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Abstract: Impervious surface area (ISA) has been recognized as a significant indicator for evaluating
levels of urbanization and the quality of urban ecological environments. ISA extraction methods
based on supervised classification usually rely on a large number of manually labeled samples,
the production of which is a time-consuming and labor-intensive task. Furthermore, in arid areas,
man-made objects are easily confused with bare land due to similar spectral responses. To tackle these
issues, a self-trained deep-forest (STDF)-based ISA extraction method is proposed which exploits the
complementary information contained in multispectral and polarimetric synthetic aperture radar
(PolSAR) images using limited numbers of samples. In detail, this method consists of three major
steps. First, multi-features, including spectral, spatial and polarimetric features, are extracted from
Sentinel-2 multispectral and Chinese GaoFen-3 (GF-3) PolSAR images; secondly, a deep forest (DF)
model is trained in a self-training manner using a limited number of samples for ISA extraction;
finally, ISAs (in this case, in three major cities located in Central Asia) are extracted and comparatively
evaluated. The experimental results from the study areas of Bishkek, Tashkent and Nursultan
demonstrate the effectiveness of the proposed method, with an overall accuracy (OA) above 95% and
a Kappa coefficient above 0.90.

Keywords: impervious surface area; self-training; deep forest; Sentinel-2; GaoFen-3; PolSAR

1. Introduction

With the rapid development of urbanization in the world, impervious surface area (ISA)
has replaced the natural landscape as the main type of urban surface cover [1]. The substantial
increase in ISA has caused a series of urban environmental problems, such as urban heat
islands [2], urban flooding [3], water pollution [4] and so on. Therefore, timely and accurate
estimation of urban ISA is of great significance for urban planning, sustainable development
and urban environmental management.

Compared with less time-efficient manual measurements, multi-platform and multi-
temporal remote sensing (RS) images facilitate the acquisition of ISA data. At present,
the commonly used ISA extraction methods based on RS images can be roughly grouped
into three categories: spectral mixture analysis (SMA), spectral index, and image classi-
fication and regression methods. The vegetation–impervious surface–soil (V–I–S) model
proposed by Ridd to characterize the urban environment is the basis of the SMA method [5].
Wu and Murray [6] further divided impervious surfaces into low-albedo and high-albedo
surfaces, then estimated the distribution of ISA using a linear SMA. These methods are
good at dealing with mixed pixels, but, due to the variability of endmembers (within
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and between classes), the choice of endmembers plays a critical role in the accuracy of
the results [7]. Although many scholars have proposed improved variants, the difficulty
of endmember selection is still the main restriction on the large-scale application of this
method [8–10]. On the contrary, spectral index-based methods have obvious advantages
of general applicability, simplicity and efficiency. Therefore, a series of indices have been
developed to extract ISA information using multispectral RS imageries, including the
normalized difference impervious surface index (NDISI) [11], biophysical composition
index (BCI) [12], perpendicular impervious surface index (PISI) [13], normalized difference
built-up index (NDBI) [14], normalized built-up-area index (NBAI) [15] and modified
NDISI [16]. However, the ISA extraction capabilities of these methods are always limited
because of spectrum confusion phenomena (the same kind of objects with different spectral
responses or different kinds of objects with the same spectral response). For instance, these
methods always tend to confuse bare soil and ISA, particularly in arid and semi-arid areas.
The image classification and regression methods that possess the advantage of separating
ISA from other ground objects are mostly based on traditional supervised classification
and regression methods, such as maximum likelihood [17,18], support vector machine
(SVM) [19–21], random forest (RF) [22–24] and artificial neural networks (ANNs) [19,25,26].
More recently, researchers have also explored the performance of deep learning (DL) meth-
ods in ISA extraction. For example, convolutional neural networks (CNNs) have been
introduced for ISA extraction, demonstrating promising ISA results from high-spatial-
resolution, hyperspectral and multi-source RS images [27–29]. Although both shallow and
deep supervised classification and regression methods are capable of reaching superior
performances compared with the methods from the other two groups, manually collecting
a large number of samples at good quality and representativeness is still always a chal-
lenging task in real scenarios, especially in large-scale coverage, multi-stage and long-term
analysis cases.

