD-based numerical simulation, the authors proposed a fabrication scheme as shown
in Figure 7c.
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Figure 6. Metamaterial components. (a–d) Metamaterial thermal emitter. (a) The MPA layer
(rMPA,e = 450 µm) is fabricated on a suspended dielectric membrane (rmem,e = 550 µm) with an
integrated metallic heater (scale bar: 1 mm). (b) MPA unit cell. (c) The MPA layer (rMPA,d = 540 µm)
is post-processed on top of a suspended dielectric membrane (rmem,d = 700 µm) with embedded
thermocouples (scale bar: 1 mm). CMOS circuitry for signal amplification and processing is integrated
on the same substrate. (d) Scanning electron micrograph of 6 × 6 MPA unit cells (scale bar: 4 µm) [93].
Copyright © 2020 American Chemical Society.

With the advent of CMOS and MEMS technology, MM perfect emitter (MPE) structures
brought several folds of improvement to gas sensing [98]. CO2 gas was detected in the
range from 0–50,000 ppm, with a five-fold increase in relative sensitivity as compared to
the conventional blackbody emitter. Moreover, the proposed sensor exhibited a resonance
quality factor of 15.7 at the centre wavelength of 3.96 µm for CO2 sensing. Consequently,
the reported MM sensor was the first CMOS-compatible MPE structure with a high-quality
factor for NDIR (non-dispersive infrared) gas sensing applications. Additionally, the
fabrication process followed standard approaches such as thermal evaporation of the Cu
backplane, atomic layer deposition (ALD) of the Al2O3 spacer layer and lift-off and dry
etching with negative tone resist. Recent advancements in NDIR gas sensing have paved
the way for a better detection range with higher sensitivity. For instance, a metamaterial
emitter-based NDIR sensor demonstrated a four-fold enhancement in the emission intensity
as compared to a standard non-plasmonic emitter [99].
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Table 2. Performance comparison of metamaterial-based gas sensors.

References Advantages/Disadvantages Target Analyte Sensor Configuration Sensitivity
Frequency (f)/Analyte

Concentration Range/Limit
of Detection (LOD)

[56]
(+) Hot spot region to enhance the
plasmonic molecular coupling and

improve sensitivity
CO2 and C4H10

A gap between two
gold electrodes

2.92 × 10−4

ppm−1.

f range: 60 THz to 150 THz
Conc. range: 20 to 388 ppm

LOD: 20 ppm

[58]

(+) compact
(+) sensitive

(+) Energy-efficient gas detection
(+) cascading the spectral responses of
MPAs on the emitter and the detector
to match the narrow absorption band

of the target gas
(+) highly scalable due to monolithic

integration of MPAs into
CMOS devices

CO2
Gold-coated Si spacer

on a PCB board 22.4 ± 0.5 ppm·Hz−0.5 Conc. range: 0 to 5000 ppm

[62]
(+) Wide detection range

(-) Limited to numerical analysis and
lacks physical implementation

CO2

Nano-cylindrical
meta-atoms on a gold
layer deposited on a

quartz substrate

17.3 pm/ppm f range: 294 THz to 319 THz
Conc. range: 0 to 524 ppm

[63]

(+) Fabricated by a low-cost CMOS
MEMS technology

(+) A high-quality factor of 15.7
(+) features temperature-stable and

angular-independent
emission characteristics

(+) a 5-fold increase in relative
sensitivity compared to the

conventional blackbody emitter

CO2

a cross-shaped top Cu
resonator was separated
from a Cu backplane by

means of a dielectric
spacer layer (Al2O3)

1.7 × 10–4 %/ppm Conc. range: 0 to 50,000 ppm

[65]
(+) Two wavelength-based dual-mode

multiplexed gas sensing
(+) fast response time (≈2 min)

