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Abstract: The research described in this paper aimed to determine whether people respond differently
to short and long stimuli and whether stress stimuli repeated over time evoke a habituation effect. To
meet this goal, we performed a cognitive experiment with eight subjects. During this experiment,
the subjects were presented with two trays of stress-inducing stimuli (different in length) interlaced
with the main tasks. The mean beta power calculated from the EEG signal recorded from the two
prefrontal electrodes (Fp1 and Fp2) was used as a stress index. The main results are as follows:
(i) we confirmed the previous finding that beta power assessed from the EEG signal recorded from
prefrontal electrodes is significantly higher for the STRESS condition compared to NON-STRESS
condition; (ii) we found a significant difference in beta power between STRESS conditions that
differed in length—the beta power was four times higher for short, compared to long, stress-inducing
stimuli; (iii) we did not find enough evidence to confirm (or reject) the hypothesis that stress stimuli
repeated over time evoke the habituation effect; although the general trends aggregated over subjects
and stressors were negative, their slopes were not statistically significant; moreover, there was no
agreement among subjects with respect to the slope of individual trends.

Keywords: EEG signal; stress; habituation; repeated stimuli; stimulus length

1. Introduction

Stress is an inevitable part of life. Regardless of age, gender or place of residence,
humans experience tensions associated with various situations. These tensions manifest
themselves in many different ways. Some people react with excessive sweating and
others with acid stomach, backache, muscle tension, headaches, or rapid heartbeat [1,2].
Sudden emotional stresses can also trigger heart attacks, arrhythmias, and even sudden
death [3]. Stress is a highly personalised phenomenon that varies depending on individual
vulnerability and resilience [4].

The term stress is inconsistently used in the scientific literature. It may refer to a
stimulus, a response to a stimulus or the physiological consequences of that response [5].
One of the definitions of psychological stress widely accepted in the field defines stress as a
particular relationship between the person and the environment that the person regards as
taxing or exceeding his or her resources and endangering his or her well-being [6]. Stress
can affect a person positively or negatively; in other words, it can facilitate as well as
impair performance [7]. On the one hand, stress may motivate a person to perform better,
increasing their effectiveness simultaneously. On the other hand, stress can deteriorate
the effectiveness of a task, and in extreme cases, it can even paralyse a person completely.
It can sometimes be severely damaging or traumatic, leaving the developing individual
permanently impaired, for example, by forcing withdrawal from life activities [7].

Psychologists mention the following two types of stress: acute and chronic. While
acute stress is the result of demands and pressures of the recent past as well as those
anticipated in the near future, chronic stress is due to long-standing pressures and de-
mands, including those experienced as a result of socioeconomic conditions, difficulties
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in interpersonal relationships or an unsatisfying career [8]. Acute stress can emerge in
situations such as test taking, meeting new people, or providing a speech in front of a
large audience or can be evoked by a sudden unexpected event, unpleasant music or time
pressure. In other words, it is triggered by episodic stressors, i.e., discrete events with a
beginning and ending [9]. Stress can therefore appear suddenly as a result of a current
situation or can accumulate gradually throughout a daily routine. At the same time, it can
disappear quickly or can last for an extended period. Some people become used to stressful
situations, while others do not. However, for both types of people, it might have a negative
impact on health or even lead to illnesses such as depression [9].

Since different people react to stress differently, it is difficult to monitor stress levels
accurately. In the past, a number of questionnaires were developed to measure stress
perceived by individuals [10], such as Cohens’s Perceived Stress Scale (PSS) [11,12], Stress
Response Inventory (SRI) [13], and Hamilton Depression Rating Scale (HDRS) [14]. Those
psychological questionnaires are widely used but are also criticised since they introduce
subjective bias into stress assessment. However, since stress presents itself via biomarkers
and physical expression [8], it can be measured not only subjectively but also objectively by
measuring physical reactions and physiological changes [15]. The methods that assess stress
levels by analysing physical reactions typically focus on observing changes in behaviour,
body gestures [16], speech [17], eye activity [18–20] or facial expression [21,22]. On the
other hand, methods from the second group measure the reactions not visible from the
outside, i.e., reactions such as changes in cortisol level [21], heart activity [23], brain
activity [24–32], muscle activity [33,34], blood activity [35,36], respiratory response [37] or
sweating response [38,39].

