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Abstract: In this study, a measurement system for gas generation of coal-rock under temperature–
pressure coupling was developed by adding gas extraction, collection, and flow-monitoring devices to
the original stainless-steel liquid seepage pipeline of an MTS-815 rock triaxial testing machine, which
can be used to study the production mechanism of coalbed methane in a real geological environment.
The system has the functions of axial loading, confining pressure loading, continuous heating, gas
gathering, etc., and has the advantages of good air tightness, high accuracy and stability, long-term
loading and heating, and controllable single variables. The preliminary test for the gas production of
anthracite in the Shaanxi Formation of the Qinshui Basin under temperature–pressure coupling was
carried out by the developed test system. The results show that the test system can provide accurate
and effective measurement means for the study of gas production by coal-rock deformation and is
expected to provide effective help for the control and exploitation of coalbed methane.
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1. Introduction

In view of the environmental pollution and carbon emission caused by traditional
fossil resources, the development and utilization of new energy resources led by natural
gas have become the focus of development in the energy industry and mining field in
the 21st century [1]. On one hand, coalbed methane (CBM) is a methane-based gaseous
geological body produced by chemical and tectonic processes of coal and belongs to
unconventional natural gas. Its calorific value is 2–5 times higher than that of traditional
coal resources, and almost no exhaust gas is produced after combustion [2,3], so the CBM is
an efficient and clean energy resource. On the other hand, as a gas resource associated and
symbiotic with coal, CBM often leads to a series of serious coal mine disasters such as gas
poisoning, spontaneous combustion, and gas explosions in the process of coal mining [4–9].
In addition, if CBM is directly discharged into the atmosphere, it will cause great damage
to the ecological environment because its greenhouse effect is approximately 21 times that
of carbon dioxide. Therefore, extracting CBM in a coalbed before coal mining can not
only greatly reduce coal mine disasters and environmental damage but also obtain a large
amount of clean energy resources and generate considerable economic benefits.

Many scholars have carried out research on the disasters and efficiency of CBM
exploitation [10–17]. However, since the natural form of CBM molecules is mainly adsorbed
on the surface of coal matrix particles or dissociated in the pores of coal-rock mass, or
even dissolved in coalbed water, it is difficult to achieve direct and efficient extraction.
In recent years, some scholars have tried to solve the CBM production problem from the
perspective of the geophysical characteristics of CBM [18–22]. However, due to the lack
of accurate quantitative characterization methods and detection techniques for many key
physical parameters such as gas molecular adsorption, gas content, and the gas yield rate in
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coal-rock under pressure and temperature coupling [23–26], there is still a lack of clear and
reliable understanding of the gas release mechanism of coal-rock in complex geomechanical
environments, which in turn makes it difficult to put forward safe and efficient technical
methods for CBM exploitation or disaster prevention.

For this reason, many scholars have attempted to reveal the mechanism of coal-rock
gas production [27–35], and the research was mainly focused on coal metamorphism gas
production, microbial gas production, biochemical gas production, and gas production by
coal’s mechanochemical deformation. They verified the metamorphism of coal-rock and
the effect of gas generation from the macroscopic and microscopic structure of coal-rock,
and explored the gas production mechanism by using experimental methods. However,
due to the influence of the traditional theory of gas production by coal pyrolysis and
high-temperature pyrolysis, most experimental studies imposed high-temperature and
high-pressure environments on coal-rock, resulting in the phenomenon of gas produc-
tion by coal-rock deformation being generally ignored [31–36]. Furthermore, there were
several major problems with previous experimental methods. For example, the actual
occurrence environment of coal-rock is under the conditions of three-dimensional in-situ
stress and certain geothermal conditions, while many studies were carried out using a
simple uniaxial compression device, which could not fully simulate the real CBM exploita-
tion environment [30]. Although the confining pressure was considered in some tests, the
self-made experimental device generally had the problem in which the kettle body and
the coal-rock specimen could not be completely fitted, and the insufficient air tightness of
the experimental device would lead to low accuracy of the experimental results [31,32]. In
addition, the temperature conditions were considered in some tests, but the experimental
temperature (350~700 ◦C) used was much higher than the initial temperature of pyrolysis
or even the cracking of coal specimens, which made it impossible to identify and analyze
the gas generated only by coal-rock deformation [33].

