
Citation: Hajnal, É.; Kovács, L.;

Vakulya, G. Dairy Cattle Rumen

Bolus Developments with Special

Regard to the Applicable Artificial

Intelligence (AI) Methods. Sensors

2022, 22, 6812. https://doi.org/

10.3390/s22186812

Academic Editors: Wenli Zhang and

Wei Guo

Received: 10 August 2022

Accepted: 5 September 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Dairy Cattle Rumen Bolus Developments with Special Regard
to the Applicable Artificial Intelligence (AI) Methods
Éva Hajnal 1 , Levente Kovács 2,* and Gergely Vakulya 1

1 Alba Regia Technical Faculty, Óbuda University, 1034 Budapest, Hungary
2 Institute of Animal Sciences, Hungarian University of Agricultural and Life Sciences, 2100 Gödöllő, Hungary
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Abstract: It is a well-known worldwide trend to increase the number of animals on dairy farms and
to reduce human labor costs. At the same time, there is a growing need to ensure economical animal
husbandry and animal welfare. One way to resolve the two conflicting demands is to continuously
monitor the animals. In this article, rumen bolus sensor techniques are reviewed, as they can provide
lifelong monitoring due to their implementation. The applied sensory modalities are reviewed also
using data transmission and data-processing techniques. During the processing of the literature,
we have given priority to artificial intelligence methods, the application of which can represent a
significant development in this field. Recommendations are also given regarding the applicable
hardware and data analysis technologies. Data processing is executed on at least four levels from
measurement to integrated analysis. We concluded that significant results can be achieved in this
field only if the modern tools of computer science and intelligent data analysis are used at all levels.

Keywords: rumen bolus; data processing; artificial intelligence; machine learning; dairy cattle

1. Introduction

The worldwide trend is to increase the number of animals on cattle farms from an
economic point of view, but animal welfare, sustainable farming, and the carbon footprint,
to which animal husbandry is often linked in a socially controversial way, are also im-
portant key terms in our modern era. The welfare of animals can be ensured with the
reduction in human labor input only with continuous monitoring with the appropriate
sensor technology and the application of the related data processing, data integration,
and intervention system. Recognizing this, the number of sensor types used in animal
husbandry and the number of products implemented are constantly increasing. The used
sensors show great variety.

The sensors can be grouped from several aspects, firstly according to the placement
method. According to Knight’s classification [1], there are “at cow”, “near cow”, and “from
cow” sensor systems. The first group (Figure 1.) includes sensors placed on the cow and
in the cow (neck, legs, body, vagina, tail, rumen, rectum, and subcutaneous tissue); the
second group monitors the interaction between the cow and its environment (external
camera systems, drone technology, and weight measurement systems); finally, the third
group includes systems for monitoring the physical and chemical properties of products of
animal origin.

An important additional grouping aspect for “at cow” sensors (see Table 1) is the type
of intervention required for placement, according to which sensors can be used without the
animals being hurt or that require veterinary operation. The third aspect is the working
interval of the sensor, which is due to the stability of the installation and the technical
lifespan of the sensor. The focus of this review is on the first group of sensors, including
the rumen boluses, highlighting data-processing issues.
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Figure 1. Dairy cattle “at cow” sensors according to Table 1. 1. Body surface ECG equipment, 2. Neck
rumination sensor, 3. Leg activity sensor, 4. Rumen sensors, 5. Tail, ear estrus detector, 6. Vaginal
partition detector, 7. Subcutaneous sensor.

Table 1. Sensor groups according to the placement location and methodology, usage length, aim of
data processing.

Sensor Type by Placement Placement
without Hurt Usage Length Aim of Data Processing

1 Body surface ECG equipment + 1 to 2 days processed measurement result

2 Neck rumination sensor + few weeks–3 years processed measurement result

3 Leg activity sensor + 1–3 weeks processed measurement result

4 Rumen sensors,
originally pH measurements + 3 months–5 years processed measurement result,

complex expert opinion/alert

5 Tail, ear estrus detector + few days processed measurement result
complex expert opinion/alert

6 Vaginal calving alarm thermometer + up to 1 week processed measurement result
complex expert opinion/alert

7 Subcutaneous sensor - 5 years processed measurement result,
complex expert opinion/alert

In the case of dairy cattle, the application of sensor technology is a rapidly evolving
field. A study published in 2010 on trends in dairy farming technologies does not even
mention cattle-monitoring IoT techniques [2]. Similar studies in 2019 [3] and 2020 [4] clearly
put their vote in favor of continuous monitoring of cows as one of the most important
technologies proposed in cattle farming.