Due to the limitations of optical images, many researchers have explored the use
of multi-source RS data as a supplement, such as night-time light (NTL) [30,31], light
detection and ranging (LiDAR) [18,28], synthetic aperture radar (SAR) and polarimetric
SAR (PolSAR) data [22,32–34]. Among these, SAR has an advantage in ISA extraction by
virtue of its all-time and all-weather backscattering characteristics, which are sensitive to
geometric properties. The strong sensitivity of radar signals to man-made structures results
in the different backscattering characteristics of ISA and other natural ground objects [20].
Therefore, SAR images were used to distinguish ISA from bare soil [22,34]. Guo et al. [33]
compared the application of optical images and PolSAR data and demonstrated that the
synergistic use of the two can improve urban ISA estimation accuracy. Zhang et al. [22]
adopted a fusion method combining pixel-level and feature-level inputs to fuse optical
and SAR imageries, which improved ISA estimation results. However, in data fusion,
the classifier, the fusion level and the urban landscape all have a great influence on ISA
extraction results [35,36]. In addition, PolSAR has richer polarization information than SAR,
and studies have shown that more polarization can lead to better results [32,37]. Due to
the special geographical attributes of arid and semi-arid areas, the spectral information
of artificial ISA and surrounding objects is confusing. In previous research on ISA, the
accuracy in arid and semi-arid areas was poor compared with that in humid and semi-
humid areas [38,39].

In the machine-learning (ML) and pattern-recognition (PR) communities, active learn-
ing (AL) [40], semi-supervised learning (SSL) [41], instance transfer learning (ITL) [42] and
few-shot learning (FSL) [43] are popular frameworks to face the challenges of learning from
small samples. In contrast with AL, ITL and FSL, SSL exploits the large amount of unla-
beled sample information in images to alleviate the dependence on manual annotation at
no extra cost. In the field of urban RS, SSL is a common means of change detection [44–46],
image classification [47,48] and building extraction [49,50]. In addition, SSL has also been
used for long-term series ISA dynamics monitoring [51,52]. Self-training is an iterative SSL
algorithm based on a specific classifier, which is simple to implement and requires no extra
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assumptions [53]. Generally, it trains the classifier with a small number of labeled samples
and feeds the results into the next training session. In the past few years, self-training
has been commonly used for the classification and segmentation of RS images [48,54–57].
Li et al. [55] proposed an image-classification and segmentation framework combining
self-training and conditional random fields and proved that adding self-training improves
classification accuracy with limited labeled training samples. Li et al. classified PolSAR
images based on self-training and superpixels, which method showed good performance.
Nevertheless, with this method, predictions are considered to be correct, which leads to its
strong dependence on the performance of the classifier.

Deep forest (DF) is a non-neural-network (NN)-based DL model proposed by Zhou
and Feng [58] based on an ensemble-learning approach. Compared with NN-based DL
methods, a key advantage of the DF is its adaptive model complexity, which performs ex-
cellently even on small-scale data. In addition, it has far fewer hyper-parameters than DNN.
Owing to these attractive advantages, the application of DF has received increasing atten-
tion in different fields in the past few years, such as biology [59], engineering [60] and RS [61].
At present, it has been successfully applied in object-detection [62], data-fusion [63,64] and
image-classification tasks [61,65,66]. However, there is a lack of research on the application
of DF in ISA extraction, especially with limited samples in arid areas.

Therefore, this paper proposes an ISA extraction method which uses a self-trained deep
forest with limited labeled samples and multiple features of Sentinel-2 multispectral images
and GaoFen-3 (GF-3) PolSAR images and applies it to obtain ISA extraction information for
three major cities in arid Central Asia.