Since the stress mechanism begins in the brain [15], the stress level is often assessed
through direct monitoring of brain activity, either with neuroimaging techniques such as
fMRI (functional Magnetic Resonance Imaging) or techniques that record temporal changes
such as fNIRS (Functional Near-infrared Spectroscopy) or EEG (Electroencephalography).
Among those three, EEG is often chosen due to its long and well-established history and
excellent temporal resolution, which is essential for measuring the development of stress
response over time. Although the EEG technique cannot provide complete insight into
the two of the three brain regions recognised as the most important for building the stress
response (the hippocampus and amygdala) [40], the third region, the prefrontal cortex, is
suited to this technique.

EEG measures the electric fields generated by the sum of the momentary post-synaptic
potentials in the brain [41]. The EEG signal recorded in time by electrodes located over
different brain areas is usually analysed either directly in the time domain by assessing
the amplitude and latency of the peaks and troughs of event-related potentials (ERPs) or
after transformation to the frequency domain by assessing the power of rhythms in some
specific frequency bands. Most stress analysis studies adopt the second of the mentioned
approaches and assess the changes in stress level via alterations in power in specific
frequency bands over specific brain regions. Traditionally, the whole EEG frequency band
is divided into the following five smaller bands: delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma > 30 Hz. Out of all those bands, alpha and beta
bands (and their combinations) are usually used to study responses to stress stimuli.

Although there are some conflicting results in spectral features analysed in stress
studies, stress conditions are considered to decrease the alpha activity and increase the
beta activity [15]. While beta power indicates that a human is in an alertness condition,
alpha power is usually related to the relaxation condition [27]. Many independent studies
have confirmed these two tendencies. For example, [28] reports a significant decrease in
alpha rhythm power (p < 0.01) and an increase in beta rhythm power (p < 0.02) in the
prefrontal cortex (PFC) under the stress condition. Similar results were shown in [42],
where it was found that the alpha/beta and theta/beta ratios are negatively correlated with
stress. Further, in [27], it was reported that the high-stress group (the group performing
the IQ test) featured less alpha and more beta energy over the PFC than the three control
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groups (performing no task at all). On the other hand, in [43], where the effect of an
indoor environment on stress level was analysed, higher relative high-beta power over
temporal brain areas was reported for the stress condition (temperature 30 ◦C, odour
irritants, traffic noises) compared to the relaxed condition (temperature 25 ◦C, non air
pollutant, nature sounds).

Habituation is traditionally defined as a behavioural response decrement that re-
sults from repeated stimulation and that does not involve sensory or motor adaptation
or fatigue [44,45]. This process occurs in the nervous system of all living organisms. All
behavioural responses, as well as autonomic and EEG responses and signs of arousal,
habituate rapidly and to a profound degree. Behavioural responses that undergo habitua-
tion may include any final output of the nervous system, including pupillary responses,
sweating, muscle contraction, hormone release, molecular responses, or neuronal activity,
including population activity measured with EEG or functional imaging [44].

One of the first studies, where the habituation phenomenon was analysed via the
changes in EEG signal, was that performed by Sharpless and Jasper [46]. Using repeated
stimulation with brief tones, they found that cortical EEG arousal of sleeping cats becomes
progressively shorter, and with time it disappears entirely. After stopping the stimulation,
the arousal response recovers to the initial value, although it may take some time, ranging
from several minutes to hours [47]. Four years later, Sokolov [48] showed that the human
alpha blocking response—a human equivalent of EEG arousal in cats—habituates tactile,
auditory and visual stimulation.