Animal-based sensors can be divided into two groups; there are devices for research
purposes and commercially available on-farm decision support systems. Separation is
not necessarily differentiated according to the level of development (according to TRL
levels), but the purpose of the two sensor groups is different, and this is particularly
pronounced depending on the IoT technologies used. One helps research tasks with
objective measurements, and only a small proportion of them are currently dedicated to
the day-to-day practice of dairy farms. Research-aimed sensors provide primary measured
quantities, which will be evaluated and interpreted by the researchers according to the
aspects of the actual research question and with statistical methodology [5–12].
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At the same time, there are more expectations in dairy farms today. Tools and meth-
ods need to be developed to provide a complex expert support by assessing behavioral
and physiological characteristics in a complex way, thus helping farmers to make deci-
sions [1,4,13–15]. The devices must be usable throughout the whole life of the animals.
Despite the importance of complex sensory monitoring, very few publications have re-
viewed these issues, which is why it was chosen as a topic, highlighting the specific issues
of lifelong-monitoring data processing.

Historically, the first rumen bolus sensor measurements appeared after the 2000s in
experiments. The first measurements were taken on reticulo-ruminal pH and tempera-
ture [9,14,16]. The experiments were typically performed on fistulated cattle and lasted for a
few days. During this period, transmission and/or storage techniques at the given technical
level have been developed. These typically did not allow long-term measurements. At this
time, the study on the mechanical design of rumen boluses also began, and two types were
distinguished: the winged and the weighted mechanic types [3]. Both methods served for
stabilizing the position of the sensor, as unlike traditional sensor devices, these sensors are
not fixed, which makes it more difficult to process and interpret data.

However, these early time sensors (bolus sensors as well as other “at cow” sensors)
provided only primary information (lying time, average activity, or time spent ruminating,
or ECG). It was not even possible to carry out long-term measurements with the technology;
however, in 2010 [9], it was reported that no theoretical obstacle for lifelong monitoring
exists using bolus methodology.

The current trend is sensor fusion or sensor integration [17–19]. This means that
measurements are made simultaneously with several sensors, and these measurements
are aggregated by a data-processing system from which not only integral data but integral
statements regarding important issues related to the condition or welfare of the animals are
gained. Such claims are the estrus, inadequate feeding, symptoms of disease or lameness,
and prediction of the time of calving.

The aim of this paper is to give an overview of cattle rumen bolus-sensing technologies,
and in the following chapters, it will discuss: (i) the areas of application of rumen boluses,
(ii) the sensing solutions, (iii) data transfer solutions, (iv) data-processing and artificial
intelligence (AI) solutions which are already applied or suggested in rumen boluses.

2. Areas of Application of Rumen Boluses

The use of rumen boluses in cattle farming is not widespread today due to the high
cost of the sensors compared to external ones used in other smart herd diagnostic systems.
In practice, they may have diagnostic value during the transition period in smaller farms
to detect the ruminal adaptation to changes in close-up and lactation diets, as a number of
production-related diseases may affect the pH within the rumen. The measurement of ionic
activity has been employed to monitor the rumen status of cattle, particularly to detect sub-
acute rumen acidosis (SARA). Several pH thresholds for SARA are reported, influenced by
factors such as sampling location, sampling time, and measurement frequency. Considering
its diurnal patterns [20], thresholds of a daily ruminal pH average <6.16 [21] and of a period
with ruminal pH < 5.6 for more than 3 h/day [22] or ruminal pH < 5.8 for more than
5 h/day [21] were described for SARA risk cows using continuous measurements of the
pH in the ventral rumen.

Several wireless intraruminal sensors were developed in the last decade, and due to the
high correlation between sensory pH data and those obtained with calibrated laboratory pH
probes, ruminal boluses became accepted tools for ruminal-pH measurement [23]. However,
due to their extremely short lifespan for pH measurement, rumen boluses are currently used
primarily for research purposes. These measurement systems are noninvasive alternatives
to surgery using a pH probe calibrated with a reference solution, a processing unit that
records the pH signal, and a converter that converts the pH signal to radiofrequency and a
receiver [24]. Monitoring systems developed for working farms generally measure the pH
in the reticulum. Most of the publications presented the reticulo-ruminal pH [25,26], while
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in other papers, authors distinguish between the ruminal and the reticular pH values [27].
Since the ruminal and reticular pH values have been proven to be different [28], the sensor
localization was considered when establishing the diagnostic limit for SARA. The pH is
higher in the reticulum; therefore, instead of ruminal pH < 5.8, a reticular pH of <6.04 was
suggested for no more than 6 h/da [29].

