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Abstract: A high-strength bolt connection is the key component of large-scale steel structures. Bolt
loosening and preload loss during operation can reduce the load-carrying capacity, safety, and dura-
bility of the structures. In order to detect loosening damage in multi-bolt connections of large-scale
civil engineering structures, we proposed a multi-bolt loosening identification method based on
time-frequency diagrams and a convolutional neural network (CNN) using vi-bro-acoustic modu-
lation (VAM) signals. Continuous wavelet transform was employed to obtain the time-frequency
diagrams of VAM signals as the features. Afterward, the CNN model was trained to identify the
multi-bolt loosening conditions from the raw time-frequency diagrams intelligently. It helps to get
rid of the dependence on traditional manual selection of simplex and ineffective damage index
and to eliminate the influence of operational noise of structures on the identification accuracy. A
laboratory test was carried out on bolted connection specimens with four high-strength bolts of
different degrees of loosening. The effects of different excitations, CNN models, and dataset sizes
were investigated. We found that the ResNet-50 CNN model taking time-frequency diagrams of
the hammer excited VAM signals, as the input had better performance in identifying the loosened
bolts with various degrees of loosening at different positions. The results indicate that the proposed
multi-bolt loosening identification method based on VAM and ResNet-50 CNN can identify bolt
loosening with a reasonable accuracy, computational efficiency, and robustness.

Keywords: multi-bolt loosening; loosening identification; vibro-acoustic modulation; time-frequency
diagram; convolutional neural network

1. Introduction

A high-strength bolt connection is the key component of large-scale steel structures.
The behavior of the bolt connection under loadings directly affects the load-carrying
capacity, safety, and durability of the whole structure. The preload force of bolt tightening
directly determines the clamping force between the two connecting parts. The insufficient
preload force inevitably leads to the loosening of the connecting bolt and the loosening of the
connecting parts. High-strength bolt connections are complex in the steel structure because
they are the main force transmission component, and there are many factors affecting
the force performance of high-strength bolt connections. Under the action of serving the
environment multi-physical field coupling (e.g., vehicle load, wind load, temperature load,
atmospheric corrosion), the steel structure joints are damaged (e.g., through multi-bolt
loosening). This leads to structural load-bearing capacity reduction and even over-all
structural failure. It is therefore necessary to identify the bolt loosening and evaluate the
safety status of high-strength bolt connections. Modern high technologies such as big
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data and artificial intelligence provide an intelligent way to ensure the safety of inspectors,
save costs, and improve the accuracy and efficiency of the loosening identification of
bolt connections.

Nondestructive testing methods are commonly used in the detection of loosening
bolt connections [1]. They can be divided into vibration, electromechanical impedance,
acoustic emission, ultrasound, machine vision, and (intelligent) percussion methods. The
vibration method [2] selects hammer excitation or a vibration generator and other meth-
ods to excite the high-strength bolt connections and then uses accelerometers to collect
vibration response signals for identification. The advantages of the vibration method
are mainly its ease of operation and low cost, while its disadvantages consist of its low
accuracy, low sensitivity, dependence on operator experience, and significant influence
by environmental noise, which translate to poor robustness. Ultrasound methods mainly
include active sensing methods, acoustoelastic effect methods, and nonlinear ultrasound
methods. Nonlinear ultrasonic methods mainly include harmonic methods, such as the
subharmonic method [3] and second/high-order harmonic method [4], and modulation
methods, such as the percussion-acoustic modulation method [5] and the vibro-acoustic
modulation (VAM) method [6]. The nonlinear ultrasonic method relies on contact sensors,
while the VAM method is sensitive to contact-type defects and has the advantages of high
accuracy and sensitivity. The VAM method can achieve early identification of damage
compared with other nonlinear identification methods, and the test equipment is simple
and convenient. Amerini et al. [7] found that the modulation edge frequency amplitude
increased with the increase of high-strength bolt loosening by using VAM techniques for
the identification of conventional bolted structures. Their results indicate a good correspon-
dence between the theoretical analysis and experimental results. Jaques et al. [8] found
that the VAM technique could be used for the identification of high-strength multi-bolt
loosening in aircraft structures, as the VAM satisfied the requirements of insensitivity to
shape identification and high detection efficiency. This technique was used to develop a
high-strength multi-bolt tightness inspection method without a reference datum and was
applied to the inspection of bolted structures on satellite aluminum plates [9].

The current applications of various bolt loosening identification methods are indi-
vidual. These methods include wave-based ones, such as wave or ultrasonic waves, and
vibration-based ones. These methods have individual advantages and disadvantages in
terms of accuracy, sensitivity, robustness, cost, and requirements for inspectors. Both types
of methods essentially process the acquired signal; however, the difference lies in the
frequency band of the signal of interest. Various wave-based identification methods are
concerned with signals in the high-frequency (HF) band, whose frequency is generally
in the range of kHz or even 10,000 Hz or more. These methods belong to the local dam-
age of bolt loosening identification methods. Alternatively, vibration-based identification
methods are concerned with signals in the low frequency (LF) band, whose frequency is
generally in the range of kHz or ≤100 Hz. These methods belong to the overall damage
of bolt loosening identification methods. In this respect, existing methods for identifying
concealed damage in multi-bolt connections ignore the information in the LF band or
the HF band, and the information used is incomplete. Thus, an effective combination
of both methods can provide a more efficient method of loosening the identification of
multi-bolt connections.

