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Abstract: Localization is a keystone for a robot to work within its environment and with other
robots. There have been many methods used to solve this problem. This paper deals with the use of
beacon-based localization to answer the research question: Can ultra-wideband technology be used
to effectively localize a robot with sensor fusion? This paper has developed an innovative solution for
creating a sensor fusion platform that uses ultra-wideband communication as a localization method to
allow an environment to be perceived and inspected in three dimensions from multiple perspectives
simultaneously. A series of contributions have been presented, supported by an in-depth literature
review regarding topics in this field of knowledge. The proposed method was then designed, built,
and tested successfully in two different environments exceeding its required tolerances. The result of
the testing and the ideas formulated throughout the paper were discussed and future work outlined
on how to build upon this work in potential academic papers and projects.
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1. Introduction

Ultra-wideband (UWB) has been a topic that has existed in one form or another
since the turn of the 19th century, starting in 1901 with Guglielmo Marconi using the
spark gap radio transmitter to send the first transatlantic radio transmission [1]. As radio
communication developed over the 20th century, the concepts that modern UWB utilizes
were developed in the form of impulse radar and secure communications to support the US
military in the 1960s. In this sense, “it is more appropriate to consider UWB as a new name
for a long-existing technology” [2]. In 2002, the Federal Communications Commission in
America approved UWB for commercial uses, albeit with bandwidth and power limitations.
The authorization sparked other countries to consider UWB and authorize their regional
band and power level limitations.

As research progressed, the use of UWB for applications in real-time location systems
(RTLS) became a point of focus, as it could be leveraged to provide a comprehensive and
robust solution to improve the localization accuracy of traditional methods, whose primary
goal was to build a platform capable of the self-localization of swarm robots [3–5]. Those
research works also detailed many of the issues surrounding swarm robotics programs,
mainly regarding the underdevelopment of onboard positioning and orientation capabilities
of said swarm robots relative to one another and their environment. Robot localization is
the process of determining where a mobile robot is located with respect to its environment.
The authors of [6–9] demonstrated the capability of several sensor systems which simulated
individual swarm robots connected within a local Wi-Fi mesh network. This communication
network provided the backbone to allow all the sensor information captured by each system
to be combined, using the sensor fusion method to resolve the positions of objects and
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sensor systems within the area. In detail, the two principal drawbacks were identified
as follows: firstly, the system was proposed to use a received signal strength indicator
(RSSI) with the Wi-Fi mesh network of the systems. However, this would involve the use
of inferred/inference distances, and the test area used was too small for the system to
detect a significant signal strength change to calculate range correctly. Secondly, the object
detection only worked in two dimensions. Whilst the cameras positioned on the sides of
each robot/node could detect the fiduciary ArUco tags on the flat surfaces of the robots for
3D recognition, the mapping/object detection used a 2D LIDAR, limiting the system for
the proposed design.

In comparison with other localization technologies, UWB can be classified as an RFID
technology. When the area of traditional RFID was reviewed, it was a reasonably affordable
system which was not range limited (e.g., ~7 m), whereas UWB systems had the advantage
of providing affordable out-of-the-box solutions for an RTLS system [10]. Bluetooth (BLE)
comes with meshing and has been successfully tested for RTLS solutions, with the similar
issue of there being no readily available commercial products. Moreover, BLE has a lower
data rate and lacks the bandwidth scalability to provide an all-in-one solution that is similar
to UWB [11]. In the long term, provided that the date rate of UWB could be increased by
simultaneously utilizing more of its bandwidth (than just channel 5), its potential could be
improved to be on par with Wi-Fi. Laser communications require line of sight and tend to
require a large volume of hardware not practical on very small robot applications such as
drones. Infrared similarly requires line of sight and is trackable [12].

This paper aims to address both drawbacks by making use of UWB communications
rather than Wi-Fi to provide a time of flight (TOF) range measurement that records the
distance between transceivers in the system and the mesh network at the same time. This,
coupled with a set of 3D sensors (in this case, depth cameras such as those used in the
Microsoft Xbox Kinect), theoretically enables improvement upon measuring distance and
the insufficient, two-dimensional sensor domain of the original work. This paper aims to
assess the ability for these proposed solutions to dispense with the drawbacks noted and
can be characterized by the following contributions to tackle the research question.

The interconnection of at least three ultra-wideband modules was developed to en-
able a communications network in an ad-hoc (drop-in, drop-out) mesh configuration of
interlinked nodes. The communications network has been spread over an ultra-wideband
frequency spectrum. The network shared the ranging, positioning, and orientation of the
system modules connected to the network. The specification demanded that the orientation
was measured in increments of at least 1 degree of accuracy. Similarly, relative position-
ing accuracy fell within 20 cm. The system could communicate with modules at ranges
of 10 cm to 20 m. The data rate of the system was determined by the limitations of the
UWB communication modules. To supplement the UWB network to facilitate streaming
high-bandwidth data such as point clouds, Wi-Fi has been used with a gateway PC for
display purposes.