In a recent study, a refined ruminal pH indicator was recommended in long-term
SARA diagnosis based on individual reticulo-ruminal pH patterns, because commonly used
pH SARA indicators were not able to distinguish SARA due to the great interindividual
variability in ruminal pH, the calibration drift of the pH probe (0.025 pH units/week),
and certain high-frequency noises causing false-negative pH peaks [30]. By correcting the
absolute pH value with these factors, SARA detection could be improved significantly.
Normalized pH kinetics were smoothed by applying a 180 min moving average, resulting
in filtered normalized kinetics. Using the normalized pH indicators, it was more accurate
to model the effects of feeding high- vs. low-starch diets as normalized pH parameters
increased significantly [30]. In a more recent study, significant associations between reticular
pH and chewing behavior (feed intake time, the frequency and time spent ruminating, and
number of rumination boluses) and milk chemical composition (fat and fat/protein ratio)
were found [31]. Still, the continuous on-farm reticular pH measurement has serious
limitations, due to the limited lifespan of the pH boluses and costs involved.

Besides the assessment of ruminal pH, bolus sensors are also able to measure ruminal-
temperature changes, reflecting a shift in animal physiological states [32–35]. It was
shown by several authors that a decrease in ruminal temperature reflects drinking and
feed-intake events, and its increase coincides with increased body temperature [33,36,37].
Monitoring changes in the ruminal temperature and the cows’ activity can facilitate the
early detection of estrous [38] and inflammatory conditions [39], and is, therefore, a
valuable approach to support herd management. Rumen temperature measured by bolus
sensors was compared with rectal temperature measured using digital thermometers, and
the PCC value from five independent study samples showed that the rumen temperature
measured by the bolus sensors was moderately correlated with rectal temperature [40–42].
Similarly to the pH, ruminal or reticular temperature has been investigated as a tool for the
remote measurement of core temperature [41]. Reticulo-ruminal temperature correlated
with rectal temperature and respiratory rate in beef cattle [34] and has been investigated
as an indicator of heat stress [35,43] and as a predictor of calving in dairy cows [26]. As
reticulo-ruminal temperature is significantly affected by water intake [34,40], reticulo-
ruminal boluses are able to monitor drinking events and investigate factors affecting
drinking behavior in cattle. However, ambient temperature and cow identity should
be also considered, as either cow threshold characteristics or ambient temperature af-
fected significantly drinking events [44]. Moreover, feed intake and milking increase the
frequency of drinking events in dairy cattle [45] and a reduction in water intake was
reported to decrease milk yield by up to 26% [46].

3. Sensors Used in Boluses and for Related Experiments

The rumen bolus is also suitable for lifelong monitoring due to its stable placement
and the long-life and small-sized batteries available today. In such a case, it is reasonable
to measure as many physiological characteristics as possible with sensor fusion, which
raises further questions. A rumen bolus is a heavily constrained device in terms of the
available battery power, space, and bandwidth. It is usually watertight, which makes
chemical sensors difficult to use. Finally, the price is also a limiting factor. On the other
hand, during preliminary or short-time experiments, virtually any possible kind of sensors
can be used. Here, the otherwise very important energy consumption, size, and price have
secondary interest.

Rumen boluses are usually targeted to measure a subset of three main modalities; the
ambient temperature, the motion activity (including rumination), and the pH. Temperature
is one of the first non-electrical physical quantities, which could be transformed into an
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electrical signal and measured digitally. The most straightforward method utilizes the
temperature dependence of different properties of PN junctions of semiconductors, making
it possible to integrate the whole digital sensor into a single chip. Single-chip temperature
sensors are available from numerous vendors in a wide range of accuracies for a moderate
price. Other sensor types use the thermoelectric effect of a thermocouple or resistive thermal
sensors, both combined with an analog–digital converter. These solutions provide a much
wider thermal scale (way above 100 ◦C), which does not exist inside the rumen. Examples
for using ambient temperature sensors can be seen in [32,47].

Measuring any factor related to motion is carried out by a MEMS (micro-electromechanical
system) [48], or possibly gyroscopes. These sensors are often integrated in a single device,
called an inertial measurement unit. These devices contain MEMS sensors, analog–digital
converters, and the supporting logic to provide a standard digital interface. There are only a
few companies providing cost-effective MEMS accelerometers or inertial measurement units
with high sensitivity, selectable sample rate, and low power consumption. These versatile
sensors can serve as a basis for several data-processing algorithms. Papers [7,12,48–50] show
good examples for using accelerometers in reticulo-ruminal boluses.

Rumen pH is still very challenging to measure. Sensors appropriate for pH mea-
surement use electrodes in direct contact with the rumen fluid; therefore, they are prone
to corrosion, which dramatically shortens their lifetime to a few months. Experimental
solutions are mentioned in [51,52].

During preliminary or short-time experiments, the goals, conditions, and available mea-
surement methods are different from that given for a bolus. As measuring motion can provide
meaningful information not only inside the rumen but in the body surface of the animal, ac-
celerometers and IMUs are often used in preliminary experiments as well, a typical application
being a neck collar or fitted to the animal’s leg. Accelerometer-based data loggers attached to
the leg can provide information about the lying behavior of the animals [53].

Finally, we can mention the special sensors, which are primarily used in medical
diagnostics, such as ECGs [8,48], pulse oximeters, and respiration transducers.