The multi-bolt connection loosening of steel structure is not only hidden but also
has an unusually complex status. The complex status includes the location of the loos-
ening occurrence, the degree of the loosening, and the evolutionary pattern, which are
exceptionally complex. This complexity can be solved using a suitable pattern recognition
method. For example, Wang et al. [10] proposed a new strategy based on the acoustic
emission technique to detect bolt looseness, and this research represented the first attempt
to identify multi-bolt looseness via the AE-based method. Using a deep convolutional
neural network (CNN) to solve engineering problems has become a research hotspot in
many fields recently [11–16]. Wang et al. [17] proposed a new robotic-assisted active sens-
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ing method based on our newly designed PZT-enabled smart gloves and position-based
visual serving technique. Tan et al. [18] proposed a method based on continuous Bayesian
Networks that can perform a safety evaluation on truss bridges. Zhuo et al. [19] proposed
a multi-bolt loosening method based on the support vector machine classification of sound
signals. It enables the identification of various environmental noise signals and sound
signals of multi-bolts with different locations and loosening degrees. Zhao et al. [20] pro-
posed a bolt loosening angle identification technique by combining deep learning and
machine vision. In recent years, the deep CNN has risen rapidly; it has a more powerful
learning capability than traditional pattern recognition methods and can provide a new
solution to the problem of the intelligent identification of complex diseases in steel bolt
connections. With the development of sensing technology and signal processing meth-
ods [6,10,21–24], the advantages of wavelet transform and other time-frequency analysis
methods have also been illuminated, and include strong computing power and efficient
data analysis capabilities. To date, target recognition techniques based on big data and deep
learning have been successfully applied to the identification and localization of loosened
bolt connections [20,25,26]. Li et al. [27] proposed a novel method based on an unthresh-
olded assembled recurrence distance matrix and multi-label CNN for structural loosening
identification under nonstationary ex-citations. Li et al. [28] further a proposed acoustic
emission wave classification method based on synchrosqueezed wavelet transform, and
the results show that the multi-branch CNN could identify surface rail cracks, where both
impact-induced and crack-propagation-induced acoustic emission waves were identified.
Yu et al. [29] proposed a novel method based on deep convolutional neural networks to
identify and localize damages of building structures equipped with smart control devices.
Furthermore, a vision-based crack diagnosis method is developed using deep convolutional
neural network and enhanced chicken swarm algorithm [30]. Deep learning techniques
rely heavily on data-driven feature extraction by learning a large number of samples.

A loosening identification method of high-strength multi-bolt connections based on
VAM signals is proposed in this paper. It takes multi-bolt connection structures under the
joint action of HF ultrasound and LF excitation. For the hidden and unusually complex
state of the steel high-strength bolt connections structure, such as that of large steel bridges,
the signal issued by multi-bolt loosening on bridges has contact nonlinear characteristics.
Moreover, through adding the white Gaussian noise (WGN) into original multi-channel
signals, the Noise-Assisted MEMD [31,32] was proposed to reduce mode mixing problem
effectively. Considering the serious interference of noise to the engineering structure in the
outdoor area, WGN Random noise is added to the HF signal during the test. The amplitude
of the percussion was random while the random white noise was added. This can also
eliminate the impact of operating noise, which is one of the important purposes of this
study. Time-frequency diagrams with edge-frequency components from wavelet transform
are obtained through modulating the HF vibration and LF vibration. Then, combining
the diagrams with the ResNet-50 CNN, we effectively extract the characteristics of high-
strength multi-bolt loosening by using the CNN model, which exploits the advantages of
wavelet time-frequency analysis in processing non-smooth signals and the powerful image
classification ability of ResNet-50 fully. Afterward, we achieved loosening identification
based on VAM signals of high-strength multi-bolt loosening.

2. Loosening Identification Method for High-Strength Multi-Bolt Connections
2.1. VAM

The VAM technique is a nonlinear acoustic identification method. The damage can
be detected because of the different stresses at different moments under LF vibration
excitation, and the amplitude or phase of the HF signal passing through this interface
there-fore changes (modulation). The principle of VAM is shown in Figure 1. The LF
vibration signal (f 1) and the HF ultrasonic signal (f 0) are simultaneously applied to the
specimen in the test, and if there are defects such as cracks in the specimen, the received
signal spectrum contains the edge-frequency (f 0 ± nf 1) components; otherwise, f 0 and
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f 1 have no interaction, and the received signal spectrum is the same as that of the input
signal [33–35]. Therefore, the quality of the tested parts can be evaluated by monitoring
the presence or absence and amplitude of the modulated edge-frequency components.
However, the identification of sidebands is difficult to separate under the influence of
multi-bolus structure modulation and noise [36], and is highly susceptible to different
factors, which limits the efficiency and application of sideband extraction [37]. The CNN
selected for this study has powerful image classification, target identification, and image
segmentation capabilities. The CNN is more sensitive to deep, specific nonlinear feature
representations and can accurately distinguish between different structures and sideband
components under noise. It performs efficient and accurate extraction of nonlinear damage
features, which leads to effective identification of multi-bolt preload loss.
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2.2. Wavelet Transform

The continuous wavelet transform is performed on the vibroacoustic modulated signal,
where the continuous wavelet transform is defined as the convolution of the signal x(t)
with the complex conjugate ψ∗ of the wavelet basis function:

WT(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt (1)

where the wavelet basis function ψ∗ is a Complex Morlet wavelet. Complex Morlet is
a commonly used complex-valued wavelet with good resolution in time-frequency do-
mains compared with other wavelets. It reflects good time-frequency aggregation in
time-frequency diagrams, making it suitable for processing non-smooth sound signals. The
expression of the Complex Morlet in the time domain is as follows:

ψ∗(t) = ejω0te−
t2
2 , (2)

where ω0 is a center frequency of the wavelet function.
Then, the continuous wavelet transform of the vibroacoustic modulated signal is gen-

erated as a time-frequency diagram, using the functions in the MATLAB wavelet toolbox.