Habituation to repeated stress stimuli has been analysed in terms of different phys-
iological and behavioural responses. The approach that is taken most often in stress
habituation studies is that of hormonal habituation [49–51]. Among others, approaches
analysing blood pressure and heart rate [52], blood coagulation parameters [53], or car-
diovascular reactivity [54] are also reported. Although the research on EEG tracks of
habituation started a long time ago, very few studies analyse alterations of EEG signals
in terms of repeated stress stimuli. In this paper, we aim to contribute to this domain and
analyse the electrical brain response to a stress stimulus repeated in time.

The research described in this paper focuses on the following two main questions:
(i) Does the subject respond differently to short and long stimuli of the same type? (ii) Does
the subject’s brain activity, measured with EEG electrodes, habituate to stress stimuli
repeated over time? To shed light on both questions, we designed an experiment composed
of two main tasks and carried it out with eight subjects. During the first task, the subject
was reading the text, and during the second task, the subject solved a simple quiz composed
of a set of single-choice questions. In both tasks, every 3–4 min, a pop-up window with a
stress-inducing question appeared on the screen, interrupting the main task. The stress-
inducing questions differed significantly in respect to their length, from precisely 5 s in the
first task to 2 min (or less) in the second task. The stress was induced on the subjects via
time pressure, unpleasant sounds, and flashing lights. The mean beta power calculated
from the EEG signal recorded from the two prefrontal electrodes (Fp1 and Fp2) was used
as a stress index.

The main results of the experiment were as follows: (i) we confirmed the previous
finding that beta power assessed from the EEG signal recorded from prefrontal electrodes
is a good predictor of stress response—in Task A, the beta power for the STRESS condition
was almost three times higher than in the NON-STRESS condition; in Task B, this ratio
was smaller but also statistically significant; (ii) we found a significant difference in beta
power between stimuli that differed in length—the beta power was four times higher for
Task A, where very short stimuli were used compared to in Task B, where significantly
longer stressors were applied; (iii) we did not find enough evidence to confirm (or reject)
the hypothesis that stress stimuli repeated in time evoke the habituation effect—although
the general trends aggregated over subjects and stressors were negative, their slopes were
not statistically significant either for Task A or Task B; moreover, there was no agreement
among subjects in respect to the slope of individual trends.



Sensors 2022, 22, 6862 4 of 17

This paper is structured as follows. Section 2 provides information on the experimental
setup, data collection process, and the procedures used for EEG signal processing. Section 3
presents all the results together with their statistical analysis. Finally, Section 4 provides the
interpretation of the findings reported in the paper.

2. Materials and Methods

An experiment with eight healthy subjects (students of Computer Science) was
conducted to test the subjects’ response to stress-inducing stimuli of different length.
All subjects were right-handed and reported no mental disorders. The subjects’ de-
mography is presented in Table 1. The experiment was conducted under the permis-
sion obtained from the Bioethical Committee of the Medical Chamber in Szczecin (OIL-
Sz/PH/KB/452/01/04/2020) and in accordance with relevant guidelines and regulations
stated in the Declaration of Helsinki. Informed consent was obtained from all subjects.
Before the onset of the experiment, each subject was introduced to its basic structure.

Table 1. Subjects’ demography.

Subject Age Gender Nationality

S1 22 Male Polish
S2 24 Male Polish
S3 24 Female Polish
S4 22 Male Polish
S5 24 Male Polish
S6 23 Male Polish
S7 22 Male Ukraine
S8 23 Male Polish

The experiment was conducted as a competition to motivate the subjects to higher
engagement and increase their stress level. The subjects were informed that 50% of the best
performing participants would be rewarded at the end of the experiment. Each subject
participated in the experiment individually without communication with others, and his
performance was evaluated based on the number of correct answers.