In view of this, based on the MTS-815 rock triaxial test machine, a new measurement
system that can simulate the gas production of coal-rock under temperature–pressure
coupling is developed, and the gas production by coal-rock deformation under temperature–
pressure coupling is preliminarily tested using this system. This study can provide the
technology and method for revealing the deformation and gas production mechanism of
coal-rock in a real geological environment.

2. Design Ideas

In this study, a measurement system that can accurately measure the gas production
of coal-rock under temperature–pressure coupling was designed and developed based on
the MTS-815 rock triaxial test machine. The main design ideas are as follows: (1) Using
the accurate axial pressure and confining pressure loading function of the MTS-815 test
machine to simulate the real three-dimensional in situ stress conditions borne by coal-rock
at different buried depths, and the axial and circumferential deformation of the coal-rock
specimen during the loading are recorded by extensometers; (2) using the heating function
of the MTS-815 test machine to simulate the geothermal gradient environment of coal-
rock; (3) using the sealed pipeline with the liquid seepage function in the triaxial chamber
of the MTS-815 test machine, and gas extraction devices such as a vacuum air pump,
flowmeter, gas collection bag, etc., outside the triaxial chamber, to collect and measure all
the gases generated by the coal-rock specimen under the temperature–pressure coupling;
and (4) using high-precision gas chromatography–mass spectrometry (GC-MS) to analyze
the components of the collected gases. In this way, the gas composition and gas yield
generated by the coal-rock under different temperature and pressure combinations can be
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known, and thus, the gas production mechanism can be revealed. The development of this
measurement system is expected to provide a reference and optimize the operation and
management for actual coal mining operations and CBM exploitation processes, improve
the extraction and utilization efficiency of new energy sources such as CBM, and prevent
coal mine gas disasters.

3. Establishment of the Test System

Figure 1 shows the schematic diagram of the gas production measurement system of
coal-rock under temperature–pressure coupling based on the MTS-815 triaxial test machine.
The test system mainly includes two parts: The specimen triaxial loading and heating
device and the gas collection and monitoring device. The specimen triaxial loading and
heating device is based on the MTS-815 test machine, which takes charge of axial and
confining pressure loading, heating, and constant temperature control on the specimen,
so as to simulate the complex geological environments of coal-rock. The functions of the
gas collection and monitoring device include gas flow monitoring, gas extraction, and the
collection of coal-rock gas. The details of each test device and method are as follows.
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Figure 1. Schematic diagram of gas production measurement system of coal-rock under
temperature–pressure coupling.

3.1. Specimen Triaxial Loading and Heating Device

The specimen triaxial loading and heating device includes a temperature–pressure-
coupled triaxial gas generation device and a confining pressure loading device. The
specimen is subjected to axial loading and continuous heating by the temperature–pressure-
coupled triaxial gas generation device, and the confining pressure is applied radially on
the specimen by the confining pressure loading device. In order to prevent the accuracy of
experimental results from being affected by the pyrolysis reaction of gas components in
coal-rock at a high temperature, the test temperature is controlled below 200 ◦C, and the in-
fluence of temperature on the reaction rate is compensated by prolonging the loading time.

As illustrated in Figure 2, the temperature–pressure-coupled triaxial gas generation
device and the confining pressure loading device in the laboratory are relatively indepen-
dent of each other, and a single test condition can be changed in the test to simulate the
geological environment of coal-rock at different burial depths and different temperatures.
The triple-sealing measures of a heat-shrinkable sleeve, a self-melting adhesive, and rein-
forced steel wire can ensure good air tightness of the device and provide the premise for
the accuracy of the test results.
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Figure 2. MTS-815 triaxial loading test system.