2.3. ResNet-50 CNN Model

The CNN is a class of feedforward neural networks that includes convolutional
computation and has a deep structure. It is good at processing multi-dimensional data such
as images and is one of the representative algorithms of deep learning. The convolutional
layer, pooling layer, and fully connected layer make up a typical CNN model. In addition,
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auxiliary layers such as the activation layer and random deactivation layer are included
in the CNN for improving the generalization ability and learning performance, which
prevent overfitting. The convolutional layer performs a convolutional operation on the
input using a series of convolutional kernels with learnable parameters and then generates
a series of feature diagrams by sequentially sliding local receptive fields over the input.
The feature diagram consists of a number of neurons, called units. Each cell in the feature
diagram of the current convolutional layer is connected to a local region in the feature
diagram of the previous layer by a set of weights and an activation function. The output
(Xl

j) of the lth feature diagram of the jth convolutional layer can be calculated using the
following equation:

xl
J = f

(
∑i∈Mj

xl−1
i ∗ kl

ij + bl
j

)
, (3)

where kl
ij represents the weight matrix of the jth convolution kernel, bl

j is the corresponding
bias matrix, Mj is the set of feature diagrams, * denotes the convolution operation, and

f
(

∑i∈Mj
xl−1

i ∗ kl
ij + bl

j

)
is the activation function. The pooling layer downsamples the

feature diagram output from the convolution layer to reduce the dimensionality of the
feature diagram and the number of parameters. This ensures translation invariance and
improves the robustness of the model. The maximum pooling operation in the l pooling
layer is as follows:

xl
J = f

(
βl

jdown
(

xl−1
j

)
+ bl

j

)
, (4)

where down
(

xl−1
j

)
denotes the maximum downsampling function, while βl

j and bl
j are the

multiplicative and additive biases, respectively. Clearly, the convolution layer identifies
the local nonlinear features of the previous layer, while the pooling layer fuses similar
nonlinear features and removes unnecessary details. The learned feature diagram can be
expanded into a vector and classified when it uses a fully connected layer on top of the
CNN. The output (xl) of the lth fully connected layer is calculated as follows:

xl = f
(

ωl xl−1 + bl
)

, (5)

where ωl and bl are the corresponding weights and biases, respectively. The ResNet [38]
CNN model was first proposed by He et al., from Microsoft Research in 2015. Many
scholars have studied it deeply since it was proposed. It has gradually become a popular
CNN model because of its unique and innovative network idea. Moreover, its CNN is
simple in construction, has fewer parameters, and has a remarkable effect. As a result, it
is widely used in image segmentation, image identification, and other fields. The general
perception is that the deeper the CNN and the more parameters the CNN has, the better
the CNN‘s ability to represent the nonlinear structure for traditional neural networks. The
CNN generally becomes more effective as the CNN depth increases. However, the problem
of gradient explosion or gradient disappearance occurs during the training process of
the CNN when the depth of the CNN layers increases to a certain level. This leads to a
decrease in the accuracy of the CNN model inversely. The ResNet-50 is a CNN model
proposed for the problem of gradient disappearance and gradient explosion. The main idea
of ResNet-50 is to improve the traditional CNN by using residual blocks that are connected
in a “shortcut connection” arrangement [39]. The nonlinear activation function (ReLU)
is used to improve training efficiency and avoid gradient disappearance. The module of
residual blocks is shown in Figure 2. The output of the upper CNN layer is partially saved
to the later CNN layers using residual blocks, which effectively alleviate the pressure of
learning parameters in the deeper CNN layers. The ResNet-50 CNN model with residual
blocks effectively reduces the effects of gradient explosion and gradient disappearance
caused by the increasing network depth. The ResNet-50 CNN model can also save more
information for learning during training by overlaying the original nonlinear features
with the nonlinear features learned from the residual blocks. The CNN performance is



Sensors 2022, 22, 6825 6 of 18

superior. ResNet-50 has become a popular CNN model in recent years owing to its few
CNN parameters and superior CNN performance. Therefore, the ResNet-50 model is used
in this paper, and its CNN structure is shown in Figure 3.
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Some hyperparameters, such as the learning rate, batch size, and the number of
epochs, are not trainable but obviously affect the performance of the CNN model. Manual
tuning of hyperparameters is a difficult undertaking. Usually, random search and Bayesian
optimization are needed to tune the hyperparameters automatically. This study aimed to
obtain the optimal set of these hyperparameters by the Bayesian optimization algorithm.
Bayesian optimization is an informed search. It utilizes the performance of the parameters
that have been searched before to speculate how to perform better later. This makes
the search space smaller and the search more efficient. Bayesian optimization algorithm
constructs a probability proxy model based on the prior knowledge of the sampling points,
and then iterates continuously to increase the amount of information. The prior knowledge
is modified and updated to obtain the optimal value of the objective function with less
time cost. Its essence is to update prior knowledge according to new information, thus
generating posterior knowledge.