2. Materials and Methods
2.1. Study Area

Central Asia is the core of the Eurasian continent and a key node of the Belt and Road
Initiative, located in one of the world’s largest arid and semi-arid inland areas. Different
from humid and semi-humid areas, the vegetation coverage in Central Asia is low, and
soil and rocks are widely distributed, which results in the poor applicability of optical
image-based ISA extraction methods in this region. In addition, there are relatively few data
on RS images and land cover types of Central Asian cities. Considering data availability
and their properties, three cities, Nursultan, Bishkek and Tashkent, were selected as study
areas (Figure 1). Nursultan is the capital city of Kazakhstan, located in the semi-desert
steppe in north-central Kazakhstan. Bishkek is the capital and largest city of Kyrgyzstan
and has a Mediterranean-influenced, humid continental climate. Located in northeastern
Uzbekistan, Tashkent is the capital and largest city of Uzbekistan, as well as the most
populous city in Central Asia.

2.2. Data

Chinese GF-3 is a C-band multi-polarization SAR imaging satellite with 12 imaging
modes designed for various purposes, including not only traditional stripe and scanning
imaging modes but also spotlight, hyperfine stripe and wave modes, etc. It has the
characteristics of high resolution, large imaging width, multiple imaging modes and long-
life operation. It can be used in marine contexts, target detection, disaster reduction, water
conservancy and meteorology, etc. In the quad-polarization Stripmap I (QPSI) imaging
mode of GF-3, the azimuth resolution is 8 m and the range resolution is 6–9 m. Sentinel-2A
was designed by the European Space Agency (ESA) with an optical payload multi-spectral
instrument (MSI) to sample 13 spectral bands at 10 m (bands 2, 3, 4, 8), 20 m (bands 5, 6, 7,
8a, 11, 12) and 60 m (bands 1, 9, 10) spatial resolutions. In this paper, the quad-polarized
SAR images acquired by the QPSI imaging mode of GF-3 and imagery of Sentinel-2A
in four bands of blue (B2), green (B3), red (B4) and NIR (B8) were employed to acquire
image features. The quad-polarized SAR images were registered with optical images and
resampled to 10 m. In addition, the Finer Resolution Observation and Monitoring of Global
Land Cover with 10 m resolution (FROM-GLC10) product [67] was used as a reference
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and comparison for the extraction results. Table 1 shows the acquisition dates and spatial
resolutions of the Sentinel-2A and GF-3 data that we used.
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Figure 1. Locations and satellite images of the study areas. (a) Location of the study cites. (b) Sentinel-
2 RGB image of Bishkek. (c) GF-3 Pauli-RGB image of Bishkek. (d) Sentinel-2 RGB image of Tashkent.
(e) GF-3 Pauli-RGB image of Tashkent. (f) Sentinel-2 RGB image of Nursultan. (g) GF-3 Pauli-RGB
image of Nursultan.

Table 1. Sentinel-2 and GF-3 data for the study areas used for ISA extraction.

Study Area Sensor Acquisition Dates Pass Resolution

Bishkek Sentinel-2A 7 August 2017 10 m
GF-3 9 November 2017 Ascending 8 m

Tashkent Sentinel-2A 8 November 2017 10 m
GF-3 25 October 2017 Descending 8 m

Nursultan Sentinel-2B 17 September 2017 10 m
GF-3 30 August 2017 Descending 8 m

2.3. Method
2.3.1. Feature Extraction

To extract ISA information more accurately, a number of candidate features considered
in this study are shown in Table 2. Normalized difference vegetation indices (NDVIs) [68]
and normalized difference water indices (NDWIs) [69] were obtained as spectral features
from Sentinel-2 multispectral imagery. NDVI is an indicator used to assess vegetation
cover, and NDWI is usually used for detecting water bodies. The two indices are expressed
as below:

NDVI = (bnir − bred)/(bnir + bred) (1)

NDWI = (bgreen − bnir)/(bgreen + bnir) (2)

where bred, bgreen and bnir stand for surface reflectance in the red, green and near-infrared
bands, respectively.
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Table 2. Feature sets and the number of features (n) per set.