An object detection and mapping subsystem capable of detecting object(s) or point
clouds within at least 5 m range in three dimensions has been developed. The system
could return the location of that object(s) with either spherical, cartesian, or quaternion
coordinates. The network of UWB sensors could determine the location of an object, relative
to its own position, to within an accuracy of 30 cm or less. The network of sensors captured
range data at a rate of at least 2 s per interval.

A method of combining the above subsystems, controlled through a master com-
puter, was investigated to provide human user interfaces of the overall system with a
series of capabilities, including:

1. Localization of system nodes relative to each other and the local environment.
2. Sensor fusion of all 3D sensors available from each system in the network.
3. 3D world simulation and mapping of the below points:

- Display of nodes within system range relative to one another.
- Display distance relative to each node to object(s).



Sensors 2022, 22, 6880 3 of 19

- Display multilateration of distance information from sensor fusion algorithm.

4. If practical, robot operating system (ROS) deployment for easier development and
off-system high-processing-power data analysis.

A quantifiable environment was designed to test and verify the effectiveness of the
system against its specified requirements. The test area conformed to the following criteria:

- A testing environment that was 5 m in length by 5 m in width by 2.5 m in height.
- Manipulatable objects with measured positions.
- Assumption of no other UWB communication present within the test space.

2. Literature Review
2.1. Ultra-Wideband Communications and Its Context in Localization

Ultra-wideband has been aptly described by Ghavami et al. as “a new engineering
technology” due to the fundamentals that underpin ultra-wideband that have been known
and are in regular use by physicists and RF wizards for over a century [13]. Indeed, the real
innovation alongside the above-stated governmental legalization is the relentless march of
the silicon manufacturers towards cheerfully designing and packing increasingly smaller
transistors on chips in vast quantities. This, in turn, has enabled UWB RF systems that can
have silicon specifically designed to allow for millions of accurate pulses to be output and
received back in a package smaller than a thumbnail [2,13].

The new ease and availability of such systems have allowed researchers and commercial
ventures to fully use ultra-wideband (UWB), as previously stated in the introduction. This
has several critical advantages over its narrow-band cousins [2,13]. These are as follows:

• The high data rate provided by large bandwidth.
• Ranging data combined with communications data.
• Signal penetration through obstacles using total frequency allocation.
• Low power signals that have superior performance in multipath.
• Low complexity and cost hardware for the RF components.

UWB adheres to Shannon’s channel capacity theorem [14], which states:

C = B log2

(
1 +

Signal Power
Noise Power

)
(1)

where, as the bandwidth (B) of the system linearly increases, so does the data rate or
channel capacity (C) without increasing the power used by the system. A high bit rate is
vital to maintaining real-time systems, with most real-time systems working in the 10 s of
milliseconds range. This high speed of communication data through the system can then
be leveraged with a large variety of UWB’s TOF ranging techniques.

These can include angle on arrival (AOA), time difference of frrival (TDOA), and
two-way ranging (TWR). These use triangulation as their base to break timing, range,
signal strength, or angular data down into simple triangle calculations, to compute the
positions of each of the units within the system to be known and continuously updating
at the real-time rate of the system. This system can be arranged in various forms that
functionally represent mesh networks of units, including personal area networks (PANS)
and real-time location systems (RTLS), which can move data around and tell where that
data is coming from in space. Indeed, there has been IEEE standardization around low-rate
wireless personal area networks (LR-WPANs), though not specifically in the field of UWB
but as a broad unifier of similar technologies [15].

Time o f Flight (ToF) =
Tround−trip − Treply

2
(2)

where Tround-trip, also known as round trip time (RTT), is the total amount of time needed
for a data packet to travel from its origin to its destination and Treply denotes the response
time of the sensor. In addition to ToF, there is another commonly used method to measure
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the distance between two devices, which is based on received signal strength indication
(RSSI). This strategy, however, has a number of drawbacks [16]. The main drawback is that
it requires very sensitive equipment to sense the cm level changes in signal strength and
COTS hardware will not provide that level of accuracy.

The frequency allocation that UWB resides in has frequencies at the lower end capable
of passing through solid objects, such as walls and other obstacles in the environment, due
to their long waveforms. This penetration capability and the sheer number of signals output
in UWB systems in the region of millions per pulse grants UWB superior performance in
multipath environments. Even if a percentage of signals are lost, enough get through to
provide a sufficiently accurate impression of the original signal. UWB can operate without
interfering with other narrow-band and wide-band services as its imposed power level is
so low, which has the added benefit of making it less likely to be intercepted or detected by
observers in the areas. The frequency-hopping nature of UWB (carrierless) grants resistance
for unintentional jamming.