The experiment was composed of two main tasks, Task A (reading comprehension
task) and Task B (basic knowledge single choice quiz). Both tasks started with a short
calibration phase divided into two stages. The first stage aimed to relax a participant before
the main task. During this stage, a subject was asked to listen to a piece of anti-stress
music (with eyes opened). After thirty seconds, the relaxation stage was finished and the
participant performed a pseudo-Stroop number test. During the test, the pairs of different
numbers were displayed on the computer screen. Both numbers from each pair differed
significantly in the font size. The subject’s task was to choose a number that was greater in
value. The time allowed for providing an answer was limited to 800 ms. When a subject
chose a wrong number or the time ran out, there was a loud ’error’ noise and the screen
flashed for 2 s to instruct the subject that a mistake was made. After five mistakes, the test
ended and the main part of the experiment started. The order of tasks (Task A and Task B)
was chosen randomly for each participant to ensure that it did not influence the stress level.

In the reading comprehension task (Task A), the participant read a text displayed on
the computer screen. The text conveyed an exciting but quite dark and mysterious story.
When building the creepy atmosphere, quiet, peaceful music was played in the background.
When the reader reached a certain point in the text, a window with a single multiple choice
question regarding the previously read part of the text appeared in the central part of the
screen. The subject had only five seconds to read the question and the possible answers
and choose one of them. After that time, the window disappeared from the screen, and the
subject could return to the reading task. The pop-up window was meant to induce stress in
participants in the following four ways: a sudden change in the screen, flashing colours
inside the window, a change in music - from quiet and peaceful to loud and unpleasant,
and a large stopper showing the running time. During the whole task, ten stress-inducing
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questions were displayed for each participant. The order of events in Task A is presented
in Figure 1.

Figure 1. The order of events in Task A.

Task B was a single-choice quiz composed of questions testing the subjects’ common
knowledge. The questions, with four possible answers, were displayed one at a time on
the computer screen. The subjects finalised their answer by clicking on the ’Next question’
button displayed at the bottom of the screen. The time given for answering each question
was unlimited. Every 3–4 min, a window with a stress-inducing question was triggered.
Questions of that type were composed of many stages and were limited in time to up to
two minutes. They also appeared on the screen as pop-up windows (similar to Task A) and
were accompanied by loud music, flashing colours inside the window, and a large stopper
showing the running time. There were two types of stress-inducing questions: questions
asking the subject to choose a correct category for a given object and questions asking the
subject to order objects correctly. Each stress-inducing question was composed of a set of
sub-questions reappearing in the window precisely after the subject finished answering the
previous sub-question. The subject task was to answer all the sub-questions as quickly as
possible but within the 2 min time limit. During the whole task, nine stress-inducing sets
of questions were displayed for each participant. The order of events in Task B is presented
in Figure 2.

The subjects’ brain activity was recorded with an EEG cap during the experiment. EEG
data were collected from 19 monopolar channels at a sampling frequency of 500 Hz. The
electrodes’ positions were set according to the International 10–20 system [55]. The ground
electrode was attached at Fpz, and the reference electrode at a left mastoid. The impedance
was kept below five kΩ for all electrodes. The signal was acquired with MITSAR 202
amplifier [56], recorded with Mitsar EEG Studio Acquisition software [57], and processed
and analysed in a Matlab environment [58].
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Figure 2. The order of events in Task B.

A set of filters was applied to clean the EEG signal and prepare it for further analysis.
First, a pair of Butterworth temporal filters of the 4th order was used to attenuate the
signal outside the 0.5–40 Hz range, a high-pass filter with a cut-off frequency of 0.5 Hz
and a low-pass filter with a cut-off frequency of 40 Hz. Next, a spatial filter was applied
to remove EOG (electro-oculographic) artefacts. A Matlab implementation of the FastICA
algorithm [59] was used to manage this task. The artefact components were identified based
on the signal power in the 2–4 Hz frequency band. We removed components whose power
exceeded the mean power calculated over all available components by three standard
deviations. The remaining components were used to reconstruct channel signals from the
two prefrontal electrodes, Fp1 and Fp2. Although the EEG signal was recorded from all
19 sides, only two channels were applied in further processing and analysis. The final filter
used in the preprocessing stage was a median filter with a kernel length of 40 samples. The
task of the median filter was to eliminate episodic spiking artefacts (outliers). The outliers’
thresholds were set to the 0.1 and 99.9 percentiles. Figure 3 presents the effect obtained after
applying each of the mentioned filters on the signal recorded from Fp1 and Fp2 channels
from subject S1 performing Task B.
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Figure 3. The preprocessing procedure via signal recorded from subject S1 performing Task B; left
column of plots—Fp1 channel, right column of plots—Fp2 channel; (a) raw signal, (b) signal after
temporal filtering, (c) signal after spatial filtering, (d) signal after median filtering, (e) signal divided
into epochs, each vertical line corresponds to the epoch onset (the epochs’ order is presented in
Figure 2).