Source Feature Set Descriptions N

Sentinel-2A multispectral
bands (B2, B3, B4 and B8)

Spectral features NDVI 1
NDWI 1

Spatial features Morphological attribute profiles with
partial reconstruction 120

GF-3 quad-polarized SAR Polarimetric features
T3 matrix 9

H/A/α decomposition (entropy,
anisotropy and alpha) 3

Freeman decomposition
(Freeman_DBL, Freeman_VOL and

Freeman_SURF)
3

As for spatial features, morphological attribute profiles with partial reconstruction
(MAPPR) were employed. These can be used to model the attributes of different objects in
remote sensing images and achieve good performance in classification tasks. The filtering
in MAPPR is based on the merging of connected components of different gray levels [70,71].
An attribute A (such as area, diagonal length of a circumscribed rectangle, moment of
inertia, etc.) is calculated for each connected component of the grayscale image for a given
reference value λ. For the connected component Ci, if the attribute satisfies the set condition
(e.g., A(Ci) > γ), the region remains unchanged; otherwise, it is merged into the adjacent
regions with similar gray values. If the region is merged into a region with a lower (greater)
gray level, the operation is one of thinning (thickening). In MAPPR, a pixel is reconstructed
if the geodesic distance is smaller than the geodesic distance d in the mask g and d < ∞.
MAPPR is obtained by applying a sequence of partially reconstructed attribute thinning
and thickening to the gray image f :

AP( f ) = {ϕn( f ), . . . , ϕ1( f ), f , ρ1( f ), . . . , ρn( f )} (3)

where ϕi and ρi denote the proposed attribute thinning and thickening with criterion γi,
respectively.

Three attributes have been considered in this paper, including area (the size of re-
gions), standard deviation (the elongation of regions) and moment of inertia (related to
the homogeneity of regions). These are used to show the unique structural characteristics
of man-made objects, such as roads and block buildings, that differ from other surface
covers. Furthermore, different attribute profiles can comprehensively characterize complex
urban structures.

In fully polarimetric SAR data, the backscattering coefficient matrix can be described
as S:

S =

(
SHH SHV
SVH SVV

)
(4)

where SHH, SHV, SVH and SVV represent the backscattering coefficients of different polariza-
tions.

Under the backscattering mechanism of monostatic radar, SHV = SVH. The adjoint
matrix of a given matrix A will be denoted by A*. Then, the coherence matrix T3 can be
described as:

T3 =
1
2


〈
|SHH + SVV |2

〉 〈
(SHH + SVV)(SHH − SVV)

∗〉 2
〈
(SHH + SVV)S∗HV

〉〈
(SHH − SVV)(SHH + SVV)

∗〉 〈
|SHH − SVV |2

〉
2
〈
(SHH − SVV)S∗HV

〉
2
〈
SHV(SHH + SVV)

∗〉 2
〈
SHV(SHH − SVV)

∗〉 4
〈
|SHV |2

〉
 (5)
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The H/A/α decomposition is based on an eigenvector analysis of the coherence matrix
T3, where H is the entropy, A is the anisotropy and α is the polarimetric scattering parameter
related to scattering direction.

Pi = λi/
3

∑
j=1

λj (6)

H = −
3

∑
i=1

Pi log3 Pi (7)

A =
λ2 − λ3

λ2 + λ3
(8)

α =
3

∑
i=1

Piαi (9)

where λi are the eigenvalues and αi are the target scattering angles. H, A and α are not
affected by polarimetric azimuth offset and are rotationally invariant. These characteristic
parameters are suitable for polarization classification and target recognition in urban and
terrain relief areas.

The three-component Freeman polarimetric decomposition method was developed in
1998 [72]. It is based on a coherence matrix and decomposes a target into three scattering
mechanisms. The scattering powers PV , PS and PD of volume scattering, surface scattering
and double-bounce scattering are, respectively, expressed as:

PV = fV (10)

PS = fS(1 + |β|2) (11)

PD = fD(1 + |α|2) (12)

where fV , fS and fD correspond to the contributions of the volume, surface and double-
bounce components, respectively; β and α are the surface and double-bounce scattering
parameters, ranging from −1 to 1. This polarimetric decomposition method is based on the
physical model of radar scattered echoes, which can be used to preliminarily determine
the main scattering mechanism in backscattering. In this way, types of land cover can be
effectively distinguished.