RF antennas for UWB are simple to design and categorize: “The simplest UWB
transmitter could be assumed to be a pulse generator, a timing circuit, and an antenna” [13].
Since this paper was written in 2007, more prominent IC manufacturers have become
involved in the market. Despite the increased complexity required to fit the high-speed
digital design, the prices have remained relatively constant with ever-increasing capability
of newer UWB chipsets. This can be seen in Apple fitting UWB technology into their
latest smartphone production models. The company Decawave (now Qorvo) has produced
a series of UWB modules specifically designed to set up a two-way ranging real-time
location system [17]. As a beacon-based localization system, Decawave modules, acting
as anchors, are fixed in place when in use. The first module in the series is the DWM1000,
which researchers have implemented to demonstrate the capability of UWB. For example,
Kempke et al. describe the construction of a three-antenna system capable of localizing
itself within an accuracy of 8 cm median error [18]. Decawave’s next in-series unit, the
DWM1001C, provided an out-of-the-box RTLS system built into it. This has captured
the attention of several researchers who aimed to categorize the system [19] and show
its accuracy and capability. In addition, Jiménez’s work/research is an example of the
limitations of both hardware and closed-source software of the DWM1001C (MDEK1001)
development board, as well as providing a simple method for improving the capabilities of
the system [20].

2.2. Simultaneous Localization and Mapping (SLAM)

As the main objective of this paper was to build a system for object detection and
mapping, the topic of SLAM became particularly relevant. This is especially evident from
the perspective of the ideal shape of this work because what would be produced would
be effectively closer to a multi-agent SLAM system using UWB as the localization system.
This led to literature that better contextualized the idea of SLAM as a broad overview
by characterizing papers that are highly cited or high-level overviews of the topic. For
example, Durrant-Whyte and Bailey aptly describe a brief history of SLAM and how
different variations on it work in practice [21]. SLAM has been an area of constant research
for many years. The field of multi-agent SLAM is the most pertinent to this project, despite
the static nature of both the sensor platforms and the UWB system. As the sensor platforms
will ultimately make a map of each of the environments, this map must be combined
somehow. The concept of map merging in a 3D space is important to the later stages of the
project, as shown in this review of multi-agent SLAM algorithms and concepts.

The earliest work found that could be argued as the progenitor of SLAM would be
the paper [22] on ‘Shaky’ and the camera system employed to allow it to map objects in
its environment. Once mapped, it could then extract ‘ground truth’, or—as stated in the
paper—the “floor boundary” for these objects, and avoid them. A particularly innovative
SLAM method was the MONO-SLAM paper by Davison et al. [23] which allows the system
to need only a single camera to allow it to map key points in its environment. Whilst it
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may be only tangentially related to this project, reduction in the complexity of required
hardware on any robot system is worth looking into as a subject. When in practice, a single
swarm robot unit will not be alone and can gain useful consensus on its data from the
perspective of all the other units in the system. ORB2-SLAM [24] discusses a partial dream
goal idea: creating a SLAM system that is interdependent from the type of sensors it uses.
The paper discusses using various types of sensors and still have the SLAM system be fully
functional. This would, for example, allow a multi-role mission specification; it is a field
that would take the idea of heterogeneous multi-agent platforms to a new level, especially
if the resultant data can be unified under a standard layout.

2.3. UWB in the Context of Robot Platforms Used for Localizations and Mapping

Significant papers published over several years include: [11,25], culminating in the
“Models and Algorithms for use in Ultra-Wideband Localization in Single and Multi-Robot
Systems” [26]. This critical work presented methods to use TDOA and a particle filter-based
(Monte Carlo) localization method. The discussion surrounding how to implement UWB
technology into multi-robot systems involves considerable forethought for how future
work in the field would be done and identifies the barriers that need to be removed to fully
make use of the technology.

Papers throughout the last decade have incorporated the work that others have done
in using Monte Carlo localization (MCL) based approaches to solve completely unknown
starting environments with UWB-enabled robots. Examples of this include Prorok, Bahr
and Martinoli [25], and Perez-Grau et al. [27]. Indeed, the latter represents a paper that
includes some of the key areas of this master’s project, such as the UWB sensors and RGB-D
cameras, but rather than use IMU data combined with UWB data, their system used MCL
to integrate the point cloud data and the UWB sensor data to estimate robot pose. To test
it on more than a single UAV robot would be a viable option for future work related to
our paper.