CO2

polyethylenimine (PEI)
polymer spun coated on

AlN-Mo-Si
500 nm/RIU Conc. range: 0 to 177 ppm

LOD: 40 ppm

[68] (+) Multiplexed sensing of gases in
a mixture

H2S, CH4, CO2, CO,
NO, CH2O, NO2, SO2

From the top to the
bottom are: Au

nanodisk antenna, the
80 nm silicon dioxide

spacer, the Au
backplate, the 75µm
lithium tantalate (LT)

substrate and the
100 nm Au

bottom electrode

Not stated

Conc. range: 0 to 20,000 ppm
LOD:

489, 63, 2, 11, 17, 27, 54 and
104 ppm for H2S, CH4, CO2,

CO, NO, CH2O, NO2
and SO2

[72]

(+) Highly reliable, re-usable
and selective

(+) a new signature evolving at
300 MHz

NO2

Fe3O4 nanoparticles on
two square

ring-shaped slots
0.2 MHz/ppm

f range: 200 MHz to
800 MHz

Conc. range: 0 to 110 ppm

[75]

(+) the presence or absence of H2 can
be monitored by direct

visual inspection
(+) response time of only 10 s

(+) low-cost fabrication using a simple
electrochemical technique

H2 and N2

Bimetallic Au/Pd
nanorod on a

glass substrate
- f range: 333 THz to 750 THz

LOD: 1% H2

[79]

(+) large sensing area
(+) high sensitivity at

room temperature
(+) fast response in 10 min

(-) sophisticated ion reactive etching
and atomic deposition layer

H2

Aluminium-doped Zinc
oxide (AZO nanotubes)

on SiO2/Si substrate
0.0006 a.u./%

f range: 250 THz to 333 THz
Conc. range: 0.7 to 4%

LOD: 0.7%

Most of the previously mentioned work for gas sensors did not thoroughly investigate
the selectivity, a crucial figure of merit for gas sensors. Considering the limitation above,
Hasan et al. reported a hybrid CMOS metamaterial absorber with high selectivity in the
mid-IR region [100]. Metamaterial absorber type NDIR sensor converts light to heat energy
and can achieve high wavelength selectivity with controlled light-matter interactions. The
sensor fabrication started with an 8” silicon wafer patterned into the metamaterial structure
by deep UV photolithography. Afterward, the gas-selective layer was spun coated on
the wafer at varying speeds to form different thicknesses. The geometric and chemical
composition of the supercell structure is depicted in Figure 8a–c. The simulation results in
Figure 8d–h show no near-field interaction among the unit cells. This hybrid metamaterial
absorber offered a fast response and minimal hysteresis. Additionally, dual-mode sensing
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using coupling and non-coupling region of operation provides an efficient technique to use
the gas-selective polymer at its fullest potential for both low and high concentrations of
CO2 gas. The steady-state response in Figure 8i indicates the maximum signal output of
the sensor in response to a particular concentration. The authors suggested that increasing
the effective sensing area could increase sensitivity at low concentrations to improve the
overall performance. Additionally, sensitivity can be enhanced through engineering the
gas-selective layer and controlling the metamaterial and absorber design to ensure better
light–matter interactions.
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Figure 7. (a) A thin layer of PHMB functional layer was deposited on the perfect absorber metasurface.
CO2 gas was detected via the wavelength interrogation method. (b) Reflection spectra for different
gas concentrations in the ppm range. (c) Proposed fabrication scheme [97] Copyright: ©2021 MDPI.