4. Data Transfer Solutions

Transferring the sensed raw or preprocessed data has key importance on the system
performance. Each kind of data transfer method has different limitations and gives con-
straints in terms of communication speed, power consumption, range, cost, and complexity,
just to name a few. Existing systems and experiments may use two different approaches.
Data can either be recorded inside the bolus or forwarded to some kind of receiver using a
wireless channel. The former method can be used universally, while the latter one can be
applied only in the case of fistulated cattle.

The advantage of storing recorded data inside the bolus is the high available capacity,
which allows continuous measurement with high sample rates even with multiple sensors.
The most ubiquitous storage media are different SD cards [53]; however, the storage
medium was not mentioned explicitly.

Regarding the application of an intra-ruminal telemetric sensing device, there may
occur some discontinuity in data transmission caused by the distance between the animal
and the receiver or the increased signal degradation due to the lying position [32]. In adult
cows, an increased packet loss for weighted ruminal boluses was also found [54].

Year by year, new radio communication solutions are developed and this progress
can be also observable in bolus research. The first experiments date back to 1974, when
Hanton and Leach [55] developed the first RFID system. In the field of dairy cattle farming,
automatic milking systems were the first adapters of this new technique [56], followed
by other precision systems, where RFID was used to identify each animal for the robotic
arms in [49], where ear tags were used to monitor the feeding behavior of the animals. The
main advantages of passive RFID tags are the low price and the low energy consumption.
Sensing is only possible with active RFID technology [52], but its communication range is
very limited [55].
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For digital radio communication, two possible directions are available. Either an existing
standard can be used, or a different solution can be developed based on the existing radio chips.
The two most well-known radio communication standards are 802.11 (WiFi) and 802.15.1
(Bluetooth). Both use the 2.4 GHz industrial, scientific, and medical ISM band; therefore, they
are prone to the absorbing effect of water. These solutions are easy to interface to a laptop
or a handheld computer [55]; however, the communication is limited to the vicinity of the
examined animal. Another important drawback of using WiFi or any Bluetooth standard
besides bluetooth low energy (BLE) is the relatively high power consumption.

There are several different digital radio communication modules operating in various
frequencies with different modulations. Transceivers operating in the UHF (ultra-high-
frequency) ISM bands (315, 434, and 818 MHz) require larger antennas than their 2.4 GHz
counterparts, but the absorption is much higher in the latter case.

Mottram et al. [9] used the 433.92 MHz frequency band with a moderate 4 mW power
to provide a bidirectional data link between the bolus sensor and the base station. The
antenna of the bolus sensor was an inefficient helical one; the handheld unit was equipped
with a quarter-wave whip antenna.

In Ref. [57], a special workaround was proposed to compensate for high attenuation of
the body of the animals. They used neck collar transponders to extend the communication
range of the bolus sensors. In Ref. [32], a similar method was described, where the 433 MHz
band was used and an additional transponder was placed to one of the legs of the animals.

Many of the aforementioned solutions used one of the built-in wireless communication
protocols of the computers of that time. Although the application of those solutions seems
to be obvious, their parameters are not optimal to use in a bolus. The bandwidth of
WiFi and even Bluetooth is unnecessarily high, while they are quite limited in terms
of communication range or the number of simultaneously handled devices. The other
generally available ad hoc solutions had more or less issues as well.

In the last decade, several wireless standards have been developed, many of them
specially tailored to serve the requirements of IoT applications and LPWANs (low-power
wide-area networks) [58]. The most widely used and well-known protocol is LoRa [59].
The first LoRa standard was issued in 2015 [60] and became widespread in the next few
years. LoRa targets applications which require very low data rates (even a few bytes a
day, down to 146.1 bps) and have limited energy. The most remarkable property of this
protocol is the great link budget (up to 150 dB), which allows long-range communication
and challenging propagation circumstances with high attenuation. LoRa offers modulation
settings with different data rates to balance between power consumption and link budget.
LoRa can operate on 169, 433, 868, and 915 MHz, based on the local regulations.

Although LoRa can be used alone with local receivers (gateways) for experimenta-
tion and gives independence from service providers, LoRaWAN gives much convenience
through well-designed upper network layers and optional cloud support. Different com-
mercial LoRaWAN networks are operated worldwide in several countries and provide
good coverage.

SigFox [58] was issued a few years later than LoRa and offers a promising commercial
communication solution for low-power, low-data-rate applications. It uses a 100 or 600 bps
data rate and provides a link budget even better than LoRa (around 160 dB). SigFox operates
from 862 to 928 MHz.

NB-IoT [61] is operated by the cellular providers as a part of the LTE (4G) network.
It operates from 700 to 2100 MHz and authorizes the device with a SIM card, similarly to
any cellphone. NB-IoT has the highest maximum link budget (164 dB) out of the last three
technologies and provides the highest bandwidth (26 kbps).