Work has been undertaken to improve what is already there in the sphere of the math-
ematics supporting robots with Cotera et al. [28] taking the original DWM1000 Decawave
modules and using them to improve trilateration algorithms proposed in the 1990s. As time
has gone on, researchers have found the relative ease of using commercial-of-the-shelf UWB
solutions to provide a platform to quickly implement and test their ideas and algorithms.
This can be seen in Hamer and Dandrea [29], where the authors built their system using
Decawave modules, then using a Kalman filter to take that UWB data, coordinate the
timing of the anchors, and position the drones in space, synchronizing the systems and
allowing a group of four to fly in a circle without interacting with one another or knowing
each other’s locations. Indeed, Kalman filters are regularly used to fuse sensor data in the
form of extended Kalman filters (EKF). Nguyen et al. [30] used COTS UWB technology
to successfully fuse sensor date to control four drones flying in a controlled environment.
Later, Nguyen et al. [31] took the idea of a UWB as a moveable-anchors space to allow a
drone to land on a platform which anchors mark. Combined with onboard camera data,
these could be fused to accurately land a drone on a moving platform.

Being able to move anchors rapidly and accurately has been a topic which has captured
the minds of researchers, as it gives Decawave modules the ability to be used in more
than the static room or building locked scenarios. Almansa et al. [32] proposed the design
of a system which would build upon the existing framework of Decawave modules to
allow them to be in the above scenario. Their system allows for sub-second and highly
accurate recalibration of anchor positions after being moved into a new location. This has
fascinating implications for future work for this project, surpassing the limiting factor of
fixed beacon-based localization. An earlier paper by the same group [33] created a data set
for the community of researchers to use in their experimentations.

The impression illustrated by the literature is to create an ad-hoc, decentralized auto-
calibration subsystem for swarm robot platforms that can be added to any type or shape of
platform, making its application heterogenous in the form of a mesh network. The ability
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to grow and shrink the number of units seamlessly within the system—ideally without
upper limits—may be a goal with wide-reaching impacts and implications. Indeed, the
above work shows a gap in both the research and the market for a generic system with
built-in methods for adding in unifying modal sensor data.

3. Methodologies
3.1. Design

The authors had already considered the shape of the hardware during the proposal,
defined as three main sensor platforms at the time of completion. Each platform consisted
of three principal hardware components: UWB communications module, 3D imaging
sensor, and microcomputer. These were supported by ancillary components: cabling,
battery, 3D-printed case, and tripod, and finally by human interface devices: keyboard,
mouse, and display. For the stretch goal, a UWB radar module would also be required.
Each of the main hardware components will now be addressed.

3.1.1. UWB Communications Module

The Decawave (now Qorvo, Greensboro, NC, USA) DWM1001C Development Board
was selected on the initial bill of materials, due to the regular reoccurrence of the DWM1000
UWB transceiver in literature and its relative low cost. It provides a system centered on the
DWM1000 ultra-wideband (UWB) transceiver IC, controlled by a Nordic Semiconductor
nRF52832 system-on-chip providing both microcontroller and Bluetooth (BLE) interface.
Ancillary is a 3-axis accelerometer STMLIS2DH12TR and DC–DC converter for conversion
from input 3.3 V to 1.8 V, as described by the below diagram from the user documentation.

The development boards provide interfacing/programming options for the units and
power/battery management for all systems. The DWM1001C modules can be flashed
via the dev board J-Link and controlled using SPI, UART, I2C, and Bluetooth, via the
micro-USB port or the Raspberry Pi 26-way pin header, as can be seen in the below diagram
(Figures 1 and 2) [34]. The DWM1001 module runs a two-way ranging (TWR) real-time
location system (RTLS) on its firmware. The system allows the module to be configured
as an anchor, a rag, or a gateway within the RTLS. The anchors act as fixed nodes within
the system, providing a reference point for the system to localize. The tags are the mobile
portion of the system that use a single-sided two-way ranging scheme (see Figure 3).
This lets the tag range between 3 or 4 anchors, and then calculates its position relative to
those anchors.
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The units use the channel access method time-division multiple access (TDMA) to
slot each of the TWR transmissions between anchors and tags into their position within a
TDMA superframe (Figure 4), which is essentially a method of synchronizing each node in
the system to let each of them transmit during their assigned slots within the superframe.
Techniques for avoidance, detection, and resolution of collision of asynchronous messages
allows the DWM1001 firmware to support an extensive array of modules up to 15 tags at
the full update rate of 10 Hz each in a 150 Hz frame, which is twice as many as the number
required to support this project. The full system can support 30 anchors and 9000 tags,
albeit at a drastically reduced update rate [36].

