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Abstract: Depth video sequence-based deep models for recognizing human actions are scarce com-
pared to RGB and skeleton video sequences-based models. This scarcity limits the research advance-
ments based on depth data, as training deep models with small-scale data is challenging. In this
work, we propose a sequence classification deep model using depth video data for scenarios when
the video data are limited. Unlike summarizing the frame contents of each frame into a single class,
our method can directly classify a depth video, i.e., a sequence of depth frames. Firstly, the pro-
posed system transforms an input depth video into three sequences of multi-view temporal motion
frames. Together with the three temporal motion sequences, the input depth frame sequence offers a
four-stream representation of the input depth action video. Next, the DenseNet121 architecture is
employed along with ImageNet pre-trained weights to extract the discriminating frame-level action
features of depth and temporal motion frames. The extracted four sets of feature vectors about frames
of four streams are fed into four bi-directional (BLSTM) networks. The temporal features are further
analyzed through multi-head self-attention (MHSA) to capture multi-view sequence correlations.
Finally, the concatenated genre of their outputs is processed through dense layers to classify the input
depth video. The experimental results on two small-scale benchmark depth datasets, MSRAction3D
and DHA, demonstrate that the proposed framework is efficacious even for insufficient training
samples and superior to the existing depth data-based action recognition methods.

Keywords: 3D action recognition; depth map sequence; CNN; transfer learning; bi-directional LSTM;
RNN; attention

1. Introduction

The research on Human Action Recognition (HAR) has attracted the widespread
attention of the computer vision research community during the last decade. Indeed,
the vast spectrum of applications of HAR in daily life has stimulated researchers to be
dedicated to the issue significantly. Because of the developments in HAR automated
systems, the machine intelligence penetration has increased in applications such as human–
machine and human–object interaction, content-based video summarizing, education and
learning, healthcare systems, entertainment systems, safety and surveillance systems, and
sports video analysis [1–6]. However, the earlier attempts to recognize actions mostly
relied on RGB videos [7–10]. These methods may result in promising performance on
HAR in a limited number of cases; however, RGB data-based recognition approaches have
some serious limitations, as they are susceptible to illumination variation, occlusions, and
cluttered backgrounds.
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To address the limitations of RGB data-based methods, the imaging technology so-
ciety has invented the depth sensor (e.g., Kinect sensor). The depth sensor works as a
multi-modal sensor and thus simultaneously delivers the depth and RGB videos of a
scene. However, the depth video-based approaches are illumination, color, and texture
invariant [11]. Moreover, depth video preserves the 3D structure of an object accurately,
which helps the system to alleviate the intra-class variation and the cluttered background
noise issues [11]. Thus, computer vision researchers have shown an increasing interest in
approaching the task of action recognition by employing depth data features. Furthermore,
the skeleton action sequences can be easily obtained from the depth action sequences.
Hence, the skeletal action features have also been utilized in building a recognition system,
such as [12,13].

Previous Work: In recent years, deep learning models and convolutional neural
networks (CNNs) [14] have been used massively for recognizing image contents. CNNs
extract dominant and discriminating object characteristics automatically, and hence, they
became popular for extracting features as compared to handcrafted descriptors. Being
inspired by the performance of CNNs in image classification tasks, many researchers have
applied them in action video classification challenges. However, those action classification
works were mostly developed on RGB and skeleton data. For example, deep models as
reported in [4,6,13,15–28] are developed on RGB and skeleton action data. There are only
a small number of deep models based on the depth video streams only such as those
illustrated in [29–37]. However, the existing depth databases, excluding the recent NTU-
RGB-D databases [38,39], are not large enough for training deep models. In a few studies,
the depth data have been complemented with other data modalities such as RGB and
skeleton data to develop multi-modal/hybrid deep models [40–42].

Many hand-designed methods [43–62] were proposed by researchers before the work
on deep learning methods for depth action recognition. These methods usually involve
many operations that require researchers to carry out careful feature engineering and
tuning [63]. In addition, hand-crafted features and methods are always shallow and
dataset dependent [32]. On the other hand, deep learning methods reduce the need for
feature engineering. As a result, researchers have attempted to work with deep learning
in action recognition from depth videos. For example, in [64], 2D CNNs and 3D CNNs
were proposed for depth action recognition. To preserve the temporal information of
depth action sequences in DMMs-based action representation, the DMM pyramid was
constructed and fed into the 2D CNN as input. The DMM cube was used as input of
3D CNN. The 2D CNN model on DMM pyramid provided comparable and considerable
results. Wang et al. [37] proposed a deep model to address the action recognition task
on a small-scale training dataset. They utilized three weighted hierarchical depth motion
maps (WHDMMs) and the three-streams convolutional neural networks to build their
architecture. In fact, the introduction of weights in WHDMMs helps to preserve the
temporal order of motion segments to reduce the inter-class similarity problem. The three
WHDMMs were constructed from the projection of depth videos onto three-dimensional
space. They were converted to pseudo-color versions and fed into three individual CNNs
(trained on ImageNets) for training the deep model. The fusion of classification outcomes
of the three deep networks was treated as the final classification outcome.

A four-channel CNN pipeline was proposed by [34], where three channels adopted
the three types of depth motion maps obtained from depth data, and the fourth channel
received the RGB data-based motion history images as input. In the method discussed
by [32], an action was described through dynamic depth images, dynamic depth normal
images and dynamic depth motion normal images. The three descriptions of the action
were treated as input of three-stream CNN architecture for action classification. As a
different approach, the depth action representation was considered through the RGB data
features directly by domain adaptation in [33]. Wu et al. [11] constructed the hierarchical
dynamic depth projected difference images for three projection images and fed them into
three uniform CNN. In [65], depth videos were projected on the 3D space with multiple
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viewpoints, and multi-view dynamic images were constructed. These dynamic images
were fed into a novel CNN for feature learning. The fully connected layers of CNN were
different for different dynamic images. Finally, with the deep features, the actions were
classified using the linear SVM after dimension reduction with PCA.