The future of bolus sensors is obviously in using one of these IoT communication protocols.
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5. Data Processing and Artificial Intelligence Methods

The data-processing methods of experimental rumen boluses used for research tasks
is the application of statistical methods used widely in scientific work. These statistical
methods are not worth discussing in this study due to space constraints.

However, the use of complex, long-life sensors requires new solutions in the field of
data processing and data analysis and presents unusual problems in this field.

We have the following requirements regarding the data-processing methods of the
sensors to be developed:

• Animal data should be extracted from the primarily measured sensory signal series.
• Often, the measurement is not taken with the optimal sensor according to the measured

characteristic, which makes the evaluation difficult.
• It has to learn the individual characteristics of each animal.
• Deviations from the individual characteristics of the animals are detected.
• Based on the detected deviations, they can start a special measurement program, and

send a notification or alert.
• They can set up a holistic model, based on the differences from the individual’s base level.
• Experience should be continuously incorporated into the system, so the number of

erroneous evaluations may decrease over time.

Several experts agree that the above goals can only be solved using AI algorithms [3,4,62].

5.1. Artificial Intelligence Methods Used in Cattle Sensor Papers

Support Vector Machine (SVM) [63,64]
The SVM method separates the labeled training data into two groups according to the

type of kernel function, looking for the maximum distance between the two groups to be
separated. Classically, it would be used to split a hyperplane in two parts with a hyperline.

min
f
‖ f ‖2

K + C
l

∑
i=1
|1− yi, f (xi)|, (1)

l is the number of learning data, C is the regularization parameter, and the task is a
minimization problem.

K-Nearest Neighbor (KNN) [63]
Similarity is measured with a distance function. The learning database is stored and

when an unknown object needs to be classified, we search for the k closest points according
to the distance function and classify the object into the category that occurs most often
among the k neighbors (majority voting).(

f̂ x
)
= yk, (2)

if xi ∈ Nk(x), (3)

where k is the number of neighbors, xi the database, and y is the output variable.
Linear discriminant analysis (LDA) [63] is a supervised learning technique, which

looks for an orientation that can transform high-dimensional feature vectors to a lower-
dimensionality feature space, such that the projected feature vectors of a class on this lower
dimensional space remain also distinguishable from the feature vectors of the other classes.
LDA is a small-sample-size (SSS) problem in professional terms.

Quadratic discriminant analysis (QDA) [63] is a generalization of LDA, where it cannot
be supposed that the covariance matrix in all classes is equal.

Radial base function (RBF) neural network [63] is a feed-forward neural network,
which contains three layers (input, hidden, and output layers). It is a function approximator
whose learning time is less than traditional MLP-NN.

Multilayer Perceptron (MLP_NN) Neural Network [63]
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A fully connected multilayer neural network is called a multilayer perceptron (MLP).
It consists of three types of layers, i.e., the input layer, output layer, and hidden layer. MLPs
are proven to approximate any continuous function.

Fuzzy solutions and ANFIS models [63]: A fuzzy inference system is based on Zadeh’s
theorem and can support complex decisions and function approximations. A fuzzy system
works with membership functions and an ANFIS neuro-fuzzy system is able to develop
function approximations with the help of the found membership functions.

Deep Convolutional Neural Networks (CNN) [63]
This is a special deep neural network for image processing. It contains frequently at

least 20–100 neuron layers with special activation functions.
Based on the literature and our own experiences, it can be stated that in the case of

rumen boluses for monitoring purposes, it is worth discussing at least four levels of data
processing and implementing them during development.

Level 0 contains the measurement techniques and data preprocessing. The measured
data are subjected to various data-cleaning and preprocessing steps, by the end of which
raw sensor data are prepared for analysis.

Level 1 covers first-level data processing; extraction of primary-level characteristics;
and extraction of biologically interpretable features, during which primary characteristics
are obtained from the obtained raw sensor data (rumen temperature, heart rate, type of
locomotor activity, body position information, etc.)

Level 2 means complex and integrative health, behavioral, or state assessment at the
level of individual animals. It is secondary-level data processing, during which, based on
the primary characteristics, by combining them and combining with other information, a
result can be obtained that is interpretable for farmers at the level of the individual (estrus
detection, time spent ruminating, integral value of locomotor activity, etc.)

Level 3 is a higher, holistic level, representing an integrative big data solution. Big
data solutions integrate characteristics of individual animals in a large time scale and at
least at the farm level.