3.1.2. Imaging Sensor

The Intel RealSense D455 is a stereo vision depth camera system comprising two
imaging sensors, an infrared pattern projector, an RGB camera, and an IMU. The vision
components are then unified by the Vision Processor D4, which can combine all the data
into a color depth image, entirely controlled through USB 2.0/3.1. The reason for selecting
an RGB-depth camera over a regular RGB camera is straightforward. SLAM and multi-
agent SLAM can be done with regular web cameras, but the issue is how that information
is inferred and translated into a form manipulatable in a 3D model. As sensor fusion
platforms, the depth camera allows exact distance readings on each pixel detected by
their sensors. Most COTS systems output a point cloud, which has a set of points with
coordinates located in the space of the system localized to a camera frame or a world frame.
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Stereoscopic vision in depth cameras such as D455 use the principle of triangulation
in the form of epipolar geometry to reduce a complex two-dimensional problem into
a one-dimensional one. It does this by seeking matching key points or features on the
two cameras, which are paired as intersection points and estimates the disparities between
them, allowing depth to be calculated. The stereo view of the world must be aligned so
each camera’s data is in parallel to one another. Most stereo depth cameras are designed
to be parallel at the expense of specific lens manipulations, but this eliminates the need
for post-processing to create parallel views. This point detection is crucial at speeding
the searching up as it reduces the number of parameters that the system needs to store to
calculate where the cameras are with respect to an object and possibly each other. In the
visible spectrum of light, key points or features are seen the same way humans recognize
corners, textures, or edges. These features can also be added by artificial pattern generators
such as IR projectors.

There are three cameras on the D455: two identical “imager” cameras that can detect
both infrared and visible light and display that information in monochrome and a “color
sensor”, a standard RGB camera. In the case of the D455, the two images are wide angled
with large overlapping fields of view. The RGB camera can produce synchronized color
images that can be overlaid over the point clouds produced by the system to create RGB
point clouds, with each pixel hue value filled in. The onboard infrared projector allows the
camera to apply an infrared pattern to surfaces that do not have distinguishing features,
for example, a large white wall. By projecting an infrared pattern on the wall, the depth
cameras will now have a known texture (in the form of equally spaced points of intense
infrared light which appear white in monochrome) to perform its depth calculations. This
has the added advantage of being able to use the camera in low-light situations. The depth
field of view at distance (Z) at any distance (Z) can be calculated using the equation below:

Depth FOV =
HFOV

2
+ tan−1{tan

(
HFOV

2

)
− B/Z} (3)

where Depth FOV denotes depth field of view, HFOV represents horizontal field of view of
left imager on depth module, B is baseline, and Z is distance of scene from depth module.

3.1.3. Single-Board Computer

The above two main components/subsystems would need to be linked to allow both
to be run in unison and unify their results locally within the same robot platform. This
fusion of data could then be sent over the network for other uses. Optimally, running the
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UWB module and the RGB-D camera on laptops with suitably modern hardware would
maximize the system’s overall performance. However, this was nixed favoring single-
board microcomputers reducing the cost to ~100 pounds per unit. The two single-board
computers with well-documented backgrounds using the robot operating system (ROS)
were the Nvidia Jetson Nano 4 GB and the Raspberry Pi Model 4 8 GB ram.

A Jetson and Raspberry Pi were compared against one another by their performance
of running a D455 with ROS and the 3D visualization environment—rviz. The Jetson Nano
performed at 15 frames per second (FPS) compared to the Raspberry Pi at 5 FPS, leaving
the Jetson Nano as the single-board computer in this paper. The Nvidia Jetson Nano is
a 260-pin SO-DIMM (NVIDIA, Santa Clara, CA, USA, 2019) (small outline dual in-line
memory module) module that is built around the Nvidia Tegra X1 series system on chip
(SOC); both versions (A02 and B01) of the development carrier board that holds the module
were purchased for this project. In combination with carrier board and module, the Jetson
Nano, referred to as a whole from here on, is a powerful single-board computer designed
to provide AI and IoT embedded applications capable of running a 64-bit operating system.
The Jetson Nano comes with a Linux Image specifically designed to run on the platform.
It is not surprising that Jetson output performed the Raspberry Pi specifically geared to
provide a high-performance integrated graphics processing platform (using 128 CUDA
cores) using only 10 watts of power.

3.1.4. ROS Melodic

Due to the requirement to use Nvidia Jetsons, which provide an image that uses
Linux in the flavor of Ubuntu 18.04 LTS (Bionic Beaver), this work has used the twelfth
robot operating system (ROS) distribution Melodic Morenia. In the academic world, ROS
is becoming a de facto standard for robot software. The practicality of sharing, ease of
integration, and implementing cutting edge research from other researchers in the world
has been leveraged successfully in this paper, thus allowing the use of algorithms and
hardware that would have taken teams of people years to write and test. Each of the ROS
software packages used in this paper are as follows:

• RealSense SDK 2.0 provides the backbone for running all the different types of
cameras in the RealSense series to provide a variety of functionality to support most
projects using either depth or tracking cameras made by Intel.

• DWM1001 ROS Package provides a python interface with DWM1001-DEV board to
the ROS transform “tf” package 3D coordinate frames, allowing the positions of the
Decawave modules with RTLS tied to (0, 0, 0).