2.3.2. Self-Trained Deep Forest

Generally, a DF consists of many base estimators to generate a cascade forest structure.
Similar to an ANN, a cascade forest also shares a layer-by-layer structure. In its structure,
each level of the cascade receives the feature information processed by the upper level and
outputs its processing results at this level to the next level [73,74].

Consider the supervised learning problem of learning a mapping from the feature
space χ to the label space y, where y = {1, 2, . . . , C}. Let Z = [0, 1]C and the training set
S = {(x1, y1), . . . , (xm, ym)} be drawn independently and identically from the underlying
distribution Γ, where m is the size of the training set.

The deep forest model g : χ→ y with T levels defined by a pair (h, f) can be formal-
ized as:

g(x) = argmax
c∈{1,...,C}

[ fT(x)]c (13)

where [ fT(x)]c is the c-th element of the label vector fT(x).
ft is the cascade of elements of forests f = { fi, . . . , fT} up to level t. At level t ∈

{1, . . . , T}, ft : χ→ Z is defined as:

ft(x) =

{
h1(x) t = 1
ht([x, ft−1(x)]) t > 1

(14)
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where ht is the ensemble of forest h = {h1, . . . , hT} at level t. At every level t, ht(·) and pi
output a class vector [pt

i , . . . , pt
C], where pi is the prediction confidence of class i and the

input of ht is [x, ft−1(x)], except that at level t = 1, its input is x.
After expanding a new layer, the entire cascaded forest will be estimated on the valida-

tion data. The training process will be terminated until there is no significant improvement
in performance. Therefore, although the cascaded forest is able to adaptively determine the
number of layers, it is prone to overfitting in the case of limited training samples.

In order to reduce overfitting and improve classification accuracy with a limited num-
ber of labeled samples, we propose a self-trained deep forest (STDF) method. A training
set containing labeled and unlabeled samples will be inputted into the cascade forest,
and the unlabeled instances will be labeled by iteration over the labeled samples. These
pseudo-labeled samples can be used to train the model for higher performance in ISA
extraction. As illustrated in Figure 2, the proposed STDF classification method is composed
of three major steps:

1. Input the labeled samples (initial training set) and unlabeled samples into the cascade
forest with RF and ExtraTrees as the basic estimators in a certain proportion.

2. Train the classifier and make predictions for unlabeled samples. The pseudo-labels
with prediction probabilities greater than a threshold are added to the training set.

3. Repeat the previous step. The classifier will continue iterating until the specified
maximum number of iterations is reached.
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Figure 2. An overview of the proposed STDF.

3. Results and Discussion
3.1. Experimental Setup

• Parameter Settings: (a) By verifying the accuracy of the number of 10–100 samples per
class (10 groups in total) and the proportion of labeled samples to training samples
(0.1–1.0), 30 training pixels per class, a total of 150, were randomly selected from
labeled samples. Additionally, in the training set, the proportion of labeled samples
was 0.8. (b) In verifying the extraction accuracy, the bright ISA and dark ISA were
selected as impervious samples, while vegetation, water and bare land were selected
as pervious samples. Then, 8000 test pixels per class, a total of 16,000, were randomly
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selected to examine the extraction accuracy for ISA. (c) The optimal parameters were
determined by the grid search method, which optimizes the model by traversing the
given parameters and using a cross-validation method. The number of estimators in
each cascade layer is 2; the number of trees in each estimator is 125; and the maximum
number of cascade layers is 25. In DF, the base classifiers are set as default by RF
and ExtraTrees.