5.2. Sampling and Preprocessing

The previous chapters highlighted that the use of rumen boluses helps in the continu-
ous monitoring of the animals, thus helping to ensure animal welfare, to reduce the carbon
footprint, and to maintain sustainable animal husbandry in general [4]. Unfortunately, de-
veloping this bolus with traditional methods is not straightforward. One of the constraints
is the limited range of usable sensor modalities described above. This often means that the
sensor modality used for the measurement is not optimal. One of the primary purposes
of bolus developments is pH measurement; however, lifelong pH monitoring is not yet
technically resolved, so it can only be applied for limited periods. Another example is that
the characteristics of heart function are easiest to determine with an ECG device, which in
turn cannot be used in a lifelong rumen bolus. In practice, with clever signal processing
of the data series measured by a three-axis accelerometer, these characteristics (heart rate,
heart rate variability, etc. [8]) can be determined. By processing acceleration values, other
movement types of the animal (ruminating, general physical activity, etc.) can be separated
and quantified. Since all of the mentioned signals are superimposed, determining the
different values requires significantly more data-processing steps compared to the data-
processing methods of the specialized sensors. This includes preprocessing the measured
signals and extracting the valuable signal. Additionally, the orientation of the bolus can be
arbitrary inside the rumen, which makes signal processing even more complicated, because
physical effects can affect the sensor from different directions.

A detailed description of the data processing was found for the sensor used to test for
rumination by 3D acceleration measurements [7]. Data processing is a complex multistep
process, with the following steps:

• Determination of the derivative of the accelerations per axis (jerk).
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• Calculation of the resultant jerk. After this step, the main movement activities can be
observed on the graph of the preprocessed values.

• Additional data-cleaning methods (variance calculation and moving average calcula-
tion). This step is required to make further processing more robust.

• Quantifying the preprocessing data with the appropriate metrics.

These preprocessing steps are used to extract valuable data, and this is followed by
special base-level determination and peak detection steps which have already prepared
the actual final first-level data processing [7]. An overview of the general data-processing
pathway according to acceleration data is given in [65]. It is worth noting that whether
we examine rumination movements, accelerations related to heart function (personal
communication), or accelerations related to animal activity, the first step in data processing
is to determine the derivative function of the acceleration per axis and then the resultant
calculation. The preprocessed data obtained during the measurement will usually be the
input to the regression calculation or classification. Preprocessing already suggests that the
measured values are difficult to interpret due to the large individual variety [5].

The battery life of a rumen bolus does not allow continuous measurement with a high
sample with any of the sensors. Communication systems suitable for a rumen bolus are even
more constrained in terms of bandwidth and power source (battery life); therefore, it is not
possible to transmit large amounts of data continuously. Thus, a well-chosen sampling strategy
and statistically based data processing are needed. This approach increases the standard
deviation of the features extracted during primary data processing, which makes it difficult to
process the data and achieve the desired accuracy classification [1,11,49,65–67]. These previous
findings suggest that we should use an AI solution at all levels of data processing.

5.3. First-Level Data Processing

Regression or classification methods are mainly used in the first-level data processing.
In classical research tasks, this is solved by involving a larger number of subjects and
statistical tests, but boluses for animal husbandry must handle individual cases. Here,
the obvious way to handle plausibility is to use machine-learning algorithms and special
normalization methods.

Relatively few studies mention the use of AI algorithms at this level of data process-
ing. Video-based monitoring systems have a much larger literature compared to rumen
boluses, and deep-neural-network-based methods are already widely accepted in image
processing [1,4,68–71]. Perhaps unsurprisingly, there are many more AI methodological
descriptions here, in the areas of lameness, disease diagnostics, rumination, and activ-
ity measurements [1,4,5,65,69]. Another problem with data processing is the significant
variability between individuals, which makes classification difficult in data processing.
It is often the case that the difference between two healthy individuals is greater than
the difference between healthy and sick states or normal and abnormal activity levels of
the same individual. This feature has been described in detail in a paper about lameness
detection [5]. Lameness can be statistically determined from the locomotor activity of
cattle. Location and lying characteristics were used in the experiment, namely median
bout duration, step impulses, lying time, number of lying bouts, minimum bout duration,
and maximum bout duration. The mean of each measured value is different for lame and
non-lame cattle, but the middle two quartiles cannot be separated in any case [5]. The task
is complicated by the fact that certain characteristics do not change in the same direction in
the case of lameness. The number of steps may decrease because the animal steps less due
to the hoof pain, but sometimes, it may take smaller steps, so the number of steps increases.
Two important methods were used during preprocessing. The first is that in each case, the
sensor learned the normal behavior of the animal during a 14-day learning period, and
the actual values of each animal were normalized based on the learned data set during the
actual data processing. After that, the measured, preprocessed values of different animals
became comparable [5]. The other method is not to examine the measured actual value, but
its deviation from the expected value, the latter also on a probabilistic basis.
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In classical data processing, the interpretation of the measured characteristics is usually
solved with thresholding algorithms, and due to the mentioned difficulties they can only
be used with poor efficiency; therefore, it is worth using machine-learning algorithms. In a
study on rumination activity detection, the support vector machine (SVM) algorithm was
successfully used to determine the rumination activity. The whole task of data processing,
adapted to the complex movements measured in the rumen, is quite complex. As the first
part of the data processing contained classical data-preprocessing steps and basic statistical
methods (moving average, variance), the SVM method was used to evaluate the extracted
primary properties, and it was suitable for the determination of rumination [7].