Multiplexed monitoring of gases and classification of gas components in a mixture is
essential to cancel out the cross-sensitivity to interfering gases. Such sensors find numerous
applications in environmental monitoring and industry operations. For instance, in an
agriculture field, fertilisers are decomposed into potent greenhouse and toxic gases, includ-
ing NH3, NO, N2O, NO2 and CH4, via ammonification and nitrification processes [101].
These gases have a substantial negative impact on the environment as they are the major
contributors to global warming. On the other hand, measuring and quantifying the gases
emitted in agricultural land is essential for optimising the application of agrochemicals,
which will lead to resource management while also reducing environmental pollution.
The mid-IR regime (e.g., from 2–20 µm) is preferred for detecting multiple gases due to
the molecular absorption signatures of individual gas molecules. This broad wavelength
regime is called the molecular fingerprint region [102]. A multiplexed NDIR gas sensing
platform consisting of a narrowband infrared detector array integrated with plasmonic
metamaterial absorbers (PMA) was reported to detect multiple gases [103]. This sensor
suite exhibited a detection limit of 489, 63, 2, 11, 17, 27, 54 and 104 ppm for H2S, CH4, CO2,
CO, NO, CH2O, NO2 and SO2, respectively. The PMA integrated pyroelectric elements
resolved different gas absorption levels. The geometrical properties and the metamaterial
plasmonic resonance were tailored to identify individual gas absorption levels from their
absorption spectra. Figure 9 shows the working principle and structure of the multiplexed
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gas cell with multiplexed gas absorption spectra for CO, NO, NO2, CH2O, NO2, H2S
and SO2.
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Figure 8. (a) Proposed ‘hybrid metamaterial’ absorber integrated with thin-film membrane for selec-
tive gas sensing. (b) FESEM (field emission scanning electron microscopy) image of the metamaterial
array (inset shows the unit cell). (c) Design of the supercell composed of unit cell I and unit cell II for
multiplexed sensing. (d) Simulated reflection spectrum of the supercell geometry overlaid by the
gas-selective layer. Polarisation of the incoming radiation is fixed along y-axis (e), (f) electric field (at
xy plane) and magnetic field (at xz plane) distribution, respectively, when unit cell I is resonant at
5.25 µm. (g,h) Electric field (at xy plane) and magnetic field (at xz plane) distribution, respectively,
when unit cell II is resonant at 6.75 µm. (i) Steady-state sensing characteristics of the multiplexed
platform. Inset: fabricated superpixel. (j) Dynamic absorption behaviour within the spectral window:
5–8 µm. (k) Differential absorption at steady state fitted under two parameter exponential models
(f(x) = a ∗ exp(b ∗ x) + c ∗ exp(d ∗ x)) indicating saturation behaviour of the sensor as the gas
concentration increased in continuous mode. The fitting values of a, b, c and d are 0.04555, 0.0004665,
−0.04551 and −0.0691, respectively, with R-square value of 0.9993 [100]. © 2018. Published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

3.2.2. Complementary Split-Ring Resonator

NO2 gas is one of the most toxic gases that critically damages the environment. NO2
exacerbates respiratory diseases such as asthma [104] from a medical perspective. From
a global warming perspective, NOx is also responsible for the depletion of the ozone
layer [105]. Consequently, detecting the biohazardous oxides of nitrogen is crucial yet
challenging [106]. Gas sensors with high sensitivity, quality factor, reasonable detection
limit, fast regeneration and high selectivity are being researched to detect NOx gases.
A Fe3O4-mediated complementary split-ring resonator (CSRR)-based MM structure was
reported [107]. The proposed metasurface comprised of two square ring-shaped slots with
the resonant frequency centred at 430 MHz and an additional signature around 300 MHz.
The CSRR metamaterial structure was laid on an FR-4 epoxy (εr = 4.4, thickness = 0.8 mm)
substrate. The device could detect NO2 concentrations ranging from 0–110 ppm. The
gap in the copper CSRR was functionalised with the Fe3O4 nanoparticles to trap the NO2
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molecules leading to a variation in the dielectric property and hence capacitance. The sensor
demonstrated a sensitivity of 0.2 MHz/ppm with fast regeneration and good repeatability.
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Figure 9. The spectral and near-field properties of the plasmonic metamaterial absorber. (a) Scanning
electron microscope (SEM) image of the gold nanodisk antenna array. (b) The distribution of light-
induced current density magnitude |J| and current density vector J in the yz cut-plane of the
MIM absorber. (c) The measured absorption spectra of eight fabricated MIM absorbers and the
infrared absorption bands of eight target gases: H2S, CH4, CO2, CO, NO, CH2O, NO2 and SO2.
(d) Schematic diagram of the gas sensing system based on the proposed NDIR architecture with an
array of narrowband PMA-integrated pyroelectric elements used as the spectral sensor. The method
comprises three modules: a broadband light source, a gas cell and a multi-element sensor, together
with necessary focusing optics. (e) The geometry of the narrowband detection element. From top to
bottom are the Au nanodisk antenna, the silicon dioxide spacer, the gold backplate that is also used as
the top electrode of the pyroelectric element, the lithium tantalate (LT) substrate and the bottom gold
electrode, (f) the integrated package of the multiple pyroelectric elements with different detection
wavelengths. [103] © Springer Nature 2020, Nature Communication.