• Comparison with Other Methods: In this study, three classification methods, including
RF, self-trained RF (STRF) and DF, were compared to evaluate the performance of the
STDF algorithm. In order to test the superiority of the combination of the multispectral
image features and PolSAR features proposed in this paper, the results for the use of
multispectral image features alone were added for comparison. In addition, PISIs, for
which the best performance was achieved with Sentinel-2 [75], NBAIs and land cover
datasets (FROM-GLC10) were used for comparison. PISI and NBAI are, respectively,
expressed as below [13,15]:

PISI = 0.8192bblue − 0.5735bnir + 0.075 (15)

NBAI =
bswir2 − bswir1/bgreen

bswir2 + bswir1/bgreen
(16)

where bblue, bnir and bgreen denote the surface reflectance in the blue, near-infrared
and green bands, respectively, and bswir1 and bswir2 are two SWIR bands, satisfying
bswir2 > bswir1.

• Accuracy Assessment: To evaluate the performance for ISA extraction, ground reference
data were collected by visual interpretation of high-spatial-resolution Google Earth
images from the same period. The labeled samples were divided into five land-cover
types (bright ISA, dark ISA, water, vegetation and bare land) and were evenly distributed
in the study area. Subsequently, the training and testing samples were randomly selected
among the labeled samples. The accuracy of ISA extraction was assessed by overall
accuracy (OA), Kappa coefficient, commission error (CE) and omission error (OE)
based on the confusion matrix. In addition, receiver operating characteristic (ROC)
and area under ROC curve (AUC) were used for classification performance assessment.

3.2. Performance of PolSAR in ISA Enhancement

The polarimetric features applied in this paper were obtained by applying decompo-
sition methods. These polarimetric features reflect the scattering mechanism of ground
objects on the SAR bands. Figure 3 shows the ISA extraction results for NBAI based on mul-
tispectral bands and pseudo-color images of various polarimetric decomposition methods
in the three study areas.

As illustrated in Figure 3, in the results for ISA extraction based on NBAIs, it can be
seen that vegetation and ISA are well-differentiated, while bare land and ISA are easily
confused due to the similar spectral information. Different from optical data, PolSAR
reflects the scattering properties of ground objects and is sensitive to geometric properties.
The PolSAR polarimetric features show that bare land and ISA have different backscattering
characteristics which are easy to distinguish. The reason for this performance is the different
scattering patterns for ISA and bare land [76]. However, the similar scattering characteristics
of vegetation and ISA cause confusion between the two, including double-bounce scattering,
volume scattering and surface scattering. Therefore, PolSAR backscatter information and
multispectral information can complement each other.
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Figure 3. ISA extraction of NBAIs (red indicates ISA) and typical polarimetric decomposition
comparison, RGB false color in H/A/α decomposition, Freeman-3 decomposition, An & Yang-3
decomposition and Cloude decomposition methods were, respectively, composited as: R (Entropy): G
(Anisotropy): B (Alpha); R (Freeman_DBL): G (Freeman_VOL): B (Freeman_SURF); R (AnYang_DBL):
G (AnYang_VOL): B (AnYang_SURF); and R (Cloude_T22): G (Cloude_T33): B (Cloude_T11).

Among these PolSAR decomposition methods, Freeman-3 and An & Yang-3 compo-
nent decomposition are based on scattering models, and Cloude decomposition is based
on target vector features. In general, the pseudo-color images of these three decomposition
methods are consistent, reflecting three basic scattering mechanisms: surface scattering,
double-bounce scattering and volume scattering. According to Figure 3, in the Freeman-3
decomposition results, ISA can be effectively distinguished. Compared with the other
two methods, the results of the Freeman-3 decomposition method show more obvious
differences between impervious surfaces and other types of ground objects and the urban
structure is better reflected. This difference mainly depends on the surface roughness and
geometry of ISA. Different from the other three decomposition methods, H/A/α decom-
position explains the mechanism of SAR image data. In this decomposition, α is used to
identify the scattering mechanism, the polarization entropy H reflects polarization infor-
mation and the parameter A complements parameter H. When H increases to a higher
value, A is used for the identification of the scattering mechanism [77]. With this method of
decomposition, bare land and water are more clearly manifested. Therefore, Freeman-3
component decomposition and H/A/α decompositions were chosen as the polarimetric
features obtained by the decomposition.