• The Point Cloud Library is an open-source, standalone library designed for the pro-
cessing and manipulation of 2D/3D images and point clouds.

• Octomap Package is fully ROS integrated and provides an efficient and simple way
to implement a 3D occupancy grid mapping system, allowing its setup entirely from a
launch file.

• ROS TF Transform allows ROS to display multiple coordinate frames with respect
to time.

• April Tag 3 is a comprehensive open-source visual fiducial marker detection algo-
rithm [37]. The function of the tags is to provide a precise 3D position that can be
referenced against the point cloud. This ROS wrapper drew this project’s attention
due to its easy implementation, for example, the markers edge length can be easily
customized in the set-up software to suit any system. Early testing of the package
showed that the system could easily detect 12 tags close to one another up to a range
of 2 m, with the tags being 4.15 cm to an edge. These are characterized in ROS as 3D
coordinate frames representing each detected tag from the perspective of the camera
topic provided to the package.

• IMU Tools: Madgewick Filter transforms the acceleration (m/s2) and angular velocity
(rad/s) into orientation quaternion data in the ROS sensor_msgs/Imu.msg field;
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Rqt_reconfigure program was built to create a measurement tool and offset fixer that
allowed an “alignment frame” to be generated.

3.2. Unification

Once the above hardware and packages were integrated and tested on either the
Nvidia Jetson or the laptop acting as the ROS master and processing hub, these were then
unified with the below plan on feeding data from the sensor platforms to the laptop.

3.2.1. Sensor Platform

The Jetson Nano is connected to MDEK1001 and the D455 RealSense Camera via a
USB to Micro-B USB and USB 3.0 to USB-C, respectively. All sensor platforms are pointed
in the direction of the world frame; they are then rotated towards the test area once all their
packages are turned on. These are connected as follows, shown in Figure 5:
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The gyroscope and accelerometer data in the form of angular velocity and acceleration are
passed to the Madgewick filter to output a 3D coordinate frame called imu_alignment_frame.
This can then use a static transform publisher to position the point cloud frame “depth_
colour_frame” on top of it in the corrected orientation relative to the camera link (the
camera group hub of D455 frames). This produces a movable- in-orientation point cloud
view of the area currently in front of the camera relative to the camera link. At the same
time, the Decawave module has its position read by the package and the world frame at
(0, 0, 0) coordinate created with real anchors and the tag module positioned relative to the
world frame. Using another static transform, the camera link is positioned onto the model
position of the tag. This allows the point cloud to move in sync with the tag as it is updated.
The point cloud output by the D455 is bandwidth-intensive, so it is down sampled using a
voxel grid, with a leaf size set between 0.01 and 0.05. At 0.03, the bandwidth requirement
calculated by ROS is reduced from 100 MB/s to 10 MB/s. This down sampled point cloud,
which is moveable in orientation and position, is then sent over the Wi-Fi or is tested on
the Jetson within rviz.
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3.2.2. Laptop

The moveable point clouds from the three Jetsons in the system are received over
the Wi-Fi on the laptop. The point clouds topics are passed to the PCL concatenation
algorithms, which turns them into a single point cloud. This point cloud can then be passed
to Octomap to begin building a map of the environment as the cameras move around in
orientation and position and the results are displayed in rviz. Rqt_reconfigure is used to
manually align the point clouds together with respect to camera one. At the same time,
the compressed camera image topics from each camera are passed to 3 duplicate April tag
packages. This begins a search for tag 0–3 in their images. If detected, the transforms of
the April tags are then placed into the system at the correct position in space relative to
the camera that saw it; this should be superimposed upon the combined point cloud. A
diagram of this is shown in Figure 6.
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Hector trajectory mapping can be used to map the trajectory from their starting
position in the environment. If the aligned_depth_to_colour_frame is fed to the hector
trajectory mapping, the system will also include the orientation at each measured stage of
the trajectory line, not just positions if the tag is used. A copy of the full rqt_graph has been
enclosed as a supplementary material of the paper (Figure S1).

3.2.3. Subsidiary Design

A 3D-printed housing (see Figure 7) was designed using the simple expedient of
downloading each 3D CAD model of the system’s three main components and importing
them in Fusion 360. Once imported, the fixing locations of each of the components were
found, and then a flat plate with the relevant hole locations extruded was aligned with the
D455 camera at the front, the DWM1001-DEV in the middle, and the Jetson at the back. This
design was tested out, and it was considered more practical to use the MDEK1001 chassis
slotted into the side of the solid model, with two attachment points for the camera on the
front and the Jetson on the back. After dimensioning the MDEK1001, the final design, as
seen below, was implemented with a tripod stand dovetail attachment point offset at the
maximum length of the display port jack attached to the Jetson plus four centimeters. This
large block was then holed to reduce printing material amounts.
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4. Experimental Studies

To satisfy the fourth contribution of the paper, the system would need to be categorized
within a 5 × 5 × 2.5 m test space. This test space would have manipulatable objects
which could be used to test the capabilities of the system. All 3D coordinate frames were
positioned relative to the world frame. This has the advantage of tying in both orientation
and positions of all data as individual frames with a global reference point, without
displaying segments of the data not relevant by themselves (e.g., gyroscope output). This
data unification also allowed the use of the tf suite of commands, such as the ability to
query for specific transforms between frames and track the frames through time inside rviz.