Keceli et al. [66] fused spatial and temporal deep features obtained from the 2D
CNN (pre-trained) and 3D CNN, respectively. The 2D and 3D representations of depth
action videos were prepared prior to pass them to the 2D and 3D deep CNN architectures.
However, the Relieff algorithm [67] was applied for selecting the most potential features
from the fused version. Finally, the SVM classifier was used for the action classification
with the selecting features. Li et al. [68] derived a set of three motion images against each
input video and then employed the local ternary pattern encoded images for representing
action with rich texture information and less noise. The encoded images were passed to a
CNN for the action classification. Indeed, the threshold value choosing of the local ternary
pattern is a bit difficult. However, Wu et al. [69] represented a depth action video through
dynamic image sequences. Then, a channel was proposed to highlight the most dominant
channels in CNNs. In addition, a spatial–temporal interest points (STIPs) attention model
was proposed to extract the discriminating motion regions from the dynamic images. In
their work, an LSTM model was utilized for gaining the temporal dependencies and for
accomplishing the classification task. Recently, unlike extracting features from dynamic
images, Tasnim et.al. [29] proposed a method extracting features from raw depth images.
They used a 3D CNN model for the key-frame-based feature extraction and classification
tasks. The key frames were selected by structural similarity index measure (SSIM) and
correlation coefficient measure (CCM) metrics for removing the redundant frames as well
as preserving more informative frames. In [30], the spatiotemporal action features were
extracted using a 3D fully convolutional neural network from raw depth images. The same
network also allows action classification. The method was evaluated on the large-scale
dataset, i.e., the NTU RGB+D [38] dataset. The statistical features and 1D CNN features
were fused for developing an action recognition model from depth action sequences [31].
Multi-channel CNN and a classifier ensemble were utilized in [35]. The method described
in [36] employed the 2DCNN and 1DCNN consecutively as pre-processing tools to extract
statistical features from depth frames. Those features were fused with the Dynamic Time
Wrapping (DTW) algorithm-based statistical features. For the feature classification task, a
classifier ensemble was determined from 1000 sets of classifiers. This method seems very
complicated since, in the pre-processing stage, it trained a separate CNN model for each
action class.

Since the development of deep models based on depth action data only is hard due to
limited training data, researchers have been motivated to incorporate other data modalities
with depth data. For example, deep learning-based action recognition was presented in [70]
using depth sequences and skeleton joint information combined. A 3D CNN structure
was used to learn the spatiotemporal features from depth sequences, and then joint-vector
features were computed for each sequence. Finally, the SVM classification results of the two
types of features were fused for action recognition. In work [71], the fuzzy weighted multi-
resolution DMMs (FWMDMMs) were constructed by using the fuzzy weight functions on
depth videos. The FWMDMMs were fed into a convolution neural network deep model for
the compact representation of actions. In addition to the motion features, the appearance
features were also extracted from the RGB and depth data through the pre-trained AlexNet
network. Multiple feature fusion techniques were used to obtain the most discriminating
features. The multi-class SVM was implemented to classify actions. In [72], the authors
used the RGB data features with the depth data features to propose a deep framework. The
framework inputs four streams such as Dynamic image, DMM-front, DMM-side and DMM-
top. The first one was obtained from the RGB data, and the remaining three streams were
generated from the depth data. Those four streams were passed to four pre-trained VGG
networks for feature extraction and training. The obtained four classification scores from
the classification layers of the four networks were fused using a weighted product model.
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In [40], the authors proposed a two-stream 3D deep model using depth and RGB action
data. The depth residual dynamic image sequence and pose estimation map sequence were
calculated simultaneously from depth and RGB modalities of an action. For describing and
obtaining the classification score of the action with two modalities, 3D CNN was employed
on two individual data streams. The action class was determined by the fusion of the
classification scores provided by the 3D CNN on the two data streams. In [42], an action
classification algorithm was developed using RGB, depth, and skeleton data modalities. On
one hand, the RGB and depth videos were passed to 3D CNN for extraction. On the other
hand, 3D CNN and LSTM were employed to capture action features from the skeleton data.
Three sets of extracted features were fed into three SVM to obtain probability scores. Two
evolutionary algorithms were used to fuse those scores and to output the class label of the
input video.

Research Motivation and Key Contribution: The aforementioned depth data-based ex-
isting deep models (except the model in [69]) are not able to classify a depth frame sequence
directly using sequence classification models such as LSTM, bi-directional LSTM (BLSTM),
GRU, bi-directional GRU, or attention models. However, there are many approaches based
on the RGB and skeleton data that are capable of classifying a frame sequence automatically
using those models [73–77]. The size of the available depth training dataset is the key
barrier to developing a depth video-dependent sequence learning deep model. Currently,
only two large-scale datasets, NTU RGB+D [38] and NTU RGB+D120 [39], are available
with a large number of depth training samples for the sequence learning framework de-
velopment. Otherwise, the existing depth action video datasets have insufficient depth
training videos for the task. Up-to-date, depth data-based deep models (except the model
in [69] and 3D CNN-based models) are mainly predicting an action class for an input action
video-based on an image classification strategy instead of a direct sequence classification
strategy [29–37]. Actually, a large number of video sequences is needed in the training
stage to develop a promising sequence classification framework using the deep sequence
modeling algorithm, which is not available in depth datasets except in the two above
datasets. However, there is a need to make progress on deep models trained on small-scale
depth datasets. In this work, we propose a deep model for small-scale depth datasets for
directly classifying a depth frame sequence. Being inspired by the excellent performance
of CNN in automatic feature extraction and representation in depth, RGB, and skeleton
action recognition methods [13,17,20,21,24–28,30–32,73], we also utilize a pre-trained 2D
CNN named DenseNet121 [78], trained on an ImageNet image dataset [79], for capturing
dominant features to represent independent action frames. With the extracted features, the
combination of the BLSTM [80] and the multi-head self-attention (MHSA) [81] mechanisms
are considered to build a sequence classification model. To the best of our knowledge, no
previous work has utilized BLSTM and MHSA individually or jointly with deep features to
propose such a sequence classification model in-depth video classification problem. We
evaluate our method on two public depth action datasets. The performance evaluation
shows that our method achieves superiority over many state-of-the-art methods.