3.2.3. Metal-Insulator-Metal

Hydrogen is a renewable energy source for the next generation of energy-efficient
industries yet is considered an explosive gas [108]. H2 has a high-risk explosion factor, and
nearly 4 to 75% is deemed explosive [109]. Hence, close monitoring of the sub-ppm level of
H2 is essential. Optical sensors are preferred over electrical sensors for H2 sensing due to
the spark ignition risks. Plasmonic gold nanorod, nanoparticles-based devices have drawn
much attention to H2 gas sensing. Pd metal has a high affinity toward hydrogen. Nasir et al.
reported a bimetallic Au/Pd nanorod-based sensor for monitoring H2 [110]. Phase change
material has also been extensively studied for H2 gas sensing [111]. Beni et al. [112] reported
a plasmonic MIM comprised of a phase change material (Y or WO3) sandwiched between a
Pd nanodisk at the top and an Au mirror at the bottom for H2 gas sensing. The Y and WO3
materials exhibited opposite trends in phase change under H2 exposure [113]. For instance,
the conductive Y metal became more dielectric and showed a blueshift in the reflectance
dip, while WO3 became more metallic and demonstrated a redshift in resonance under
hydrogenation. The sensor exhibited a response time of only 10 s, which is commensurate
with the industry standard. In another work, aluminium-doped zinc oxide (AZO) was
used for low concentration (0.7%) hydrogen detection [114]. SiO2 layer was deposited on
top of a Si wafer, and AZO hollow nanotubes were standing on the SiO2 layer. Advanced
ion reactive etching and atomic deposition layer (ALD) techniques were employed to
fabricate the AZO hollow nanotubes. Figure 10 depicts the AZO configuration and H2
sensing results.
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Figure 10. Scanning electron microscope (SEM) images of the fabricated AZO (a,b) nanotube and
(c,d) pillar structures with a pitch of 400 nm, the diameter of 300 nm and height of 2 µm. The wall
thickness of nanotubes is approximately 20 nm. (e) The response of the AZO nanotubes before and
after intercalation of 0.7% H2 gas and upon exposure to (f) 0.7% H2, (g) 2% H2 and (h) 4% H2 gas at
the wavelength range of λ = 300–1500 nm [114] © The Royal Society of Chemistry 2020.

3.3. Chemical Sensing

One of the first MM-based chemical sensors was proposed in 2013 by Withayachum-
nankul et al. for simultaneously identifying methanol and ethanol at an operating frequency
of 1.9 GHz [115]. Afterward, various features were incorporated, such as a microfluidic
channel for detecting isopropanol, D glucose and methanol [116] and the separation of
ethanol and DI water [117]. In addition to integrating the microfluidic platform, the utili-
sation of metamaterial as an absorber has also been proposed [118–121]. A paper-based
flexible and wearable metamaterial sensor for distinguishing oil, methanol, glycerol and
water is noteworthy [122]. However, these sensors suffer from a low-quality factor. Re-
searchers have overcome this limitation by choosing substrates with reduced loss [123,124]
and using different resonator design approaches [123,125]. Recently, various MM-based
chemical sensors have been reported for commercial purposes [125,126]. A G-shaped
resonator was developed with an improved quality factor (Figure 11 shows a comparative
analysis between simulation and experimental measurements) to differentiate between
pure and used transformer oil, diesel, corn oil, cotton oil, olive oil, aniline-doped ethyl
alcohol and benzene-doped carbon tetrachloride [127].