3.3. Results for ISA Extraction and Accuracy Assessment

Since the training samples were randomly selected and the selected samples were not
necessarily uniformly distributed and representative, we performed 10 experiments with
each number of labeled samples and the accuracy of results was evaluated and averaged.
The results for different classification methods using different numbers of labeled training
samples to extract ISA are shown in Figure 4. Accordingly, as the number of labeled training



Sensors 2022, 22, 6844 10 of 16

samples increased, the Kappa coefficients of four strategies improved for all three study
areas, and the Kappa values for STDF were basically higher than those for the other three
methods. As the number increased to 30, the Kappa values greatly improved. Additionally,
learning curves for Kappa values for STDF always stayed at the highest level compared
with DF, RF and STRF classifiers for all three study areas. In practice, more labeled training
samples represent more time consumption. There is a trade-off between extraction accuracy
and time consumption. Therefore, in the following experiments, we randomly selected 30
labeled samples per class.
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The ISA extraction results are shown in Figure 5 and the accuracy assessments for
the different methods are displayed in Table 3. From the accuracy assessments in Table 3,
the OAs were all above 95% and the Kappa values were all above 0.90. In terms of visual
inspection, our method performed well in all three study areas. In Figure 5, the confusion
between ISA and barren land is obvious for the spectral-based method (PISI and STDF
based on multispectral image features). In PISI and spectral-based STDF, some bare soil
was wrongly classified as ISA. Conversely, more ISA was misclassified as pervious surface
in PISI. Especially in Bishkek, misclassification was more serious. In addition, the OAs
and Kappa values for the classification methods based on multispectral and PolSAR image
features were all higher than the PISI and STDF results based on multispectral image
features. This indicates that the combination of multiple features from multispectral and
PolSAR images can be used as an effective means of ISA extraction.

Table 3. Classification accuracy results for six methods.

STDF STRF DF RF STDF
(Spectral) PISI

Bishkek

Kappa 0.9406 0.9249 0.9266 0.9174 0.7506 0.7394
OA (%) 97.03 96.24 96.33 95.87 87.53 86.97
OE (%) 2.16 2.39 2.61 2.58 9.59 17.56
CE (%) 3.72 4.99 4.63 5.52 14.51 9.35

Tashkent

Kappa 0.9043 0.8110 0.8363 0.8474 0.8429 0.7819
OA (%) 95.21 90.55 91.81 92.37 92.14 89.09
OE (%) 6.38 11.58 12.71 12.88 10.13 16.65
CE (%) 3.30 7.65 4.03 2.67 5.85 5.83

Nursultan

Kappa 0.9498 0.9266 0.9395 0.9280 0.9100 0.7595
OA (%) 97.49 96.33 96.98 96.40 95.50 87.98
OE (%) 0.98 0.61 0.88 1.34 3.63 11.74
CE (%) 3.93 6.34 4.96 5.61 5.28 12.24
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In Bishkek and Nursultan cities, there were many cases where other ground objects
were wrongly classified as ISA in the results generated by the other three methods based
on multispectral and PolSAR data (STRF, DF and RF). However, in Tashkent city, ISA
was more often classified as pervious surface. The above shows that STRF, DF and RF
are unstable in ISA extraction given limited labeled samples, which may be due to the
randomness of samples. Compared with the other three strategies, our method obtained
higher ISA extraction accuracy values. Both OEs and CEs were at low levels for the three
study areas. However, ISA omission for Tashkent was more severe out of the three study
areas, which may have been due to more regions of badly mixed pixels. In Tashkent, the
urban distribution is relatively scattered and the ISA is cross-distributed with other land
types, such as bare soil and farmland. By visual inspection, the FROM-GLC10 ISA product
showed poor accuracy for Bishkek due to a large number of ISA omissions. Though it
showed better accuracy for Tashkent and Nursultan, there was still a fair amount of bare
soil misclassified as ISA.