Our research contributions are highlighted as follows:

• Learned patterns extraction using deep models with a small-scale dataset is very
challenging. To address this issue, we employed a unified framework of BLSTM and
MHSA to achieve better sequence-based action recognition in depth videos.

• We propose a single depth video representation through four data streams to boost
the depth action representation. The four data streams have a single depth frame
sequence and three temporal motion frame sequences. The depth frame sequence
is the original input sequence, and the other three sequences are derived from the
original one. The other three motion sequences preserve the spatiotemporal motion
cues of the front, side, and top flank performers.

• Frame level features extraction is an essential step for sequence-based decisions for
action recogntion. We employ a pre-trained 2D CNN model with a transfer learning
strategy for robust depth features representations.
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• The sequence classification model is developed with the one-to-one integration of
BLSTM and MHSA layers. A set of optimal parameters for the BLSTM-MHSA combi-
nation is determined, providing the key support for the performance improvement of
the proposed method.

• BLSTM-MHSA correlation features are encoded with fully connected layers with a
features dropout strategy to achieve model generalization for the unseen test set.

• An ablation study is also provided for different 2D CNN models and the number of
data streams for robust action classification.

• The proposed method is assessed in terms of two public datasets, MSRAction3D [82]
and DHA [83], and our results are compared with other state-of-the-art methods. In
summary, our method exhibits superiority over the recent (published on 20 April 2022)
state-of-the-art 3D CNN-based recognition method [29] by 1.9% for MSRAction3D
and by 2.3% for DHA. In contrast to the 3D CNN model, our approach involves fewer
video frames in each sequence and fewer trainable parameters.

The rest of this paper is oriented as follows: The proposed framework is illustrated
in detail in Section 2. Experimental evaluation is discussed in Section 3. Finally, Section 4
concludes the paper.

2. Proposed System

This section discusses our proposed system in terms of several subsections where each
sub-section clarifies individual component comprehensively.

2.1. Four-Stream Action Representation

We hypothesize that the action representation through the raw depth frame-based
features as well as motion frame-based features ia more discriminating. Thus, a raw depth
video or depth frame sequence (DFS) of length N is mapped to produce sequences of
multi-view temporal motion frames. To compute those sequences, an overlapping sliding
window of size l frames is employed on a DFS. The sliding window moves over the DFS
with a stride s and crops m number of chunks/sub-sequences {vj}m

v=1 (where j represents
the index of a chunk). All the chunks are basically subsets of DFS such as DFS = ∪m

j=1vj

and maintain a uniform number of frames, i.e., C(v1) = C(v2) = . . . = C(vm) = l ∈ Z+

(C means number of frames/length of chunk). All the frames of v1 chunks are projected
onto a 3D coordinate space. The motion frame gathers all the motion segments of the
front flanks of frames in v1. The consecutive differences among all its projection frames
relevant to the xy-plane are calculated and added to generate a motion frame. Another
two motion frames are computed corresponding to the yz-plane and xz-plane projection
frames. The motion frames about the yz-plane and xz-plane accumulate motion segments
of the side and top flanks of frames in v1. Consequently, there are three motion frames
generated from the chunk v1 with respect to the three 2D planes. Note that the motion
frames for v1 about the planes are obtained based on a sliding window of a fixed stride,
i.e., temporal chunks. Thus, the gained motion frames are referred to as temporal motion
frames, which are in a single set as {(TMF1

xy), (TMF1
yz), (TMF1

xz)}. Similarly, a single set
of three motion frames are computed for every remaining chunks v2, v3, . . . , vm such as
{TMF2

xy, TMF2
yz, TMF2

xz}, . . . , {TMFm
xy, TMFm

yz, TMFm
xz}. Mathematically, the motion frame

generation of any chunk vj about the three planes could be expressed as

TMFxy =
l−1

∑
i=1
| di

xy |, (1)

TMFyz =
l−1

∑
i=1
| di

yz |, (2)

TMFxz =
l−1

∑
i=1
| di

xz |, (3)
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where di
xy = (pi+1

xy − pi
xy), di

yz = (pi+1
yz − pi

yz) and di
xz = (pi+1

xz − pi
xz) are distances between

successive projections {pi
xy}l

i=1, {pi
yz}l

i=1, and {pi
xz}l

i=1 on the three planes of depth frames
of any chunk vj∈{1,2,...,m}. However, three sequences of motion frames are obtained by
organizing all the temporal motion frames about the xy-plane, yz-plane and xz-plane. The
three temporal motion sequences (TMFS) are TMFSxy = {TMF1

xy, TMF2
xy, . . . , TMFm

xy},
TMFSyz = {TMF1

yz, TMF2
yz, . . . , TMFm

yz}, and TMFSxz = {TMF1
xz, TMF2

xz, . . . , TMFm
xz}

with respect to the xy-plane, yz-plane and xz-plane, respectively. Indeed, a single depth
action video is transformed into three temporal motion sequences (TMFS), and those
sequences capture the spatiotemporal motion information of an entire action. In this work,
the data transformation is taken with a stride s = 3 and the length of chunk l = 10
empirically. An example of such a transformation is shown in Figure 1.

Figure 1. A step-by-step example of temporal motion frame sequence generation.

A single depth frame sequence is transformed into three different sequences
TMFSxy = {TMF1

xy, TMF2
xy, . . . , TMFm

xy}, TMFSyz = {TMF1
yz, TMF2

yz, . . . , TMFm
yz}, and

TMFSxz = {TMF1
xz, TMF2

xz, . . . , TMFm
xz}. The integration of the original depth frame

sequence DFS = {DF1, DF2, . . . , DFm} of the first m frames with the three sequences
constructs a four-stream representation of the corresponding action.