The hyperparameters of the CNN models, including learning rate, batch size, and
the number of epochs, were tuned with the help of Bayesian optimization algorithm and
the validation data set. A validation dataset needs to be constructed when Bayesian
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optimization is applicated, and the objective function that needs to be minimized is the
validation error EV(θ), where θ is the vector of considered hyperparameters [40]. It can be
assumed that the objective function is taken from a Gaussian process prior, as in

EV ∼ N(0, K) with

K =

k
(
θ1, θ1

)
· · · k

(
θ1, θn

)
...

. . .
...

k
(
θn, θ1

)
· · · k

(
θn, θn

)
+ σ2

noise I, (6)

where σnoise is the standard deviation of Gaussian noise, n is the number of iterations,
and k is the covariance function, which is the automatic relevance determination Matérn
5/2 kernel in this paper [41]. Under the Gaussian process prior, EV

1:n and EV
n+1 are jointly

Gaussian, and the predictive distribution can occur based on the previous observations,
D1:n =

{
θ1:n, EV

1:n
}

:

EV
n+1D1:n ∼ N

(
µ
(
θn+1

)
, σ2(θn+1

)
+ σ2

noise
)
,

with


µ
(
θn+1

)
= kT(K + σ2

noise I
)−1EV

1:t
σ2(θn+1

)
= k

(
θn+1, θn+1

)
− kT(K + σ2

noise I
)−1k

k =
[
k
(
θn+1, θ1

)
· · ·
(
θn+1, θn

)]T

(7)

Then, the next point (θn+1) is evaluated by acquiring the function that is constructed
from the predictive posterior distribution. Using the expected improvement over the
best expected value ubest = argminθ j∈θ1:n

µ
(
θ j
)
, it has a closed form solution with the

Gaussian assumption:

aEI
(
θn+1

)
= σ

(
θn+1

)
[ZΦ(Z) +∅(Z)] with

Z =
ubest−µ(θn+1)

σ(θn+1)
,

(8)

where Φ and ∅ are the cumulative distribution function and probability density function,
respectively. The next point to evaluate can be obtained by the maximization of the
acquisition function θn+1 = argmax θn+1

aEI
(
θn+1

)
[41].

2.4. Multi-Bolt Loosening Identification Based on Wavelet Transform and the ResNet-50 CNN

The flowchart of multi-bolt loosening and preload loss identification based on a
wavelet time-frequency diagram with ResNet-50 is shown in Figure 4. This method is
divided into two stages: training and testing. The training stage uses a data acquisition
instrument to collect a sufficient number of VAM signals for multi-bolt loosening and
preload loss. VAM signals are extracted by the signal processing method and then inputting
it to the time-frequency diagram obtained by wavelet transform of VAM signals in the
CNN. The nonlinear feature extraction is completed on the feature diagrams generated by
the convolution operation, and ResNet-50 with set parameters for training is used to obtain
a high-strength multi-bolt preload loss recognition model. The test phase uses the trained
model to identify the input VAM signal. In order to save time for training and to realize a
more robust CNN using limited VAM data available in this study, a pre-trained ResNet-50
is used for transfer learning. Transfer learning is based on previously acquired knowledge
to perform the current classification task. It enables the knowledge obtained from previous
tasks to be obtained from a different big data source. The Bayesian optimization algorithm
is used to tune the hyperparameters. The last three fully connected layers of the model full
are replaced in this study, which are the connected layer, SoftMax layer, and classification
layer. The output size of the full connected layer is modified to 16, while other parameters
remain unchanged.
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3. Experimental Verification 
3.1. VAM Test 

Four steel plates were connected using four M20 high-strength bolts to form a test 
specimen, as shown in Figure 5. The size of the splicing plate was 180 × 180 × 8 mm, the 
core plate size was 240 × 190 × 8 mm, the materials were Q345 steel, and the four high-
strength bolts were numbered Ⅰ, Ⅱ, Ⅲ, and Ⅳ, for easy classification of the CNN identifi-
cation results. To avoid the occurrence of repeated working conditions due to the sym-
metry of the piezoelectric ceramic piece, we pasted the four PZT sensors into position, as 
shown in Figure 5. PZT1, on the same side of high-strength bolt head, is the sensor for 
emitting signals; PZT2, PZT3, and PZT4, on the same side of the nut, are sensors for re-
ceiving VAM signals. The initial torque of the general M20 high-strength bolt is 221 N·m, 
and the final torque range is 374 N·m to 510 N·m. Wang et al. [6] proved that the bolt can 
be loosened at an early stage when the pre-tightening force is 50 N·m to 70 N·m, so 70 N·m 
was selected as the tightening state torque value in order to make this study applicable to 
more working conditions. The torque wrench used in this test was a pre-set torque wrench 
with a range of 28 N·m to 210 N·m. To prevent complete fall, we took the minimum work-
ing range of the torque wrench as loosening state. So, the starting torque for bolt loosening 
was selected as 28 N·m. When the torque is other values, it would be assigned according 
to the principle of proximity. 
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3. Experimental Verification
3.1. VAM Test