Carbon nanotube (CNT)-based SPR metastructures have also been reported where
the Fano model was used to optimise the sensor performance. The device demonstrated a
sensitivity of 1.38 × 10−2/ppm from 1–10 ppm and 3.0 × 10−3/ppm over 10 ppm [128].
Moreover, a metamaterial-based CSRR sensor was fabricated on Roger RO3035 substrate
with a thickness of 0.75 mm, a relative permittivity of 3.5 and a loss tangent of 0.0015. To
improve the sensitivity and Q factor, the chemical samples were introduced to a capillary
glass tube placed in parallel to the sensor surface [129]. Figure 12a,b show the geometric
features of the sensor and Figure 12c–e show the physical implementation. To distinguish
branded diesel oil from unbranded oil, a MM-based sensor incorporating a microstrip
transmission line was developed [130]. MM-based transmission line sensor has also been
used to investigate the contamination of branded local spirit by methanol [131]. The
sensor demonstrated a high sensitivity to detect methanol content with a bandwidth of
150 MHz. A highly sensitive SRR metastructure integrated with a PDMS microfluidic
channel has been reported for glucose monitoring [132]. An interdigitated capacitor was
utilised to intensify the E field, thereby improving the sensitivity over a wide range of
glucose concentrations (i.e., 0 to 5000 mg/dL) [132].
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Figure 11. (a) Design of the inductive and capacitive components in the proposed structure. (b) Equiv-
alent circuit diagram of the proposed metamaterial-based sensor. (c) Simulation and (d) experimental
transmission spectra in response to clean and waste transformer oils [127] Copyright © 2022 Else-
vier BV.

Another interesting metamaterial-based chemical sensor was developed by incorpo-
rating multiple symmetrical double SRRs. Such a structure holds promise in multi-band
sensing of chemicals [133]. The core feature of this sensor lies in a miniaturised, reusable,
label-free and non-destructive metamaterial-microfluidic combination to determine the
chemical property of liquids. Figure 13 illustrates the theoretical electrical and magnetic
field distributions, proposed design with the equivalent circuit diagram and the simu-
lated and measured performance. Likewise, a phase change material derived from the
Ge2Sb2Te5 (GST) combination was used to develop a temperature tuned sensor for detecting
haemoglobin and urine (Figure 14) [134].

Leitis et al. developed a novel germanium-based MS that adsorbed molecules over
a broad spectrum from 1100 to 1800 cm−1 with a substantially high Q factor [135]. This
novel structure combined angle-multiplexed refractometric sensing with the chemical speci-
ficity of infrared spectroscopy, thereby eliminating the need to use complex spectroscopic
equipment or tunable light sources. Figure 15 illustrates the detailed mechanism of light
incident at varying angles, the result and the corresponding shift in the resonance peak and
the near-field coupling between the dielectric resonators and the molecular vibrations of
the analyte.