The EEG signal was split into epochs when the processing stage was finished. Forty
two epochs were extracted for each subject: (i) relax A, (ii) pseudo-Stroop test A, (iii) ten
text reading epochs from Task A (non-stress condition), (iv) ten stress-inducing questions
from Task A, (v) relax B, (vi) pseudo-Stroop test B, (vii) nine standard questions from Task
B (non-stress condition), and (viii) nine stress-inducing questions from Task B. Next, the
signal in each epoch was described by a single feature—a relative signal power in the beta
frequency band (13–30 Hz). To obtain the relative power, the signal power in the beta band
was divided by the total signal power, i.e., by the signal power in the whole 0.5–40 Hz band
(Equation (1)).

Power =
Beta power
Total power

∗ 100% (1)

The relative signal power was calculated separately for the two prefrontal electrodes
(Fp1 and Fp2). Next, both values were averaged to obtain one characteristic for each event.
To align results across the subjects, the powers obtained for each subject from all 42 events
were gathered together and normalised according to min-max normalisation (Equation (2)).

PowerNi =
Poweri − min(Power)

max(Power)− min(Power)
(2)

where Poweri, PowerNi—original/normalised power value of i-th event; max(Power),
min(Power)—maximum/minimum power calculated over all events for a given subject.
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3. Results
3.1. Stress vs. NON-STRESS Condition

We started the analysis by testing whether the subjects’ brain activity differed signifi-
cantly between the STRESS and NON-STRESS condition. To this end, we performed two
paired-samples tests. The first test tested the significance of beta power difference in Task
A, and the second did the same for Task B. The significance level was set to 0.05 for these
two tests and all other tests reported in this paper. Before running the tests, all four groups
(STRESS and NON-STRESS for Task A and STRESS and NON-STRESS for Task B) were
tested against the normality condition with a Lilliefors test. The Lilliefors tests did not
provide evidence to reject the null hypothesis for the STRESS group in Task A but showed
a significant deviation from normality for all of the other three groups (p-value < 0.05).
Therefore, to test whether the STRESS and NON-STRESS conditions differed significantly in
both tasks, we used a non-parametric paired-samples test by testing the medians difference,
namely the Wilcoxon signed-rank test. To maintain consistency throughout the study,
the same test was used in all further analyses, apart from the cases where the groups of
different sizes were compared. In such cases, a non-parametric independent-sample test
was used, namely the Wilcoxon rank sum test.

The Wilcoxon signed rank test showed that the difference in medians calculated for
the STRESS vs NON-STRESS condition was significant for both tasks (p-value = 0). As can
be noticed in Figure 4, the difference in medians for Task A was very high (the beta power
increased by 163% for the STRESS condition compared to the NON-STRESS condition)
and much lower for Task A (36% increase in beta power was observed). When analysing
each stress-inducing question individually, almost all agreed with this general tendency.
Figure 5 presents the beta power (median over subjects) for each event from both main
tasks. As can be noticed in the figure, the median of the beta power calculated over all
stress-inducing events from Task A exceeded that calculated for non-stress-inducing events.
Moreover, all of these differences were statistically significant (p-value < 0.05). In the case
of Task B, most pairs of events also agreed with the general tendency, but there were three
questions (Q3, Q4, Q5) where the medians were almost at the same level for both STRESS
and NON-STRESS conditions.
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Figure 4. STRESS vs. NON-STRESS condition—difference in medians for Task A and Task B.
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Figure 5. STRESS vs. NON-STRESS condition—difference in medians across events in Task A (a),
and Task B (b); Q: Question.