Four steel plates were connected using four M20 high-strength bolts to form a test
specimen, as shown in Figure 5. The size of the splicing plate was 180 × 180 × 8 mm,
the core plate size was 240 × 190 × 8 mm, the materials were Q345 steel, and the four
high-strength bolts were numbered I, II, III, and IV, for easy classification of the CNN
identification results. To avoid the occurrence of repeated working conditions due to the
symmetry of the piezoelectric ceramic piece, we pasted the four PZT sensors into position,
as shown in Figure 5. PZT1, on the same side of high-strength bolt head, is the sensor
for emitting signals; PZT2, PZT3, and PZT4, on the same side of the nut, are sensors for
receiving VAM signals. The initial torque of the general M20 high-strength bolt is 221 N·m,
and the final torque range is 374 N·m to 510 N·m. Wang et al. [6] proved that the bolt can
be loosened at an early stage when the pre-tightening force is 50 N·m to 70 N·m, so 70 N·m
was selected as the tightening state torque value in order to make this study applicable
to more working conditions. The torque wrench used in this test was a pre-set torque
wrench with a range of 28 N·m to 210 N·m. To prevent complete fall, we took the minimum
working range of the torque wrench as loosening state. So, the starting torque for bolt
loosening was selected as 28 N·m. When the torque is other values, it would be assigned
according to the principle of proximity.
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Figure 5. Experimental setup.

The data acquisition system of this experiment is composed of a vibration generator,
NI data acquisition instrument, HF ultrasonic signal generation equipment, and computer,
where the LF excitation is generated by the vibration generator or force hammer, and the
point of action is shown in Figure 5. The role of the HF signal is similar to that of the carrier
in VAM identification, which is used to carry nonlinear modulation information. Generally,
the continuous single-frequency sine or sweep signal with a frequency ranging from tens to
hundreds of kHz is used. Its amplitude is tens of volts. In order to increase the randomness
of the samples, we programmed the random noise and HF excitation by LabVIEW to act
on the specimen through PZT. Two different LF excitation forms were selected to compare
the effects of different waveforms of LF excitation on the model recognition effect, and
a test of the LF excitation form was completed using the vibration generator, where the
vibration generator output frequency was 640 Hz. The frequency range of 10–15 kHz linear
frequency modulation was the PZT input HF frequency. Another test of LF excitation was
completed using the hammer, and the hammer strike frequency was 4 Hz. The frequency
of inputted sine wave for PZT was 13.284 kHz. The two tests are referred to as the vibration
generator test and the hammer test in the following section. Bolt loosening has obvious
contact nonlinear features, but the corresponding time-frequency diagram changes very
slightly, and it is difficult to select manually. Thus, deep learning relies on data-driven
feature extraction, which can identify the contact nonlinear features of bolt loosening. The
wavelet time-frequency diagrams obtained from the two tests are shown in Figure 6. The
variation of signal frequency components with time is shown in the wavelet time-frequency
diagrams. The warm and cold colors reflect the amount of energy carried by each frequency
component of the signal in the wavelet time-frequency diagrams; the warmer its color, the
greater its energy. Case J means four bolts are “Tightness”, and case A is all “Loosening”.
From Figure 6, not only the energy bar changes during the bolt state transformation, but
also the time-frequency characteristics change. When the bolt transfers from tightening to
relaxation, it can be seen from Figure 6a,c that the side lobe components on both sides of the
signal obtained by the vibration generator test change. Similarly, the side lobe components
on both sides of the signal obtained from the hammer test in Figure 6b,d also change.
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The test steps are as follows:
Step 1: Simulation of loosening working conditions. The 16 working conditions

simulated by loosening different positions and different numbers of high-strength bolts
are shown in Table 1, with a high-strength bolt torque of 70 N·m in the tight condition and
28 N-m in the loose condition.

Table 1. Bolt-loosening cases.

Case
Bolt Number and State

Bolt I Bolt II Bolt III Bolt IV

A Loosening Loosening Loosening Loosening
B Loosening Loosening Loosening Tightness
C Loosening Loosening Tightness Tightness
D Loosening Loosening Tightness Loosening
E Loosening Tightness Tightness Tightness
F Loosening Tightness Tightness Loosening
G Loosening Tightness Loosening Loosening
H Loosening Tightness Loosening Tightness
I Tightness Loosening Tightness Tightness
J Tightness Tightness Tightness Tightness
K Tightness Tightness Tightness Loosening
L Tightness Tightness Loosening Loosening
M Tightness Loosening Loosening Loosening
N Tightness Tightness Loosening Tightness
O Tightness Loosening Tightness Loosening
P Tightness Loosening Loosening Tightness

Step 2: Model excitation. The vibration generator test was conducted with a DH40200
vibration generator, and the hammer test was conducted with an LC02 force hammer.

Step 3: Signal acquisition. Sixteen operating conditions were acquired using an NI
data acquisition instrument with a sampling frequency of 40 kHz.
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3.2. Dataset Construction

Algorithms, computing power, and datasets are the essential triumvirate of big data.
The ResNet-50 CNN model was chosen as the algorithm in this paper, and the computing
power, computer platform for model running and programming environment are shown
in Table 2. For the dataset construction in this paper, the wavelet time-frequency diagrams
obtained from the analysis of the VAM signals of 16 operating conditions were categorized
and labeled. Each dataset was randomly divided into 500 samples in the ratio of 6:2:2 as
the training dataset to train the model parameters. Then, 160 samples were used as the
validation dataset to tune the parameters of the model and initially evaluate the accuracy
of the model. The remaining 160 samples were used as the test dataset to evaluate the
generalization ability of the model. The final constructed dataset, therefore, consisted of
13,120 samples, of which 8000 samples were in the training dataset, and 2560 samples
each were in the validation and test dataset. When comparing the effects of datasets of
different sizes on the training results, the original sample was extended to 104,960 samples
by inversion, translation, scaling, and adding noise and contrast enhancement. Moreover,
the corresponding datasets were randomly divided into a training dataset, validation
dataset, and test dataset, according in the ratio of 6:2:2. The image augmentation is shown
in Figure 7.