Tied to some of the frames were point clouds generated by the depth cameras. Point
clouds represent a matrix of coordinate data points in space (in this case, 3D space), which
are also tied to the world frame via their origin frame. The majority of the data used in the
system was generated from the point clouds.

4.1. Set-Up

To set up the test area for the project, two spaces would have to be set up, one over
the other, to support the project. The first would be the area described in contribution four
as a 5 m × 5 m × 2.5 m test space, and the second, the fixed anchor locations of the RTLS
network. The test area was made by taking a tape measure and measuring a square 5 m to
a side. This was then marked out using a string cut to length, and the center of the square
was specified at the (2.5, 2.5) coordinate. Around this, in a dotted square pattern, was a
measured set of marker points, 1 m away from the center point. The space was then verified
again using a laser tape measure. This was to establish an error-free ground truth for the
system as the best possible physical measure of the space, given the current constraints of
human error (See Figure 8).

The anchors were set up using a laser tape measure to measure the height (z-axis)
of the anchors from floor to ceiling with a suitable offset to account for the center of the
MDEK1001 chassis. This value was shown as 2.85 m. (x-axis, y-axis) coordinates of anchors
measured using a laser ruler are as follows:

• Initiator Anchor “Orange” at (0, 0) coordinate.
• Anchor “Pink” (7.13, 0) coordinate.
• Anchor “Blue” (0, 7.05) coordinate.
• Anchor “Yellow” (7.128, 7.15) coordinate—this is due to the room not being completely

uniform regarding optimal positions for the anchors.
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The camera units of the system were located by placing their tripods over the corners
of the test area. The camera units center point was positioned relative to the corner, using a
weight on a string on the tripod (see Figure 9). The cameras were levelled using a two-stage
method of aligning the two spirit levels built into the tripods for leg length and pitch
verified with a digital laser level (RockSeed LV1).
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4.2. Method for Measuring

As the measurement area and its baseline ground truth were established, the system’s
performance could now be categorized to test the alignment accuracy of the cameras
relative to their point clouds and measured. To do this, there was a two-stage measurement
process. The cameras were set up as detailed in the technical description, and the April tag
package was set up to detect tags 0–3. These tags were then attached to a cardboard box
with 20 by 20 by 30 cm dimensions. This allowed the cameras to report the tag positions
that they detected relative to their camera reference frame. The cameras pointed toward
the center of the test space from their positions at the corners. The April tag box was placed
on each of the nine marked locations at the center of the test area, labelled 1 through 9 left
to right from the start at the bottom left-hand corner (See Figure 9).

As the April tag box was moved between the nine positions, the tags detected were
recorded as relative positions to the cameras that detected them. For simplicity, it was
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ensured that tag 0 was measured by camera 1, tag 1 by camera 2, and tag 2 by camera 3. A
laser ruler (DTAPE DT50) was aimed, from each camera sensor, at the center of the April
Tags, where transforms are created in the program and the value measured. The results of
the relative position of tags 0–3 to cameras 1–3, at positions 1–9, were recorded along with
the laser tape measure data at positions 1–9. This concludes the qualitative testing method.

4.3. Experimental Results

What follows are the results of the test detailed in the previous section. The system
results are simple to interpret: the laser ruler’s data is effectively the hypotenuse of a
right-angle triangle from the camera position to the April tag box in 3D, so this data does
not need to be modified before use. The relative position data for the camera to the tag must
be run through a 3D Pythagorean theorem equation before it will return a 3D Hypotenuse
that can then be compared to the laser ruler data. The formula for this is as follows:

3D Hypotenuse =
√
(x2 + y2 + z2) (4)

where (x, y, z) denotes the coordinate of a point in Cartesian space.
The data was recorded into Excel for faster manipulation and display. Table 1 shows

the values, and Figure 10 illustrates their distribution under three cameras. The results
were compared to positions 1 through 9, and their values were displayed as scatter plots.