Elements of processing:
1. Peak detector: This is essentially a maximum search method that can detect the

0 value of the derivative function and the change in the sign of the derivative. The
peak detector detects all sign changes, even those that belong to a very small peak; thus,
a proper selector should be used to select the peaks that are considered appropriate.
The peak detector threshold was determined by examining the distribution of the peaks.
2. Intercontraction interval (ICI): The time difference between the peaks marked by peak
detectors. 3. Jerk variance baseline (JVB): This is essentially the baseline determination
using a rolling median filter in 40 s windows. This time interval was chosen because it
corresponds to the length of a rumination period. The two characteristics identified during
data preprocessing, ICI and JVB, were inputs to the SVM method. According to the authors,
these properties were able to make rumination a linearly separable feature; therefore, SVM
was used with a linear kernel. In total, 270s of measured data were required to detect
rumination. Based on this, rumination can be detected with an accuracy of 89.2% [7].

Determining rumen temperature is not an easy task. Classical studies have concluded
that rumen temperature is not suitable for estimating the body core temperature [16]. This
is because the rumen temperature is greatly influenced by the external temperature, the
temperature of the water consumed, rumen fermentation, and diseases associated with
fiber [10,16,32–34,37,40,42,43,45]. We hope that by intelligent baseline estimation, we can
obtain rumen temperature that reflects the body temperature. The proposed regression
algorithm for baseline determination is a robust matching algorithm [72] specifically recom-
mended for handling one-side deviations [73]. The literature discusses patterns of change
in rumen temperature, from which an appropriate sampling frequency can be determined
and deviations from baseline can be inferred from feed and water intake, whose number
can be estimated as additive information.

Fuzzy solutions can also be used advantageously in the processing of rumen bolus
data, although so far, no such publication has come to our attention. It is worth mentioning
the fuzzy solutions in other measurements connected to cattle characteristics. One of
them allows measuring the weight of moving animals with 1% accuracy. Based on two
variables, the measured actual body weight and the animal’s velocity, the model constructs
a smoothed body weight curve using a Takagi–Sugeno fuzzy system, the zero frequency
Fourier transform of which gives the body weight. Model parameters can be extracted
from the ANFIS neuro-fuzzy system and stored in a database [74,75].

5.4. Secondary-Level Data Processing

Alsaaod et al. [5] aimed to determine lameness based on locomotor characteristics.
The measured data and the preprocessing are described in Section 5.2. During the pre-
processing, after the application of a special normalization methodology, the lame and
non-lame movements were better separated. However, based on the measured data, linear
separability was not assumed. The SVM method was used for the separation, but data were
transformed into a linearly separable format using the radial base function (RBF) neural
network. The classical elimination technique resulted in an accuracy of only 65% even after
parameter optimization, while the SVM method increased the accuracy to 76%.
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5.5. Holistic Data Processing

It is quite clear to most experts that a holistic approach is needed in precision livestock
farming [1,4,13,62,67,71,76,77]. This can be achieved by integrating and analyzing data
from different data sources together. The data-driven perspective has been the focus of
several publications. A review has also been conducted in this area, summarizing the data
integration methods and algorithms used, and detailing the goals and potential of this
approach [63]. It is now clear that, as well as at the individual-animal-monitoring level or
at the farm level, data integration includes data from monitoring IoT devices and the use
of other, more traditional data sources. Rumen boluses have not yet been investigated in
studies in terms of their role and significance in data integration. It has become clear that
only AI algorithms can achieve good results in this area. On the second and third level
of data processing the suggested methods, there are the computationally more intensive
deep neural network algorithms. Now, these methods are more and more widespread in
any application (including from self-driving cars to smart buildings) [78]. In this area, the
most frequent applications are the video-based data analysis methods. However, the video
cameras are not able to be applied comfortably in stables, and their usage is expected to
be limited in the future, but their data-processing algorithms are pioneering in precision
agriculture. It is expected that these type of algorithms (e.g., CNN) with many modern
techniques, such as network pruning, weight quantization, and transfer learning, will
become important in data processing [79,80]. Other proposed algorithms are fuzzy, neuro-
fuzzy systems, and dimension reduction methods used in big data systems, or deep neural
network-based solutions [1,4,49,57,67]. It is important to mention the ongoing need and
the solutions that are coming to the fore today for the interpretability of the AI models.
This has been a classically large problem for AI systems; however, with the proliferation of
explainable AI, the models can be interpreted, helping the proposed interventions obtain
more user acceptance [81,82].