Table 2. Computer platform and environment configuration.

Software and Hardware Platform Model Parameters

Operating system Windows 10 a 64-bit system
CPU AMD Ryzen Threadripper 2990WX 32-Core Processor
GPU NVIDA Geforce RTX 2080 Ti

Memory 128G
Programmed environment Matlab 2021a 64-bit
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4. Results and Discussion

Hyperparameter selection is difficult and time-consuming in deep learning training,
as the optimal combination of hyperparameters depends not only on the model itself
but also on the software and hardware environment. The hyperparameters of the CNN
models, including learning rate, batch size, and the number of epochs, were tuned with the
help of Bayesian optimization algorithm and the validation data set. When we used the
ResNet-50 model for training, the training and validation datasets were randomly divided
into several batches by the batch training method. The training batch (Minibatch) size was
32, the round (Epoch) was 30, the iterations per round was 216, and the total number of
iterations was 6480. Each 50 iterations triggered one verification, and the initial learning
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rate was set to 0.001. The weight decay value was 1 × 10−5. The output size was 16, and
the damage function used the mean square error. The Stochastic gradient descent with
momentum (SGDm) optimizer with a momentum of 0.9 was used. The monitoring index
was the average absolute error. The Bayesian optimization algorithm was used to tune the
hyperparameters. We set the Dropout layer random dropout probability to 0.4, meaning
that 40% of nodes were randomly dropped to further prevent overfitting. Other initial
parameter weights for model training were used with the weight values trained on the
ImageNet dataset.

4.1. Comparison of Different CNN Models

In order to verify the effectiveness and superiority of this research method, we ran-
domly selected AlexNet, VGG-19, GoogLeNet, and MobileNet-v2 classical models for
comparison with the training results of the ResNet-50 model. The samples used were
obtained from the force hammer experiment. Five model training cycles and validation
were performed under the same training parameter setting conditions. The accuracy and
loss rate curves of each model training dataset and validation dataset are shown in Figure 8,
and the recognition results after 6480 iterations are shown in Table 3. It is well known that
the models that have undergone migration learning each have optimal architectures. The
original result of wavelet time-frequency diagram is the pixel size of scale multiplied by the
number of time points. Resize images to adapt to different network structures so that they
can achieve the best results of learning. Resize does not change the accuracy of recognition,
because CNN primarily extracts the energy distribution characteristics in time-frequency.
We used the original input size of each model in order to ensure that the models retain their
optimal architectures in this paper. The input size of AlexNet is 227 × 227 × 3, and others
is 224 × 224 × 3.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19 
 

 

used as LF excitation for VAM experiments in order to extract more accurate nonlinear 
features in this study. Moreover, other conditions were kept constant to obtain different 
time-frequency sample diagrams. The model identification results are shown in Figure 9. 

Figure 9 shows the training models for the samples obtained from both tests converge 
after 2000 iterations, where the training and validation accuracies exceed 98% at conver-
gence. It notes that the hammer test sample has the fastest convergence rate. When the 
number of iterations is less than 200, the accuracy curve and loss curve of the training 
dataset and the validation dataset change rapidly. The corresponding curve changes at a 
significantly slower rate when the number of iterations is between 200 and 1000. The curve 
tends to stabilize when the number of iterations is greater than 1000. As shown in the 
training model of the samples obtained from the hammer test in Figure 9, the training 
accuracy rises to 96% from 76.2% when the number of iterations is between 200 and 500. 
The final model training accuracy reaches 99.48% with less fluctuation. Its recognition ac-
curacy and loss value curves are generally stable. The validation accuracy of the model is 
finally 96.24%, while the training loss and validation loss are 0.0042 and 0.0283, respec-
tively. The changing trend of the training model of vibration generator test sample is sim-
ilar to that in the hammer test, but each accuracy and loss value of vibration generator test 
is lower compared to that in the hammer test. However, the training and validation accu-
racies of vibration generator test are still 98.2% and 87.4%, respectively, and the training 
and validation losses are 0.0016 and 0.0297. This indicates that the force hammer as a form 
of LF excitation enables the ResNet-50 CNN model to perform the best image classifica-
tion. Notably, the combination of the ResNet-50 model with linear FM can also provide 
some help in practical identification when the vibration generator is used as a form of LF 
excitation. It is observed that the accuracies of both models exceeded 98%, demonstrating 
the ResNet-50 model has a great capability to extract different image nonlinear features. 

 
Figure 8. Comparison of training results between ResNet-50 and other CNN models: (a) training
accuracy; (b) validation accuracy; (c) training loss; and (d) validation loss.



Sensors 2022, 22, 6825 13 of 18

Table 3. Classification accuracy and loss of each model.