2.2. Extraction of Action Features

To describe the action through frames of the four streams, the action features of tem-
poral motion frames as well as depth frames are captured with the help of pre-trained 2D
DenseNet121 [78] architecture. The DenseNet121 was trained on the popular ImageNet [79]
image dataset. The DenseNet121 is known for alleviating the vanishing-gradient problem,
strengthening feature propagation, encouraging feature reuse, and substantially reducing
the number of parameters. The model consists of a single convolution layer with 64 filters of
size 7× 7 and a stride of 2, a single max pooling layer with a 3× 3 max pooling sized filter
and a stride of 2, four dense block layers, three transition layers, a single global average
pooling layer of 7× 7 sized filter and a single fully connected layer for classification. Every
dense block has two repeated convolutions with two different sized filters of 1× 1 and 3× 3.
The number of repetitions varies with the dense block layer. The 1× 1 convolution layer is
used as a bottleneck layer before each 3× 3 convolution to improve the efficiency and speed
of computations. In the dense block, the feature maps of all the previous layers are not
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summed but concatenated and used as current inputs. For example, if k is a current layer,
then it receives all the output feature maps of previous layers, m0, m2, . . . , mk−1 as input:

mk = Fk([m0, m2, . . . , mk−1]), (4)

where [m1, m2, . . . , mk−1] is the concatenation of the outputs of previous layers (0, 1, . . . , k− 1)
for an easy implementation in the current layer. In addition, mk is the output feature map
of the current kth layer. Here, Fk(·) is a composite function of batch normalization, ReLu
and convolution operations on its inputs. Figure 2 represents an example dense block.

Figure 2. An example of a dense block in the DenseNet121 model.

Each transition layer has a 1× 1 convolution layer and a 2× 2 average pooling layer
with a stride of 2. The average pooling layer reduces the dimensionality of each feature
map but retains the important information. The position of the transition layers is between
two adjacent dense blocks to perform down-sampling (i.e., change the size of the feature
maps) via convolution and pooling operations. Note that the batch normalization and
ReLu mechanisms are used with each convolution layer in the dense block layers and in
the subsequent transition layers.

The DenseNet121 architecture is employed here only to represent frames in terms
of feature vectors individually rather than classifying those frames. The large ImageNet
dataset covers all the classes of video classification problems, and thus, the ImageNet
pre-trained weights of the DenseNet121 are reused in this work. In the model, a 2D global
average pooling layer comes after the last convolution layer. The outcome of the 2D global
average pooling layer is considered as the feature vector for representing the relevant frame.
The global average pooling sums out the spatial information by accepting all the previous
feature maps of the network. Figure 3 shows an example of feature extraction from a depth
frame using the DenseNet121 model.

The implementation of DenseNet121 on each frame of the four streams outputs four sets
of feature vectors. Each feature vector represents the frame in a space of 1024 dimensions.
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Figure 3. An example of feature extraction from depth frame using the DenseNet121 model.

2.3. Organization of Feature Vectors and Their Correlation Modeling

The input frames to the DenseNet121 model are basically members of a set of temporal
data, i.e., the original orientation of frames along the temporal dimension. The model
describes frames of a sequence through feature vectors individually. However, it cannot
organize the feature vectors of frames along temporal dimension as a series with a single
class label. Furthermore, a frame in the set can be strongly predicted by its previous
frames because of the substantial correlations between the vectors of contiguous frames.
Consequently, the vectors of contiguous frames are firmly correlated. The DenseNet121
descriptor also cannot do correlation modeling among the vectors. In this situation, the
BLSTM [80] mechanism is adopted for arranging vectors along the temporal dimension
and for modeling correlation among them.

The BLSTM is a combination of two unidirectional LSTMs [80]. One of the two LSTMs
pushes input vectors from past to future (forward LSTM), whereas another LSTM runs
them from future to past (backward LSTM). By concatenating the final two hidden states of
the two LSTM cells, the output of BLSTM is computed. Because of the incorporation of a
forward LSTM and backward LSTM outcomes, the information from both past and future
at any point in time is preserved in BLSTM. To understand the working procedure of an
LSTM, let X = x0, x1, . . . , xS be a set of S feature vectors (outputs of DenseNet121) of D
dimensions representing depth frames. If xt ∈ X is input of an LSTM cell, then the final
hidden state ht and the final cell state ct of the LSTM are computed as

it = σ(wi · [ht−1, xt] + bi), (5)

c̃t = tanh(wc · [ht−1, xt] + bc), (6)

ft = σ(w f · [ht−1, xt] + b f ), (7)

ct = ft � ct−1 + it � c̃t, (8)

ot = σ(wo · [ht−1, xt] + bo), (9)

ht = ot � tanh(ct), (10)
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where ht is the hidden state or final output of the LSTM cell at timestamp t. The it, c̃t, ft,
and ot are outcomes of input (i), forget (f), and output (o) gates at the current timestamp t
with weights wi, wc, w f , and wo respectively. The symbol σ is the logistic sigmoid function,
� is used for element-wise multiplication and tanh is a hyperbolic tangent function. In
BLSTM, two hidden states h f orward

t and hbackward
t are computed using Equations (5)–(10)

across the backward and forward LSTM cells a timestamp t against the input xt. The final
representation of xt is then calculated by the concatenation of h f orward

t and hbackward
t as

ht = [h f orward
t , hbackward

t ] (11)

By using Equations (5)–(11), the output of the BLSTM concerning sequence X ∈ RS×D

is again a sequence Y = (h1, h2, . . . , hS) of vectors of a specific length (equal to the output
space of the BLSTM).

However, four sets of feature vectors, obtained from the utilization of DenseNet121 on
the four streams, are fed into four different BLSTM cells separately. Each BLSTM converts
the set to sequence by organizing the vectors along temporal dimension and modeling
correlation among them. As a result, four BLSTM models output four different sequences
corresponding to the four input sets of feature vectors.