Figure 6 shows that the tendency presented in Figure 4 was also stable across subjects.
Only for subject S6 in Task A and subject S2 in Task B was the beta power slightly higher
for the NON-STRESS condition, but these differences were insignificant (p-value > 0.05).
For all other subjects in both tasks, the beta power in the STRESS condition was higher than
in the NON-STRESS condition. Moreover, these differences were statistically significant
(p-value < 0.05) for most of the subjects. Only for subject S7 were the differences in medians
across conditions not significant (p-value > 0.05). Figures 4–6 validate our experimental
setup, i.e., they show that subjects were more stressed during answering pop-up questions
than reading the text (in Task A) or during answering the stressful question than standard
ones (in Task B). Hence, these figures set the ground for further analysis.
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Figure 6. STRESS vs. NON-STRESS condition—difference in medians across subjects for Task A (a),
and Task B (b); S: Subject.
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3.2. Short vs. Long Stimuli

The first of the two main goals of our paper was to test whether short stimuli are
significantly more stressful than longer ones. To deal with this task, we performed another
test, testing Task A against Task B under the STRESS condition. Because both groups’ sizes
were unequal, we used the Wilcoxon rank sum test. The test showed that the difference in
medians between both tasks was highly significant, with p-value = 0. To verify whether
that result was consistent across subjects, we performed eight additional rank sum tests,
testing task differences (under the STRESS condition) for each subject separately. Almost
all tests (except the test performed for subject S7) provided evidence for rejecting the
null hypothesis, testing the equality of medians (p-value < 0.05). Figure 7 presents the
differences in medians across subjects. As can be noticed in the figure, the results are highly
consistent; all medians calculated for Task A exceeded those calculated for Task B. This
indicates that the short stimuli provided in Task A placed much higher pressure on subjects
than longer stimuli provided in Task B. Of course, it should be mentioned here that not
only the medians for the STRESS condition were higher for Task A. As shown in Figure 4,
the general stress level during the whole of task A exceeded that of Task B. However, while
in the non-stress-inducing parts of the tasks the stress level was only two times higher for
Task A, the stress-inducing parts were four times more stressful in Task A than in Task B.
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Figure 7. Task A vs. Task B—difference in medians across subjects for the STRESS condition;
S: Subject.

3.3. Stress over Time

The second goal of our analysis was to determine whether subjects could adapt to the
stress-inducing stimuli over time. We assumed that if we applied the same type of stimulus
multiple times, the habituation phenomenon would be induced in the subject’s brain. We
began the verification of this assumption by testing if there was any statistical difference in
the pseudo-Stroop test performed at the beginning of the experiment and after finishing
the second task. Since the order of the tasks was assigned randomly to each subject, we
had to rearrange the data according to time. Figure 8 compares the medians calculated for
STROOP (and RELAX) events in two layouts. The first two pairs of medians (in the first
subplot) compare the events arranged in time (FIRST vs SECOND), and the second two
pairs of medians compare the events arranged in tasks (Task A vs. Task B).
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Figure 8. The comparison of medians for RELAX and STROOP events arranged in time (a), arranged
according to tasks (b).

As can be noticed in the first subplot in Figure 8, the median calculated for the STROOP
event was slightly higher for the second task than for the first one. However, this difference
was not statistically significant (Wilcox signed rank test returned p-value equal to 0.3125).
This difference could be caused just by the difference in STROOP events in both tasks
(also statistically insignificant—p-value = 0.7422), which can be observed in the second
subplot in Figure 8. Hence, the comparison of the two stress-inducing events did not show
any habituation effect; rather, we observed the opposite with the second occurrence of the
STROOP event placing slightly higher, instead of lower, pressure on the subjects.