From Figures 5 and 6, it can be seen that there were different degrees of confusion of ISA
and bare land for these methods. With our method, ISA and bare land were better differenti-
ated, while the overestimation of ISA was reduced. Especially in area B, STRF, DF, RF and
spectral-based STDF methods obviously misclassified bare land as ISA. As illustrated in
Figure 6, STRF, DF and RF had similar ISA extraction results. Compared with our method,
STRF, DF and RF incorrectly classified part of the bare soil as ISA in area A and omitted ISA
in areas C and D. The results for the A and C regions indicate that the proposed method has
better ISA extraction performance in rural areas with mixed pixels. At the same time, from
the results of areas C and D, it can also be seen that ISAs, such as roads and parking lots,
can be effectively distinguished from bare land. Furthermore, with respect to the shadows
of buildings in area D, the proposed method also had excellent results, especially compared
with the spectral-based methods. This indicates the advantages of combining SAR with
multispectral features in ISA extraction. With the FROM-GLC10 product, there was an
underestimation of ISA, and omissions were manifested in relation to the construction
area in area A and the roads in areas C and D. Therefore, our method not only has higher
accuracy but is also more suitable for cities in arid regions than FROM-GLC10.
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Figure 6. Comparison of ISA extraction results with a local zoom. The images in the first column
were taken from Google Earth. Red indicates ISA. Areas A, C, and D correspond to those in Figure 5.

ROC analysis is a graphical approach for analyzing the performance of classifiers
which uses true positive rates (TPRs) and false positive rates (FPRs). AUC is a single
scalar value that complements ROC, where a greater area means better performance.
The ROCs and AUCs of different methods for the three experimental areas are shown
in Figure 7. From Figure 7, it can be seen that, compared with the other methods, the
proposed STDF has a relatively high TPR and a low FPR and that it achieved the highest
ROC value. This indicates that STDF has a better classification performance in cases of
limited labeled samples.
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The above has demonstrated the effectiveness of STDF. In order to make the experiment
more complete, we additionally used Sentinel-2 multispectral images (Table 4) of the three
experimental areas taken in three different periods in the same year. Then, we combined
their features and the GF-3 PolSAR features to extract ISAs for the three areas using the
proposed STDF method. The ISA extraction results for each experimental area are shown
in Figure 8. Comparing with results shown in Figure 5, again, it is clear that our proposed
STDF method for ISA extraction in arid urban areas is efficient with high accuracy using a
limited number of samples.
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Table 4. Sentinel-2 data from three different periods in the study areas used for ISA extraction.

Study Area Sensor Acquisition Dates

Bishkek Sentinel-2A 8 June 2017
Sentinel-2A 7 August 2017
Sentinel-2B 1 November 2017

Tashkent Sentinel-2A 16 July 2017
Sentinel-2A 2 September2017
Sentinel-2A 8 November2017

Nursultan Sentinel-2A 18 January 2017
Sentinel-2A 18 May 2017
Sentinel-2B 17 September 2017
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4. Conclusions

In this paper, we have proposed an ISA extraction method using Sentinel-2 multispec-
tral and GF-3 PolSAR images of limited labeled samples. Based on spectral, spatial and
polarimetric features, the proposed STDF performed well in ISA extraction by learning from
a small number of samples. The results for the multispectral and PolSAR feature- based
method indicated better classification accuracy than the method based on multispectral
image features, demonstrating the effectiveness of the proposed method. Compared with
other classification methods, the STDF achieved a higher ISA extraction accuracy on the ba-
sis of fewer samples and showed a better performance for the three study areas of Bishkek,
Nursultan and Tashkent. Furthermore, compared with PISI and the FROM-GLC10 product,
our method reduced the confusion of ISA and bare land and improved the extraction
accuracy of ISA. However, since the training samples for STDF were randomly selected,
the randomness of the training samples had a certain influence on the extraction results,
especially in urban suburbs with more mixed pixels. Since mixed pixels are unavoidable
with limited spatial resolutions, higher-resolution remote sensing data should be used to
obtain more accurate ISA results.
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