5.6. Systematic Review on Cattle Bolus Artificial Intelligence Methods

In a systematic literature search, we searched the Google Scholar and ScienceDirect
databases for the keyword combination “cattle” and “bolus” and “artificial intelligence”
and “cattle” and “bolus” and “Machine learning”. As a result of the search, we obtained
Table 2. The acronym AI could not be used in the search because it is already included in
animal husbandry jargon.

Table 2. Search and relevant result of keywords: “cattle” and “bolus” and “Artificial Intelligence”
and “cattle” and “bolus” and “Machine learning”.

Year Google Scholar Science Direct

2016 12 1 [83]

2017 18 0

2018 34 1 [6]

2019 42 3 [3,7,16]

2020 60 2 [1,70]

2021–2022 132 6 [13,62,65,67,76,77]

It is clear that the number of hits increases over time, indicating the importance of this area.
The article by Bradhurst et al. [68] used AI solutions at the third level of analysis in

the study of epidemic spread. In the article, in fact, the bovine rumen bolus occurs only at
the mentioned level [83].

The article by Campos et al. [69] used machine-learning algorithms in the second
level of analysis. Authors investigated the nutritional characteristics of goats using an
sEMG sensor. The bovine rumen bolus appears in the paper as a mention, but the authors
recognized that AI algorithms should be used for classification in sensor-based analyses.
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The paper includes a comparison of K nearest neighbor (KNN), linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), support vector machine (SVM), multilayer
perceptron neural network (MLP-NN), and radial base function (RBF) methods. It notes
that the highest classification accuracy in the given analysis could be achieved with the
MLP-NN model [6].

Experimental rumen bolus temperature measurement A: M. Lees (2019), mostly using
classical statistical methods for analysis, only mentions AI algorithms without the extent
of their use [16]. Another paper specifically discusses IoT sensors used on animal farms
and applicable AI solutions [3]. One article deals with a rumen bolus that can be used to
detect rumination, using SVM classification in the analysis [7]. Rumination was detected
via neck-mounted accelerometers and a RumiWatch halter [84].

Analysis of bovine behavior was conducted by Fuentes et al. (2020) using data from a
video system and using a deep neural network. The methodology used is an alternative to
the rumen bolus technique, and the referenced publication can be used to recognize and
subdivide 15 different types of hierarchical behaviors [70]. Jiang’s study also includes an
analysis of video data that examines the identification of bovine lameness. The study uses
a convolutional neural network with an accuracy of over 90%.

Knight’s analysis (2020) is a review [1] of sensor techniques; this study also considers
rumen boluses to be a forward-looking approach and includes an analysis of the significance
of the artificial intelligence solutions that can be used, without detailing the specific uses of
each solution. Bilali’s analysis deals with the subject in a similar way [4].

The year 2021 stood out in integrative data analysis. Ramadhan et al. [13] highlighted
the importance of the continuous e-monitoring of livestock, mentioning rumen bolus appli-
cations and artificial intelligence methods in modern animal husbandry among modern
technologies. Cabrera similarly analyzes the possibilities of data analysis and data integra-
tion in the precision dairy sector in a systematic literature search. The paper specifically
addresses the machine learning algorithms used in holistic data analysis [67].

6. Conclusions

Rumen bolus sensors appear to be a promising technology in the dairy cattle sector.
Today, modern animal husbandry increasingly requires continuous, practically lifelong
monitoring of animals which promises significant economic and animal welfare benefits.
This can be ensured by the rumen bolus sensor due to its stable location and the adequate
lifespan of the batteries.

In this article, we reviewed the results achieved so far in this field, starting with the
physical and hardware solutions of the devices, continuing with the possible ways of collect-
ing information, applicable sensory modalities, and the results of information transmission
and processing. Based on the reviewed literature, it can be stated that some AI solutions
are already used in current devices, but this area still has many possibilities. Straightfor-
ward results have been reported in the preprocessing and individual-level evaluation of
sensor data using the algorithms of machine learning. The use of SVM, random forest,
KNN and multilayer perceptron as well as RBF neural networks has yielded significant
results in the literature. Deep-learning methods are advantageous in the processing of
image and video data; however, continuous monitoring with a camera is a technically
difficult solution. Nevertheless, the statistical methods used also serve as a lesson for
sensor monitoring. In the future, the range of solutions used will certainly expand. It
will be worthwhile to test the intelligent classification and regression techniques, the ‘K
nearest neighbor’ method, the ‘random forest’, and the Bayesian classification methodology
during temperature measurement. Fuzzy methods are also promising in data processing.
Holistic data analysis is typically a task based on big data and requires complex analysis,
where deep-learning algorithms can play a significant role. The weak point of AI, and in
particular neural-network-based solutions, is the interpretability of the results, which is a
fundamental issue of trust for farmers. In our opinion, explainable AI solutions might help
interact with data analytics and can make this method acceptable to farmers as well.
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