Table 1. Testing Data Display.

x y
Position 1 1.5 1.5

Position 2 2.5 1.5

Position 3 3.5 1.5

Position 4 1.5 2.5

Position 5 2.5 2.5

Position 6 3.5 2.5

Position 7 1.5 3.5

Position 8 2.5 3.5

Position 9 3.5 3.5
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The results show the system’s expected pattern from each camera’s perspective, from
the known quantity of the positions in the square-dotted pattern used to place the tripod.
Each camera has a pattern that can be interpreted as to its perspective. As the system is
left to right going upwards in the 1–9 April tag box positions, camera 1 in Figure 11 can be
closest to the April tag box and moving away as the position number increases. Camera 2
in Figure 12 shows the same 3-stage pattern but split from the camera’s perspective on
the “middle” corner between cameras 1 and 3 from the clockwise perspective beginning
at camera 1. Camera 3 is mirrored on camera 1, with it starting further away and getting
closer, as seen in Figure 13.
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The previous graphs were in meters and the actual error calculated for the system
was too small to accurately show on such a large range. The above box-and-whisker plot
was made to show the difference error between the laser tape measure and the relative
tag position reading from the perspective of each camera. Camera 1 represents the most
stable data with an upper and lower quartile difference of 5 cm, with the maximum and
minimum just over 10 cm apart. The camera has its data values closest to zero but slightly
weighted on the negative side. Cameras 2 and 3 have similar sizes of boxes, with a 10 cm
difference in their upper and lower quartile with larger errors between the laser data and
the relative tag position data. The major difference between camera 2 and camera 3 is the
large 83 cm outlier. This has been removed from camera 3 as it distorts the entire diagram.

The percent error has been calculated by camera, with camera 1 being 1.1%, camera 2
being 1.67%, and camera 3 either being 1.6% without its outlier or 3.57% with it included
(shown in Figure 14). After all the errors have been normalized, the average overall error is
4.69 cm, excluding the 83 cm outlier, and 7.79 cm with it included. There has been extensive
testing/debugging of the system throughout building and testing, albeit without a specific
test method in place. It has thereby been visually verified that elements of the system are
working within the specification defined by the ROS packages that run them. The relevant
visual results can be found from the enclosed videos.
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5. Conclusions

This paper answered the research question—can ultra-wideband technology be used
to effectively localize a robot with sensor fusion?—by making four contributions. The main
aim has been to build a set of networked sensor platforms, which has since been developed,
tested, and verified in a quantifiable environment. The system is a unification of 3D sensor
data and IMU data from the D455 RealSense RGB-D camera. The UWB localization system
provided by the MDEK1001s in their RTLS arrangement, and the Jetson Nano providing
the electronic ‘glue’, unifies both modules and connects them to the Wi-Fi network with
other platforms in the system. Contribution 1 was based around using an ultra-wideband
drop-in/drop-out RTLS network backed up with Wi-Fi for large data transmission, and the
accuracy throughout remains <5 cm. Contribution 2 was to develop a 3D sensor subsystem
capable of mapping and object detection, and it was found to be capable of working
accurately at the largest length present in the test area of 7.5 m with the maximum error at
13.88 cm, which is less than half the minimum required value of 30 cm. Contribution 3, to
combine the systems and control them through a master computer, has been accomplished
using the ROS as the base control platform. For contribution 4, the April tag box, chairs,
whiteboards, and people provided moveable objects within the environment for the system
to detect and map with the average error being half as much as the required accuracy of
the system.

This technology can be used in any indoor robot localization system, such as for large
warehouses or maid robots (cleaners, vacuums, hotel staff); the systems are practical in
outdoor environments provided the inverse system is applied. For example, the robots
carry the anchors (with appropriate mathematical changes to the range finding) and the
humans/other robots have the tags. The large bandwidth, if synced correctly, allows multi
overlapping meshes of anchors and tags as the robots connect to one another within their
environment. In the short term, this can be represented as simply as a large outdoor robot
such as a tractor being able to follow and avoid a human with a tag.

However, the MDEK1001 has a range of 200 m (in best conditions); this is a power-
restricted range and, for general use, is unreliable, which restricts the total operational range
to 20–30 m reliably. Interestingly, this technical limitation of the low-power units is entirely
a design choice, which is defined by the intended use of the hardware. Subsequently, if
researchers take the time to develop a UWB system that has a variable power level and a
full bandwidth use of the technology (rather than being limited to channel 5–500 MHz)
but a multi-GHz bandwidth, the system would get a huge data rate and range increase
in a single stroke [38]. Although, admittedly, this is well beyond the scope of this paper,
it is possible in theory; the modern application of UWB that is currently in industry use,
i.e., robot positioning and use in smart phones, simply did not require this range so the
hardware did not develop down this path. Inspired from the literature [39], the future
direction should be to develop a combined UWB communications module and UWB radar
module to create a single solution using only UWB technology.
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//www.mdpi.com/article/10.3390/s22186880/s1, Figure S1: Full rqt_graph output of base system.
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