2.4. Weight Assignment to Prominent Feature Vectors

Not all the frames in a sequence carry significant information. A number of the frames
have more discriminating information than others. Therefore, there are many existing
methods (e.g., the method in [29]) which selected the most informative frames of a se-
quence to describe the sequence. Unlike frame selection methods, our system gives special
attention to the richer frames by weighting corresponding feature vectors. To do this,
the MHSA algorithm [81] is employed on the set of feature vectors. The self-attention
algorithm basically discovers those input vectors which are tremendously correlated with
the remaining vectors. The algorithm labels these vectors as distinguished by multiply-
ing them with weights. For its facile implementation commentary, assume the output
of the previous BLSTM layer concerning sequence X is a sequence of S vectors of length
D′, i.e., Y = (h1, h2, . . . , hS) ∈ RS×D′ . Each member vector of Y can be decomposed into
several vectors of equal dimensions (< D′). In fact, the vector decomposition yields a cou-
ple of sub-sequences {Yi}N

i=1 of sequence Y with properties Y = ∪N
i=1Yi and Ya ∩Yb = ∅.

Here, an individual Yi is another sequence of S vectors of length di = D′
N < D′. How-

ever, a sub-sequence Yi is represented using three different ways with three matrices

WQ
i ∈ Rdi×di

q , WK
i ∈ Rdi×di

k , and WV
i ∈ Rdi×dv

i as Qi(query) = YiW
Q
i , Ki(key) = YiWK

i , and
Vi(value) = YiWV

i with dk
i = dq

i . The self-attention heads can be calculated simultaneously
on all Yi with Qi = YiW

Q
i , Ki = YiWK

i , Vi = YiWV
i by

Hi = Ai(Qi, Ki, Vi) = so f tmax(
QiKT

i√
dk

i

)Vi, (12)

All the attention heads Hi are concatenated to obtain the MHSA of sequence Y as

MHSA(Y, Y) = Concat(H1, H2, . . . , HN)W0 (13)

The MHSA(Y, Y) is the new representation of sequence Y where the potential vectors
are emphasized to boost the system and to play a key role in classification.

The output of four BLSTM layers are further passed to four different MHSA layers.
The MHSA outputs are also four different sequences of vectors, but the most discriminating
vectors are weighted.
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2.5. Action Class Assignment

The outcomes of four MHSA layers are flattened independently and concatenated by
an end-to-end procedure. Three dense layers are added to the concatenated output with
three batch normalization (BN), dropout and rectified linear unit (ReLu) activation layers.
The dropout is used to reduce data overfitting, and the BN is used to speed up the training
process as well as make the training more stable. To predict the class index of the original
input action video/depth sequence, another fully connected layer with softmax activation
is considered where the dimensionality of the output space is the number of video classes.
The entire architecture of our action classification task is shown in Figure 4.

Figure 4. Our depth action classification system.

3. Experiment and Results

The proposed framework is implemented in the Python Keras (TensorFlow 2.6.0)
library on the Windows 10 platform. The computing hardware included an AMD Ryzen
Threadripper 1900X 8-Core Processor of 3.9 GHz frequency, a memory of 64 GB, and an
NVIDIA TITAN X (PASCAL) GPU. For evaluating our system, the precision, recall, F1-score
and accuracy are taken into account as metrics. In addition, we performed ablation studies
on the number of data streams as well as architectures. Experimental results are obtained
on two benchmarks depth video datasets, i.e., MSRAction3D [82] and DHA [83].

3.1. Optimization of Hyper-Parameters

In our work, the hyper-parameters are tuned for the BLSTM and MHSA blocks only,
since the feature extraction is accomplished with the pre-trained 2D CNN deep model. In
the feature extraction, each frame is resized to 224× 224× 3, and the 2D CNN is employed
with the ImageNet pre-trained weights. However, for all the datasets, we experimentally
set up the same values of all the hyper-parameters. The number of units (multiple of 32) in
the four BLSTM and three dense layers are tuned in a range of 32 ∼ 512. The BLSTM and
dense layer units are tuned for all the combinations of BLSTM and dense units as {(32, 32),
(32, 128), . . . , (32, 512)}, {(64, 32), (64, 128), . . . , (64, 512)}, . . . , {(512, 32), (512, 128), . . . ,
(512, 512)}. In each combination, the first value is the BLSTM unit number, and the second
value is the dense layer unit number. The optimal result is achieved with the combination
of (384, 128) which is in the set {(384, 32), (384, 128), . . . , (384, 512)}. All the results of this set
are shown in Figure 5. In the figure, the train and test accuracies are represented on the
MSRAction3D dataset. Each result is about the combination (along x-axis) of the BLSTM
unit number of 384 and a dense layer unit number in the range of 32 ∼ 512. Note that the
training and test results are much closer at the combination of (384,128), and after that, the
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data overfitting is observed. Therefore, the BLSTM and dense layer unit numbers 384 and
128 are chosen for both datasets. The number of heads of MHSA is determined to be 2 from
a set of values of {2, 4, 8, 16} experimentally. The dropout rate of every dropout layer is
tuned in 0 ∼ 0.8 in each dataset. The categorical-crossentropy loss function is employed for
this multi-classification task. The AdaMax optimizer [84] is used to train our model on a
batch size of 64 for 500 epochs. The learning rate of the optimizer is tuned in a range of
0.0001 ∼ 0.01 and set to 0.001 in all the experiments. The learning rate of 0.001 is also the
default rate of the optimizer. The early stopping was not used here. Instead, we completed
training for 500 epochs to obtain maximum insights into the training. While we could
have trained for a much smaller number of epochs, we were interested in showing the
training behavior for as many epochs as conveniently achievable. Moreover, the first sign
of no improvement up to a specific number of epochs may not be the best time to stop
training. This is because the model may become slightly worse before becoming much
better; i.e., fluctuations may occur.

Figure 5. Setting of units on MSRAction3D in four BLSTM and three dense layers. Each result is
regarding the combination (along the x-axis) of 384 BLSTM units and the number of dense layer units
in the range of 32 ∼ 512.