The STROOP event occurred only twice during the whole experiment. This could be
the reason for the lack of habituation in time. Therefore, to find out if more stress-inducing
stimuli of the same type might evoke the habituation tendency, we analysed the stress-
inducing events triggered during both main tasks. We started with task A, where subjects
faced ten stress-inducing questions. We plotted the beta power calculated for each pop-up
question to determine the tendency and evaluated a linear trend. We assumed that if a
subject habituates to stress induced by the succeeding questions, the power values would
be smaller with each question. Next, we did the same for task B. The trend lines obtained
for both tasks are presented in Figure 9.
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Figure 9. The stress-inducing events over time; (a) Task A, (b) Task B; Q: Question; blue line: beta
power for each question, dotted line: linear trend.

As shown in Figure 9, both trend lines have a negative slope, which might indicate
the subjects’ habituation to the stress stimuli over time. Such a claim, however, is not
fully justified since both trends are not statistically significant. A trend line is regarded
as statistically significant when the p-value determined for the parameter indicating the
line slope is smaller than the chosen significance level (set to 0.05 for all tests reported
in the paper). This condition is not met either for Task A (p-value = 0.535) or for Task B
(p-value = 0.372).

Figure 9 presents the trends aggregated over subjects. To look more thoroughly into
the time effect, we analysed the trend lines in both tasks individually for each subject. The
trend lines, together with their significance level, are presented in Figure 10 (Task A) and
Figure 11 (Task B).
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Figure 10. The stress-inducing events from Task A over time; upward trends are marked in red,
downward trends are marked in blue, dotted lines present linear trends, asterisks (*) denote linear
trends with a significant slope (p-value < 0.05); Q: Question, S: Subject.
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Figure 11. The stress-inducing events from Task B over time; upward trends are marked in red,
downward trends are marked in blue, dotted lines present linear trends; Q: Question, S: Subject.
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The results presented in Figures 10 and 11 are very surprising. Not only are the trends
not significant (p-value > 0.05) (apart from the trend found for subject S1 in Task A), but
their slopes are even incoherent across subjects. In Task A, only four trend lines have a
negative slope (S1, S4, S5, and S8), while the remaining ones have either a positive slope (S2,
S3, and S7) or the slope is not visible at all (S6). The situation in Task B is similar; five trend
lines have a negative slope (S1, S4, S5, S6, and S7), and the remaining three are positive.

4. Discussion

Previous research on EEG power features used to monitor stress level present some-
what contradictory findings [15]. For example, while in [27,28] the alpha activity was
reported to be positively correlated with stress, in [60] the reverse pattern was claimed.
Similarly, while in [27,28,43] the beta power was found to be higher for stress compared to
relax condition, in [61] the correlation was the opposite. Therefore, although the primary
goal of the research reported in the paper was to analyse the habituation phenomenon in
response to stress stimuli, we started the research by testing whether the beta power mea-
sured from the prefrontal cortex is a good predictor of stress. As was shown in Section 3.1,
the beta power calculated for both sequences of stress stimuli was significantly different
from that calculated for the stimulus-free parts of the experiment (p-value < 0.05). In Task
A, the beta power was almost three times higher for the STRESS condition compared to the
NON-STRESS condition. In Task B, this ratio was smaller but also statistically significant.
There were some deviations from this general tendency, e.g., for subject S6 in Task A and
subject S2 in Task B or for three questions in Task B, but for most questions and subjects,
the general tendency was held.

The main goal of the research reported in this paper was to analyse the habituation
phenomenon in regard to stress. We did so by analysing the brain activity recorded from
eight subjects exposed to two trains of stress stimuli. The stimuli used in both tasks
of the experiment were very similar concerning the stress-inducing mechanisms. Both
involved suddenly appearing pop-up windows, time pressure, flashing elements, and loud,
unpleasant music. The two main differences between the stimuli used in Task A and Task
B were their content and the time duration. As for the content, to balance the difficulty
level of questions used in both tasks, we made them as easy as possible. We did not want
the subject to become stressed by the question per se but rather by the running time and
other stimuli appearing with the question. Hence, the real difference between both trains
of stimuli was their length. While in Task A, the pop-up windows were present on the
screen only for 5 s, in Task B, the subject had up to two minutes to answer all sub-questions
reappearing in the window.