Category

Accuracy Rate Loss Rate

Training
Dataset (%)

Validation
Dataset (%)

Training
Dataset

Validation
Dataset

AlexNet 91.97 90.82 0.0267 0.1794
GoogLeNet 97.02 96.15 0.0038 0.0687

MobileNet-v2 99.35 95.07 0.0063 0.0271
ResNet-50 99.61 98.86 0.0033 0.0123
VGG-19 99.48 96.48 0.0042 0.0283

The ResNet-50 model and the remaining four classical CNN models converge after
2000 iterations, as shown in Figure 8 and Table 3. The training accuracy and validation
accuracy at convergence are above 90%, with ResNet-50 converging the fastest, MobileNet-
v2 converging the second fastest, and AlexNet converging the slowest. The accuracy curves
and loss value curves of both the training and validation datasets change more rapidly
when the number of iterations is within 200. The change rate of the corresponding curve
slows down when the number of iterations is between 200 and 2000. The curve basically
stabilizes when the number of iterations is greater than 2000. The ResNet-50 model training
accuracy rises to 97% from 65.6%, and the final model training accuracy reaches 99.61%
when the number of iterations is between 200 and 450, which is shown in the ResNet-50
model in Figure 8. ResNet50 and MobileNetv2 are generally stable in terms of recognition
stability except for fluctuations in a few positions in their recognition accuracy and loss
value curves. While the other three are relatively poor, Alex and VGG-19 are more volatile
in the early stage and converged slowly. The loss curve represents the fluctuation of
the deviation between the predicted and true values of the model with the increasing of
iterations number. The accuracy of the model is higher when the loss value is smaller, and
the probability of error in prediction is therefore smaller. As shown in Figure 8c,d, the
final training loss value of the ResNet-50 model is 0.0033 and the validation loss value is
0.0123. Compared with the other four models, ResNet-50 has the smallest loss value and
the first convergence, while AlexNet has the largest loss value and the slowest convergence
speed. Running time is also an important metric for the model performance evaluation. The
shortest running time for AlexNet model was about 0.5 h and the longest for VGG19 model
was about 1.26 h, however, the model in this study was 1.1 h and MobileNet was 1.23 h.
Thus, the ResNet-50 model performed better than other models in recognition accuracy and
stability. Features are the starting point of many computer image analysis algorithms and,
therefore, the outstanding performance of ResNet-50 also reflects its excellent nonlinear
feature extraction capability.

4.2. Comparison of the Dataset Size on Identification Performance

Nonlinear feature extraction relies on images, while the source of images is various
datasets, and the datasets largely determine the recognition performance of the model. In
order to study the effect of dataset size on the recognition results of multi-bolt loosening and
preload force changing, we set five different sizes of datasets for model training. Because
the number of samples obtained from the vibration generator test was greater, 100, 1000,
1500, 2500, and 4500 images, were randomly selected from each category of this test to
form a new dataset, denoted as 100, 1000, 1500, 2500, and 4500, respectively. The accuracy
of the models trained using five different size datasets is shown in Table 4. It is obvious
that the model accuracy increases with the increase of the dataset. The validation accuracy
and test accuracy of the model obtained after training on different size datasets range from
95% to 99.95% and 90.31% to 99.94%, respectively. Even with only 100 images per class of
samples, the ResNet-50 model still has more than 95% test accuracy. This indicates that
the CNN model with transfer learning also has good recognition performance for small
sample datasets. However, in order to ensure that the model has higher accuracy and
generalization capability, we still require sufficient image samples to ensure that the model



Sensors 2022, 22, 6825 14 of 18

can learn enough subtle nonlinear features to distinguish similar nonlinear features. The
variation in verification accuracy and test accuracy is small when the number of samples
is higher than 500. As shown in Table 3, the training accuracy and verification accuracy
are 99.61% and 98.86% when the number of samples used in the hammer test is 500. In
summary, when the number of each classification sample is only 500, the CNN model with
ResNet-50 can achieve a remarkable recognition effect, and the recognition result is stable
and has strong generalization ability.

Table 4. Validation and testing accuracy under different dataset sizes based on this model.

Dataset Size Validation
Accuracy (%)

Testing
Accuracy (%)

100 95.00 90.31
500 98.02 98.04

1000 99.76 99.84
1500 99.81 99.79
2500 99.82 99.90
4000 99.95 99.94

4.3. Comparison of VAM Excitations on Identification Performance

The VAM method uses a combination of LF vibration and HF ultrasonic signals to
achieve nondestructive identification, which can account for the local damage and overall
damage. The effective combination of the two provides a new idea for the concealed
damage of the multi-bolt connections. One of the most important nonlinear features of
feature extraction is “repeatability”, meaning that the nonlinear features extracted from
different images of the same scene should be the same. The vibration generator and hammer
were used as LF excitation for VAM experiments in order to extract more accurate nonlinear
features in this study. Moreover, other conditions were kept constant to obtain different
time-frequency sample diagrams. The model identification results are shown in Figure 9.