3.2. Evaluation on MSRAction3D Dataset

The MSRAction3D dataset [82] consists of 557 depth frame sequences (DFS) of 20 ac-
tion classes. Those sequences were recorded by 10 persons performing different actions.
The training sequences are recorded by persons of odd indices, whereas the test sequences
are recorded by even indices actors. Since all other methods listed in Table 1 followed this
data setup for MSRAction3D data, we retain a similar setup of training and test sets to
assure fair comparison. There are 284 training DFS and 273 testing DFS in the dataset.
After applying the data transformation on the training samples, in addition to DFS, there
are 284 temporal motion frame sequences (TMFS) as training samples regarding each 2D
plane, i.e., the number of TMFSxy, TMFSyz, and TMFSxz are 284 independently. Similarly,
there are 273 samples for every testing data stream. Each sequence is split into several
overlapping sub-sequences in training samples using step sizes of 3, 7, 10, and 13 (deter-
mined experimentally) of a fixed length. The length of each sub-sequence is fixed to 20
after conducting experiments on a set of lengths, i.e., {13, 16, 18, and 20}. After splitting
all the training samples, there are 3807 training sequences of length 20 along each data
stream. The strategy used on the training samples gives access to the entire sequence and
also increases the number of training samples. Note that every sequence is processed to
only 20 frames to propose a lightweight network. For more video frames, the networks
have to be stacked deeper to obtain a larger temporal receptive field. Even though more
frames could bring more information, they could also lead to noise issues.
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In the testing data, the number of samples is kept unaltered (i.e., 273 samples), and a
single sub-sequence of length 20 is trimmed out from a test sample when its length is more
than 20. There are 20 timestamps for each BLSTM, since the sequence length is 20. Thus,
there are 273 testing sequences along each data stream to validate our model. The three
dropout rates are adjusted to 0.6, 0.65, and 0.65 for the MSRAction3D dataset. The accuracy
and loss graphs over 500 epochs are shown in Figure 6.

The proposed system attains a significant recognition accuracy of 96% compared
to other systems, as shown in Table 1. Our method outperforms the state-of-the-art 3D
CNN depth action classification model [29] by 2.3%. The 3D CNN model used 16, 20,
and 24 video frames, whereas we only utilized 20 video frames. The 3D CNN employed
a couple of frame selection models to select potential frames which are not used in our
method. The 3D CNN model averages the results obtained by the different numbers of
frames and frame selection methods. Furthermore, our model has 26.98 million trainable
parameters, which is a number that is much smaller than the 47.58 million parameters in
the 3D CNN model. Our system can recognize 15 action classes with 100% accuracy out
of 20 classes. However, the system exhibits errors in identifying the remaining 5 action
classes. Because of the motion similarities of 5 action classes with other classes, the method
is confused and cannot classify them correctly. For example, the system cannot achieve
100% recognition accuracy for action class draw circle since it suffers from 26.7% motion
similarities with the draw tick class. Figure 7 shows the confusion in our system through
a confusion matrix. In Table 1, the experimental result by changing the order of BLSTM
and MHSA is also reported. The result shows that using the MHSA algorithm before the
BLSTM results in an 18% fall in the accuracy. The comprehensive recognition performance
is represented by Table 2.

Table 1. Comparison of action recognition accuracy (%) with state-of-the-art frameworks on the
MSRAction3D test set.

Approach Accuracy (%)

Decision-level-Fusion (MV) [49] 91.9

DMM-GLAC-FF [50] 89.38

DMM-GLAC-DF [50] 92.31

DMM-LBP-FF [51] 91.9

DMM-LBP-DF [51] 93.0

MTDMM [46] 95.97

CDF [48] 80.8

Skeleton-MSH [52] 90.98

3D HoT_S [53] 91.9

3D HoT_M [53] 88.3

SSTKDes [47] 95.60

Depth-STACOG [54] 75.82

DMM-GLAC [54] 89.38

WDMM [55] 90.0

DMM-UDTCWT [56] 92.67

3D CNN+DMM-Pyramid [64] 86.08

3D2 CNN [70] 84.07

2D CNN+DMM-Pyramid [64] 91.21
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Table 1. Cont.

Approach Accuracy (%)

Depth+1D CNN [31] 90.18

Multi-channel-CNN-Ensemble+Bag [35] 94.55

1D CNN+DTW [36] 95.6

3D CNN+DHI+Relieff+SVM [66] 92.8

Depth+3D CNN [29] 94.1

(DFS+TMFS)+DenseNet121+MHSA+BLSTM 78
(DFS+TMFS)+DenseNet121+BLSTM+MHSA (Ours) 96

Table 2. Class-specific classification report on MSRAction3D test set.

Class Precision Recall F1-Score Accuracy (%) Confusion (%)

High wave 86.0 100 92.0 100 No

Horizontal wave 100 100 100 100 No

Hammer 100 92.0 96.0 91.7 Draw x (8.3)

Hand catch 100 75.0 86.0 75.1 High wave (8.3), Forward
punch (8.3), Draw x (8.3)

Forward punch 91.0 91.0 91.0 90.9 Tennis swing (9.1)

High throw 100 100 100 100 No

Draw x 85.0 85.0 85.0 84.6 High wave (7.7), Draw tick (7.7)

Draw tick 75.0 100 86.0 100 No

Draw circle 100 73.0 85.0 73.3 Draw tick (26.7)