In recent years, metamaterial-based chemical sensing has drawn much attention in
the MHz, GHz and THz, regimes [136–140]. Table 3 outlines some recently reported MM
chemical sensors as well as a critical analysis of advantages of each sensor technology.
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Figure 13. Electrical analysis of the MIM sensor. (a) Cross-section of a microstrip transmission line
with a pair of DSRR and its electric field (E-field) and magnetic field (H-field) distribution (Thickness:
t1 = 3.5 µm, t2 = 0.609 mm, t3 = 3.5 µm). (b) The equivalent circuit of DSRR. (c) The calculated
results from the equivalent circuit of the microfluidic sensor by ADS software. (d) The simulated
and experimental S21 spectrum of single or symmetric DSRRs. Points A and B represent resonances
excited by single and dual resonator B, respectively. Points C and D represent resonances excited by
single and dual resonator A, respectively [133] Copyright © 2018, Nature, Scientific Reports.
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Figure 14. Schematic diagram of the GST-assisted metamaterial-based cubic and cylindrical res-
onators. (a) A 3D view of the sensor. (b) Top view of the metamaterial cubic resonator. (c) Full
view of the metamaterial cylindrical resonator. (d) Side view of the sensor. The bottom layer of the
structure is made of aGST/cGST. The biomolecule attaches to the top of the sensor. The incident wave
is excited along the z-axis. Dimensions of the structure are St = 800 nm, ht = 600 nm, hb = 2000 nm,
g1 = 1400 nm and L = 2000 nm. (e) Real and imaginary components of the refractive index of aGST
and cGST are in the range of 1.5–1.65 µm. (f) The dimension of UC1 is L × L = 2000 × 2000 nm2,
g1 = 1400. (g) The dimension of UC2 is L × L ≈ 666 × 666 nm2, g1 ≈ 466. (h) The dimension of UC3
is L × L ≈ 400 × 400 nm2, g1 ≈ 280 [134] Copyright © 2021, Nature, Scientific Reports.
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Figure 15. Angle-multiplexed broadband fingerprint retrieval. (a) A germanium-based high-Q all-
dielectric metasurface delivers on-demand resonances at a specific resonance frequency n for every
incidence angle q with broad spectral coverage. Continuous scanning of the incident angle produces a
multitude of resonances over a target fingerprint range, realising an angle-multiplexed configuration
ideally suited for surface-enhanced mid-IR molecular absorption spectroscopy. (b) Strong near-field
coupling between the dielectric resonators and the molecular vibrations of the analyte induces an
apparent attenuation of the resonance lineshape correlated with the vibrational absorption bands.
(c) Angle multiplexing combined with the spectral selectivity of high-Q resonances allows for broad-
band operation and straightforward device implementation. (d) The chemically specific output signal
of the device scheme in (c), which is determined by the imaginary part k of the analyte’s complex
refractive index n~ (a.u., arbitrary units) [135] Copyright © 2019, Science Advance, Leitis, et al.

Table 3. Performance comparison of metamaterial-based chemical sensors.

References Advantages/Disadvantages Target Analyte Sensor Configuration Sensitivity
Frequency (f)/Analyte

Concentration Range/Limit
of Detection (LOD)

[91]

(+) real-time
(+) fast

(+) low cost
(+) durable

(+) accurate detection

Clean and waste
transformer oil,

Corn, olive and cotton oils,
branded and unbranded

diesels, aniline-doped
ethyl-alcohol and
benzene-doped

carbon tetrachloride

Copper pad on both
front and backside of

FR-4 substrate
250 MHz/ 0.11 εr

f range: 8 GHz to 12 GHz
LOD: Not stated (detection
was based on separation of

resonance peaks)

[93]
(+) Linear relationship between

pesticide concentrations and
transmission amplitudes

2,4-dichlorophenoxy acetic
and chlorpyrifos solutions

multiwalled CNT arrays
on a silicon substrate

1.38 × 10−2/ppm
from 1–10 ppm and

3.0 × 10−3/ppm over
10 ppm

Conc. range: 1–10 ppm and
10–80 ppm

[97]

(+) improved sensitivity due to
the integration of inter-digital

capacitor (IDC) topology
(+) better frequency resolution

compared to existing SRRs
(+) simple design

(+) easy fabrication
(+) economical

Glucose

Copper SRR made on
Rogers RT6006

substrate and integrated
with PDMS

microfluidic channel

0.026 MHz/(mg/dL) f range: 3 GHz to 5 GHz
Conc. range: 0–5000 mg/dL
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Table 3. Cont.