Figure 9 shows the training models for the samples obtained from both tests converge
after 2000 iterations, where the training and validation accuracies exceed 98% at conver-
gence. It notes that the hammer test sample has the fastest convergence rate. When the
number of iterations is less than 200, the accuracy curve and loss curve of the training
dataset and the validation dataset change rapidly. The corresponding curve changes at
a significantly slower rate when the number of iterations is between 200 and 1000. The
curve tends to stabilize when the number of iterations is greater than 1000. As shown in
the training model of the samples obtained from the hammer test in Figure 9, the training
accuracy rises to 96% from 76.2% when the number of iterations is between 200 and 500.
The final model training accuracy reaches 99.48% with less fluctuation. Its recognition
accuracy and loss value curves are generally stable. The validation accuracy of the model is
finally 96.24%, while the training loss and validation loss are 0.0042 and 0.0283, respectively.
The changing trend of the training model of vibration generator test sample is similar to
that in the hammer test, but each accuracy and loss value of vibration generator test is lower
compared to that in the hammer test. However, the training and validation accuracies
of vibration generator test are still 98.2% and 87.4%, respectively, and the training and
validation losses are 0.0016 and 0.0297. This indicates that the force hammer as a form of
LF excitation enables the ResNet-50 CNN model to perform the best image classification.
Notably, the combination of the ResNet-50 model with linear FM can also provide some
help in practical identification when the vibration generator is used as a form of LF excita-
tion. It is observed that the accuracies of both models exceeded 98%, demonstrating the
ResNet-50 model has a great capability to extract different image nonlinear features.
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(a) training accuracy; (b) validation accuracy; (c) training loss; and (d) validation loss.

4.4. Verification of the Proposed CNN Model and VAM Excitation

A new test dataset was applied to test the model to check the effectiveness and
generalization ability of the ResNet-50 model obtained after the above hammer test training.
The test dataset was constructed as shown in Section 2.2. Four metrics were used to measure
the classification accuracy of the model for the test samples in this paper, which were
Confusion matrix, Precision, Recall, and Specificity [13]. The analysis results are shown in
Figure 10 and Table 5.
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Table 5. Precision, recall and specificity. 

Label Precision Recall Specificity 
A 1.000  0.984  0.999  
B 1.000  0.977  0.998  
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cision of Label K is 0.974 because three of its samples were misclassified to B, but its recall 
and specificity are 1. This also leads to a recall and specificity of only 0.977 and 0.998 for 
label B. However, as all samples corresponding to label B were accurately identified, its 
precision is still 1, and other results are similar. 

The results indicate that the trained ResNet-50 CNN model is good at identifying 
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Table 5. Precision, recall and specificity.

Label Precision Recall Specificity

A 1.000 0.984 0.999
B 1.000 0.977 0.998
C 1.000 0.992 0.999
D 1.000 1.000 1.000
E 0.992 1.000 1.000
F 1.000 1.000 1.000
G 1.000 0.992 0.999
H 1.000 1.000 1.000
I 1.000 0.992 0.999
J 1.000 0.992 0.999
K 0.974 1.000 1.000
L 1.000 1.000 1.000
M 0.991 1.000 1.000
N 0.983 1.000 1.000
O 0.984 1.000 1.000
P 1.000 1.000 1.000

The trained ResNet-50 model has a 99.5% classification accuracy and only a 0.5% error
rate for the test samples in Figure 10 and Table 5. Although label E and M have one sample,
N and O have two samples, and K has three samples that were wrongly classified into
other categories, all its test samples were correctly identified and classified. The precision
of Label K is 0.974 because three of its samples were misclassified to B, but its recall and
specificity are 1. This also leads to a recall and specificity of only 0.977 and 0.998 for label B.
However, as all samples corresponding to label B were accurately identified, its precision is
still 1, and other results are similar.

The results indicate that the trained ResNet-50 CNN model is good at identifying
different locations and different numbers of high-strength bolt loosening VAM signals
under a variety of experimental conditions.

5. Conclusions

The bolt loosening during operation can reduce the load-carrying capacity, safety,
and durability of the structures. In order to identify loosening damages in multi-bolt
connections of large-scale civil engineering structures, we proposed a multi-bolt loosening
identification method based on time-frequency diagrams and ResNet-50 CNN using VAM
signals. Continuous wavelet transform was employed to obtain the time-frequency dia-
grams of VAM signals. After that, the CNN model was trained to extract damage-related
nonlinear features from the raw time-frequency diagrams intelligently. This method helps
to get rid of the dependence on traditional manual selection of the simplex and ineffective
damage index and to eliminate the influence of the operational noise of structures on the
identification accuracy.

Laboratory tests were carried out on a bolted connection specimen with four high-
strength bolts of different degrees of loosening. The effects of different excitations, CNN
models and dataset sizes were investigated. It could be observed that the ResNet-50
CNN model taking time-frequency diagrams of the hammer exciting VAM signals as the
input showed the best performance in identifying the loosened bolts of various degrees
of loosening at different positions. The training accuracy rose to 96% from 76.2% when
the number of iterations was between 200 and 500. The final model training accuracy
reached 99.48%, and the final model training accuracy of the vibration generator test was
98.2%. The results indicate that the proposed multi-bolt loosening identification method
based on VAM and ResNet-50 CNN can identify bolt loosening with a reasonable accuracy,
computational efficiency, and robustness. Moreover, it has low requirements for the size of
the dataset, strong generalization ability, and accurate nonlinear feature extraction.
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The method not only has high identification accuracy and stability, but also has low
requirements for the test environment. It is easy to be applied to mobile devices and harsh
engineering environments, and provides a new idea for online damage identification of
structures in complex environments. Furthermore, only two cases (tightened or not) of each
bolt were considered in this paper, and high-strength multi-bolt specimens with different
preload forces and under more environmental coupling will be considered for testing in
further work. This study only realizes the feasibility of the method from the principle, and
the influence of the boundary conditions will be studied in the subsequent engineering
practical applications.
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