Hand clap 100 100 100 100 No

Two hand wave 100 100 100 100 No

Side boxing 100 100 100 100 No

Bend 100 100 100 100 No

Forward kick 100 100 100 100 No

Side kick 100 100 100 100 No

Jogging 100 100 100 100 No

Tennis swing 94.0 100 97.0 100 No

Tennis serve 100 100 100 100 No

Golf swing 100 100 100 100 No

Pick up and throw 100 100 100 100 No

3.3. Evaluation on DHA Dataset

The DHA dataset [82] has 483 depth frame sequences of 23 classes. In the dataset,
every sequence is recorded by 21 performers. Similarly to other methods developed on this
dataset, the sequences recorded by performers of odd indices (1, 3, 5, 7, and 9) are used
as training data samples. The sequences recorded by performers of even indices (2, 4, 6, 8,
and 10) are used as testing data samples. According to the setup, there are 253 samples for
training and 230 samples for testing/validating the model. Using the same data splitting
technique as used in the MSR-Action3D dataset, the training samples for each data stream
are augmented from 253 to 3324 samples. The number of testing sequences is unchanged,
i.e., 230. Like the previous dataset, every sequence in the training set and the testing set
has a size of 20. There are 20 timestamps for each BLSTM, since the sequence length is
20. The three dropout rates are adjusted to 0.62, 0.65, and 0.65 as optimal for this dataset.
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The classification accuracy and loss graphs over 500 epochs are shown in Figure 8. Our
system achieves overall 95.2% classification accuracy on the DHA test set (see Table 3). The
table also shows the accuracy of implementing the MHSA algorithm before the BLSTM,
and the accuracy is 4.3% lower than the accuracy of our proposed method. The observed
accuracy is 100% for 16 action classes. The performance of the remaining seven classes
reveals confusion with classes of similar motion cues (see Figure 9). Table 4 shows the
classification performance of our system for each class extensively. The proposed approach
outperforms other approaches significantly. Specifically, it had 2.3% greater accuracy than
the recent 3D CNN-based deep learning recognition system, as reported in [29].

Sensors 2022, 1, 0 13 of 24
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Figure 7. Confusion matrix on MSRAction3D test set.

Table 3. Comparison of our highest action recognition accuracy (%) with state-of-the-art frameworks
on the DHA test set.

Approach Accuracy (%)

SDM-BSM [57] 89.50

GTI-BoVW [58] 91.92

Depth WDMM [55] 81.05

RGB-VCDN [59] 84.32
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Table 3. Cont.

Approach Accuracy (%)

VCDN [59] 88.72

Binary Silhouette [60] 91.97

DMM-UDTCWT [56] 94.2

Stridden DMM-UDTCWT [56] 94.6

VCA [61] 89.31

CAM [62] 87.24

Depth+3D CNN [29] 92.9

(DFS+TMFS)+DenseNet121+MHSA+BLSTM 90.9
(DFS+TMFS)+DenseNet121+BLSTM+MHSA (Ours) 95.2
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overall 95.2% classification accuracy on DHA test set (see Table 3). The table also shows the
accuracy of implementing the MHSA algorithm before the BLSTM, and the accuracy is 4.3%
lower than the accuracy of our proposed method. The observed accuracy is 100% for 16
action classes. Performance of the remaining seven classes reveals confusion with classes of
similar motion cues (see Fig. 9). The classification accuracy and loss graphs over 500 epochs
are shown in Figure 8. Table 4 shows the classification performance of our system for
each class extensively. The proposed approach outperforms other approaches significantly.
Specifically, 2.3% greater accuracy than the recent 3D CNN based deep learning recognition
system, reported in [29].

Table 3. Comparison of our highest action recognition accuracy (%) with state-of-the-art frameworks
on the DHA test set.

Approach Accuracy (%)

SDM-BSM [57] 89.50

GTI-BoVW [58] 91.92

Depth WDMM [55] 81.05

RGB-VCDN [59] 84.32

VCDN [59] 88.72

Binary Silhouette [60] 91.97

DMM-UDTCWT [56] 94.2

Stridden DMM-UDTCWT [56] 94.6

VCA [61] 89.31

CAM [62] 87.24

Depth+3D CNN [29] 92.9

(DFS+TMFS)+DenseNet121+MHSA+BLSTM 90.9
(DFS+TMFS) +DenseNet121+BLSTM+MHSA

(Ours) 95.2

Figure 8. Accuracy and loss of our system for DHA dataset using AdaMax optimizer of 0.001 learning
rate on 500 epochs.

Figure 8. Accuracy and loss of our system for DHA dataset using AdaMax optimizer of 0.001 learning
rate on 500 epochs.

Figure 9. Confusion matrix on DHA test set.
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Table 4. Class-specific comprehensive classification report on DHA test set.

Class Precision Recall F1-Score Accuracy (%) Confusion (%)

Bend 91.0 100 95.0 100 No

Jack 100 100 100 100 No

Jump 83.0 100 91.0 100 No

Pjump 100 100 100 100 No

Run 100 100 100 100 No

Side 100 100 100 100 No

Skip 100 80.0 89.0 80.0 Jump (20.0)

Walk 100 100 100 100 No

One-hand-wave 100 100 100 100 No

Two-hand-wave 100 100 100 100 No

Front-clap 100 100 100 100 No

Arm-swing 100 100 100 100 No

Leg-kick 91.0 100 95.0 100 No

Rod-swing 80.0 80.0 80.0 80.0 Golf-swing (20.0)

Side-box 100 90.0 95.0 90.0 Rod-swing (10.0)

Side-clap 100 100 100 100 No

Arm-curl 100 100 100 100 No

Leg-curl 100 90.0 95.0 90.0 Bend (10.0)

Golf-swing 70.0 70.0 70.0 70.0 Rod-swing (10.0),
Pitch (20.0)

Front-box 100 100 100 100 No

Tai-chi 100 100 100 100 No

Pitch 82.0 90.0 86.0 90.0 Golf-swing (10.0)

Kick 100 90.0 95.0 90.0 Leg-kick (10.0)

3.4. Ablation Study

This section evaluates the influence of the four data streams, the DenseNet121 model,
and the order of BLSTM and MHSA mechanisms on the proposed method.