References Advantages/Disadvantages Target Analyte Sensor Configuration Sensitivity
Frequency (f)/Analyte

Concentration Range/Limit
of Detection (LOD)

[98]

(+) miniaturised
(24 ∗ 15 ∗ 0.6 mm3)

(+) reusable
(+) label-free

(+) non-destructive
(+) smaller sample volume

(4 µL)
(+) multi-band sensing

(+) better linearity in ethanol
sensing (−2.80%)

Ethanol-water mixture

Copper coated with
3.5 µm thick Ni/Au

layer on Rogers
4003c substrate

(0.203 mm thick)

2.1 × 106 Hz/%
Conc. range: 0–100% of

ethanol in
water-ethanol mixture

[99] (+) Tunable response Haemoglobin,
urine

amorphous GST (aGST)
and crystalline GST
(cGST) in different
design structures

825–1795 nm/RIU
when tested on

haemoglobin, and
1000–2333 nm/RIU

when tested on urine

f range: 181 THz to 200 THz
Conc. range: 10–40 g/L for

haemoglobin, and
0–10 mg/dL for urine

[101]

(+) Optimised asymmetric
electric split-ring resonator

(AESRR) topology
(+) distinguish liquids and

solid dielectric materials with
bigger frequency shift and

higher sensitivity.
(+) low-cost
(+) real-time

(+) high sensitivity
(+) high robustness

Peanut oil,
Corn oil,

Sunflower seed oil,
Soybean oil,

Isopropyl alcohol, ethyl
acetate, ethanol

Copper pad on
FR-4 substrate 0.612

LOD: Not stated (detection
was based on separation of

resonance peaks)

[102]

(+) compact design on a
single PCB
(+) low cost

(+) contactless
(+) reusable

(+) easy to fabricate

Ethanol–water mixture Copper pad on
FR-4 substrate 0.57

Conc. range: 0–100% of
ethanol in

water-ethanol mixture

[103]
(+) high sensitivity detection of

scattered data
(+) adequate penetration depth

Glucose Copper pad on
FR-4 substrate 0.0125 dB/(mg/dL) f range: 2.2 GHz to 3.8 GHz

Conc. range: 100–300 mg/dl

[104] (+) Ultralow limit of detection anti-BSA Al coated periodic
nanopillar arrays 0.14 ng/mL

f range: 333 THz to 1000 THz
Conc. range:

0.001–1000 ng/mL
LOD: 1 pg/mL

[105] (+) No pretreatment required Vitamin D

Au coated cross and
star shaped

nanostructures on
silicon substrate

500–800 nm/RIU LOD: 86 pM

4. Future Trends in Metasurfaces for Sensing Applications

The rapidly evolving fields of nanophotonics have opened new frontiers in meta-
materials, plasmonics and photonic crystals. Some promising recent research progress
in metasurfaces include holographic displays, polarisation conversion, phase modula-
tion and high-resolution imaging [141,142]. Recently, the combination of deep learning
with nanophotonics and metasurfaces is being studied extensively. For instance, a global
optimisation algorithm was developed by Jiang and Fan to train a generative neural net-
work for inverse design of metasurfaces [143]. Such a technique can play a profound
role in optimising the architecture of metasurfaces and metastructures for a variety of
applications. Despite the advances in metamaterial-based structures, there is a need for
low-cost and scalable production of these metastructures in order to facilitate large scale
production of biomedical sensors and systems. In this regard, some promising avenues
include three-dimensional (3D) printing, chalcogenide materials and hardware and soft-
ware co-design. Integration of novel biomaterials with 3D printing results in cost-effective
and scalable prototypes and architectures. Over the last few decades, several 3D printing
techniques have demonstrated unprecedented performance in terms of producing fea-
tures with micro/nano resolution. Some well-known high-resolution 3D printing methods
include stereolithography [134–147], digital light processing [148], multiphoton polymeri-
sation [149], fused deposition modelling [150,151], coaxial extrusion [152], material jetting
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and binder jetting [144]. With the appropriate biomaterials and 3D printing technique, it
would be possible to produce next generation of metastructures with unique properties,
tunable electro-optic and thermo-optic effects and analyte sensing functionalities, while
also facilitating low-cost and roll-to-roll fabrication. On the other hand, from materials
perspective, chalcogenide phase-change materials (that include sulphides, selenides and
tellurides) have opened a new era of adaptable metastructures [153]. Particularly, germa-
nium (Ge)–antimony (Sb)–telluride (Te) alloys exhibit large refractive index contrast (e.g.,
∆n ≈ −1.5 at 405 nm wavelength) and almost three orders of resistivity change, which are
desired features for rewritable optical disks [154,155] and electronic memories [156,157].
These materials, when embedded into the micro/nano photonic platforms, will lead to
reconfigurable metastructures employed in biosensors with desired properties such as
ultra-high sensitivity, high selectivity, tunable and wide dynamic range, multiplexing capa-
bility and high robustness. Seamless integration of nanophotonics platform with artificial
intelligence and machine learning would enable the optimisation of design constraints such
as cost, performance and power consumption of biosensors [158]. Hence, from the above
discussion, it can be concluded that there are huge prospects for integrating metasurfaces
with novel fabrication techniques, materials or data analytics to realise a new paradigm of
bio/gas/chemical sensing.

5. Conclusions

In summary, we have discussed the primary applications of MS sensors in healthcare
diagnosis, biomolecule detection, virus, bacteria, fungi detection, cancer detection, etc. The
world is currently facing one of the life-threatening pandemics caused by the SARS-CoV-2
virus. Therefore, an early and accurate diagnosis of the virus with the help of a MM-based
biosensor can prove to be a life saviour in this regard. The fascinating part of the MM
sensor is its dual mode of operation, where both plasmonic, optical interaction and chemical
reaction can play their role, and the sensitivity is tremendous. Additionally, the design
mechanism has a feasible fabrication scheme with a low cost of operation. The chemically
active layer in the biosensor can easily bind a broad range of antibodies. With the MM part,
the sensitivity manifolds as compared to those of the conventional SPP-, SPR- and optical
fibre-based biosensors. Recently, in situ monitoring and lab-on-chip operation have become
the prime concern for researchers in the bio sensing field. With the help of embedded
systems and machine learning, these sensors can collect numerous data remotely, predict
future physiological conditions and prevent an outbreak of a future pandemic. Like the
biosensing application, gas and chemical sensing are necessary for the growing industry in
the 21st century. The produced gas is generally detected with bulky and low sensitivity
optical fibre or metal-oxide-semiconductor sensors for different chemical processes in the
industry. Plasmonic, CMOS absorber or emitter and MEMS technology have made MM
gas sensors cost-effective and compact, with a sensitivity of around 5 to 10 times that of the
conventional sensors. The industry and the environment need monitoring to detect any
hazardous gases, such as greenhouse gas emissions. The MS-based gas sensor has proven
effective in detecting multiple gases with high repeatability and low regeneration time (10 s
Industry standard). As discussed in the application section, these MM gas sensors detect
gas in a low concentration (0.7% to 2%) range. Moreover, these sensors can be easily tailored
for the desired mode of operation as the geometry of the MM sensor controls the sensing
characteristics. Recently, multiplexed detection [119,159–161] is a fascinating invention that
can be adopted to MM sensors. This approach helps detect target gases in a gas mixture in
the Mid-IR gas fingerprint regime. Further, this method can be improved by controlling
the chemically active polymer layer, plasmonic nanoparticles and MM geometry design.
Finally, we can manipulate the characteristics of MM materials to fabricate sensors as per
our needs.
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