As shown in Figure 4, there was a huge difference between beta power calculated for
both types of stress stimuli. While the median calculated over the stress-inducing questions
and subjects for Task A was equal to 0.49, it was over four times lower (equal to 0.11) for
Task B. In Figure 7, this general tendency was confirmed for all subjects participating in the
experiment. Since the main difference between both tasks was the difference in stimulus
length, we conclude that the difference in subjects’ brain activity should be attributed to
the difference in stimulus length.

In Task B, subjects were exposed to the same stressors (time pressure, flashing lights,
loud music) for up to two minutes. Their weaker response to those stimuli might result
from the habituation phenomenon developing in time. Our experimental setup did not
allow us to verify this hypothesis experimentally (due to the different lengths of each
question and different times needed by each subject to answer all sub-questions within
each question). However, it seems reasonable since the initial phase of stress-inducing
events in both tasks was exactly the same. The difference was that the activity of stressors
finished after five seconds in Task A and lasted up to 2 min in Task B.

Regarding habituation to repeated stressors, we did not confirm our preliminary
hypothesis. At the beginning of the experiment, we expected that subjects would become
used to the stress-inducing questions, which would be represented by the decrease in the
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prefrontal electrodes’ beta power with each consecutive question. Meanwhile, although
both general trends calculated over all subjects (Figure 9) had an expected negative slope,
they were not statistically significant (p-value > 0.05). Even less expected results can be
observed in Figures 9 and 10, where not only are the trends insignificant (p-value > 0.05),
but also their slope is reversed for some subjects.

Comparing the last two figures (Figures 10 and 11) along the subjects, one interesting
feature can be noticed—for more than half of the subjects, the slopes of the trend lines
agree across the tasks. For example, while for subjects S1, S4, and S5, the decreasing trend
is observed in both tasks, the trend found for subjects S2 and S3 is positive. This might
suggest that the adaptability to stress stimuli depends on the subjects’ general attitude to
stress. While the habituation phenomenon might develop for some subjects when the stress
stimuli are repeated over time, for others, each new stress stimulus might be regarded
as more invasive than the previous one. Of course, since the slope of the trend lines is
statistically insignificant for most subjects (p-value > 0.05), this is only a weak suggestion.

An intrinsic feature of the habituation phenomenon is that habituation is quicker
and more visible in the case of a softer stimulus. As was stated in [44,45], the weaker the
stimulus, the more rapid and/or more pronounced the habituation. Strong stimuli may
yield no significant habituation. Our experiment did not show such a relationship for the
two applied sequences of stress stimuli. Although there was a considerable disproportion
between the beta power calculated for both tasks (Figure 4), there were no corresponding
differences in trend slopes. Conversely, for Task B, where a weaker response was observed,
more subjects showed signs of habituation (negative slopes of trend lines) than for Task A.

Stress is a very complex phenomenon. Many research confirmed that different people
react differently to the same stressful situations [1–4]. Our research suggests that people
show not only different physical or psychological reactions to stress-inducing stimuli but
also different attitudes to stress stimuli repeated in time. While some might habituate to
repeated stress stimuli (such as subjects S1, S4, S5, and S8 in Task A or subjects S1, S4, S5,
S6, and S7 in Task B), others may react more strongly with each new stimulus (such as
subjects S2, S3, and S7 in Task A or subjects S2, S3, and S8 in Task B).

The experiment reported in the paper was performed with eight subjects only. We
used a small sample because we wanted to analyse not only the aggregated results but also
the individual trends of each subject. Nevertheless, this small sample size is a limitation
of our study because it did not provide enough evidence to form conclusions regarding
the general population. Hence, the reported results should be considered as preliminary
findings that require further investigation.
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