3.4.1. Data Stream

Our system is built across the four-stream action data, i.e., a single depth frame
sequence (DFS) and three temporal motion frame sequences (TMFS). We evaluate the
significance of the four streams with respect to the single stream and the three streams.
Therefore, we carry out experiments by replacing four streams with a single stream and
three streams separately. The experimental results are shown in Table 5. In the table,
the results based on the single, three, and four streams are reported for the two datasets.
The four-stream model significantly outperforms the single-stream model. The three-
stream model performs better than the single-stream model; however, it lags behind the
four-stream model. The model using both the single stream and three streams, i.e., the four-
stream model increases accuracy by 2.3% on MSRAction3D and 1.8% on DHA compared
to using the three-stream model. The four-stream model increases accuracy by 31.2% on
MSRAction3D and 13% on DHA compared to the single-stream model. The accuracy
comparison between single-stream and four-stream models demonstrates the effectiveness
of our approach for small-scale depth video datasets. More precisely, the MSR-Action3D
and DHA datasets have 284 and 253 training samples, respectively. The training samples
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of both datasets are divided into overlapping samples with step sizes of 3, 7, 10 and 13.
This allows an entire action video to be utilized in the training stage. Consequently, there
are 3807 and 3324 training samples through the temporal video augmentation in MSR-
Action3D and DHA, respectively. When we use these samples to train the single-stream
model DFS+DenseNet121+BLSTM+MHSA, the recognition results are 64.8% and 82.2% on
the MSR-Action3D and DHA, respectively. It is common for a deep model to perform poorly
when the number of training samples is small. Due to this data deficit, it is imperative to
convert the small-scale training data into large-scale training data. For making large-scale
training data, the spatial video augmentation could be applied to the original training
samples, since the temporal video augmentation is already applied. There are several types
of spatial video augmentations, such as Piece-wise Affine Transform, Super-pixel, Gaussian
Blur, Invert Color, Random Rotate, Random Resize, Translate, Center Crop, Horizontal Flip,
Vertical Flip, Add, Multiply, Downsamples, Upsamples, Elastic Transformation, Salt, Pepper, and
Shear. It should be noted that each type of augmentation is achieved through a frame-wise
process. Moreover, selecting the perfect augmentation type for our model can be a challenge.
Consequently, spatial video augmentation seems to be a complex implementation.

Table 5. Observation of effectiveness of four data streams in model development.

Approach MSRAction3D Test Set DHA Test Set

Single-stream:
DFS+DenseNet121+BLSTM+MHSA 64.8 82.2

Three-stream:
TMFS+DenseNet121+BLSTM+MHSA 93.7 93.4

Four-stream:
(DFS+TMFS)+DenseNet121+BLSTM+MHSA 96 95.2

In order to avoid data augmentation (to preserve simplicity) and improve model
performance without converting small-scale training data to large-scale, we propose that
more three-stream networks of motion information can be added to the architecture with
the single-stream network. The samples of these three streams contain motion information
extracted from the samples of the single stream. So, these three streams have the same num-
ber of training samples as the single stream, so all four streams contain the same number
of training samples. The four-stream model (DFS+TMFS)+DenseNet121+BLSTM+MHSA,
processing four data streams (similar to ensemble of models) through four networks im-
proves the accuracy from 64.8% to 96% on the MSRAction3D, and from 82.2% to 95.2%
on the DHA, which is a significant improvement. Instead of the single-stream model,
the proposed four-stream model increases the accuracy by 31.2% on the MSA-action3D
dataset and by 13% on the DHA dataset. In summary, to improve the model performance,
an additional three streams of motion data are included in the existing model instead of
increasing training samples in the single stream. In these three streams, all the samples are
obtained through processing the training samples of the single stream. The four-stream
model works well when there are few training samples in the depth dataset because it
increases accuracy by using small-scale training data. In fact, the motion information of the
three streams helps to improve the recognition accuracy. Hence, the four-stream paradigm
could be used instead of data augmentation when the depth dataset is small.

3.4.2. Architecture

In addition to the DenseNet121 model, DenseNet169 and ResNet101V2 pre-trained
models are employed to extract frame features. The other two models use more features
to represent each frame. More specifically, the dimension of the DenseNet121 feature
vector is 1024, whereas the dimension of the DenseNet169 feature vector is 1664 and the
dimension of the ResNet101V2 feature vector is 2048. The experimental outcomes using the
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three models are illustrated in Table 6. DenseNet121 achieves the best accuracy among the
three models on both datasets, although it uses fewer features than the other two models.

Table 6. Performance of different architectures using four data streams.

Approach MSRAction3D Test Set DHA Test Set

(DFS+TMFS)+ResNet101V2+BLSTM+MHSA 89.3 91.3

(DFS+TMFS)+DenseNet169+BLSTM+MHSA 93.4 93.9

(DFS+TMFS)+DenseNet121+BLSTM+MHSA 96 95.2

4. Conclusions

In this paper, we have developed a four-stream deep model through a limited number
of training samples for directly classifying depth frame sequences to achieve 3D action
recognition. To describe a depth action more effectively, a depth frame sequence was trans-
formed to produce sequences of three multi-view temporal motion frames that configured
the four data streams. The action features were captured from depth frames and temporal
motion frames employing a pre-trained 2D DenseNet121 model. With the DenseNet121
deep features, the sequence classification model was built using a combination of BLSTM,
MHSA, and dense layers. Our method was evaluated on two public small-scale depth
datasets. The method achieved superiority over the existing deep learning methods as well
as handcrafted methods significantly. In addition, the proposed deep sequence learning
model, the four-stream model, was compared to the single-stream model (which uses depth
frame sequences) and the three-stream model (which uses motion frame sequences). The
performance of the four-stream model was superior to the single-stream and three-stream
models when training samples were insufficient. In fact, the four-stream paradigm replaced
data augmentation for a small dataset successfully. In addition to the DenseNet121 model,
the DenseNet169 and ResNet101V2 were employed for the feature extraction task in the
four-stream model, but their performance could not surpass the performance attained on
DenseNet121. Furthermore, the order of the BLSTM and MHSA models was altered. Imple-
menting the MHSA after the BLSTM helped build the promising sequence learning model.
We have actually emphasized the development of a sequence learning method rather
than increasing accuracy by large margins when the number of training samples is small.
There are a number of alternatives that are not used in the method to improve accuracy:
for example, spatial data augmentation, temporal data augmentation with diverse frame
numbers, and the use of different parameter tuning techniques in model training, etc. The
architecture is actually very simple and lightweight, although it appears to be complicated
due to four data streams. It is an effective sequence classification model compared to the
3D CNN model, since it outperforms the current depth action recognition 3D CNN model
(published on 20 April 2022) by 1.9% for MSRAction3D and by 2.3% for DHA. To achieve
the state-of-the-art results, it requires fewer video frames and 20.6 million less trainable
parameters than the 3D CNN model. We believe our proposed methodology will help
the research community in exploring and developing models for other small-scale depth
dataset problems as an alternative to data augmentation.
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