3.1.1. Temperature–Pressure-Coupled Triaxial Gas Generation Device

The temperature–pressure-coupled triaxial gas generation device is mainly composed
of specimen components, a triaxial chamber, an axial load device, and a heating device. As
illustrated in Figure 3, the specimen components are mainly composed of two cylindrical
blocks at the end, a stainless-steel hollow gas pipe, and the coal-rock specimen. First,
the coal-rock specimen is fixed in the middle of the two end cylindrical blocks with the
heat-shrinkable sleeve, and the heat-shrinkable sleeve is closely attached to the specimen
with heating equipment such as a hot air blower. Then, the end blocks are sealed and
connected to the heat-shrinkable sleeve with the self-melting adhesive. Finally, the sealing
steel wire is wound for more than three turns to ensure that the air pressure will not tear
the bonding of the self-melting adhesive during the test and prevent the high-temperature
silicone oil in the triaxial chamber from infiltrating the heat-shrinkable sleeve and making
contact with the coal-rock specimen. L-shaped stainless-steel hollow air pipes in the two
end blocks are used to transport the coal gas to the exhaust device.
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Figure 4 shows the other main components of the temperature–pressure-coupled
triaxial gas generation device. (a) The axial load device is installed on the upper end of the
box body of the triaxial chamber, including the loading frame, actuator, hydraulic power
source, servo valve, and other components. During the test, the specimen components are
axially compressed from top to bottom. (b) The heating device includes the heating strip
wrapped around the outer wall of the triaxial chamber and the thermocouple temperature
sensors placed on the pedestal of the triaxial chamber and close to the specimen components.
In the test, the high-temperature silicone oil in the triaxial chamber is continuously heated
from room temperature to 200 ◦C by the heating strip, and temperature feedback and
control are carried out by the thermocouple temperature sensors. In the traditional coal-
rock gas production test device, the temperature sensors are usually installed outside the
cylinder block, which creates the problem of internal and external temperature differences.
However, in this device, the temperature sensors are placed inside the triaxial chamber, close
to the specimen components, and can directly measure the temperature of the environment
where the specimen is located, avoiding the temperature difference between the inside and
outside of the cylinder block and reducing the test error. (c) The triaxial chamber comprises
a triaxial chamber box and a triaxial chamber pedestal, and the specimen components
are placed inside. The triaxial chamber box is tubular, and the pedestal of the triaxial
chamber is fixedly connected through a number of fastening bolts and fastening screws.
The inlets and outlets of the high-temperature-resistant silicone oil connecting the oil inlet
and outlet pipes in the confining pressure loading device are arranged on the box body and
the box cover, respectively. During the test, the confining pressure loading device exerts
triaxial compression on the specimen components by injecting silicone oil into the closed
triaxial chamber.
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3.1.2. Confining Pressure Loading Device

The confining pressure loading device mainly includes a high-temperature silicone oil
chamber, an inlet oil pipe and an outlet oil pipe connecting the oil chamber and the triaxial
chamber, and a control structure driving the high-temperature-resistant silicone oil for
circulating flow. The thermal decomposition temperature of the high-temperature-resistant
silicone oil is higher than 300 ◦C, which is a suitable heat-transfer medium. It has good
thermal stability and electrical insulation and is non-toxic and odorless.



Sensors 2022, 22, 6776 6 of 10

3.2. Gas Collection and Monitoring Device

The gas collection and monitoring device shown in Figure 5 mainly includes a gas
extraction pump connected to the specimen components, an electronic soap film flowmeter,
and a gas collection bag.
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(a) Gas extraction pump. In previous coal-rock gas generation tests, there was generally
no gas pump switch to control gas collection. The gas discharged from the specimen is
often collected after the collection device is installed, which leads to the collection of the
air in the test system before the start of the test and the omission of the residual gas in the
system after the end of the test, thus affecting the accuracy of the experiment. However,
in this study, the device is vacuumized by the gas extraction pump before the test, and all
the residual gas in the test system is collected into the collection bag by the gas extraction
pump after the test, which will greatly reduce the experimental error.

(b) High-precision electronic soap film flowmeter. This is connected between the gas
extraction pump and the gas collection bag. The gases produced in the test are extracted by
the gas pump and then pass through the electronic soap film flowmeter to measure the gas
production rate and total gas yield of coal-rock under different conditions in real time.

(c) Gas collection bag. All the gases generated in the test are collected by the gas
collection bag, which is more convenient and preserves the gas and analyzes it later more
easily compared with the drainage method in the previous coal-rock gas generation tests.

3.3. Main Technical Parameters

For the developed gas production measurement system of coal-rock under
temperature–pressure coupling, its main technical parameters are as follows: Load range:
0~2600 kN; load precision: ±0.5%; heating range: room temperature ~200 ◦C; confining
pressure range: 0~140 MPa; flowmeter range: 0~100 mL·min−1.
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4. Preliminary Test

In order to verify the functionality and practicability of the developed test system,
representative coal-rock in China was selected for the temperature–pressure-coupled gas
production test. The actual geological environment of coal-rock was simulated by applying
axial pressure, confining pressure, and heat treatment on coal-rock specimens to explore
the gas production mechanism of coal-rock under triaxial stress and geothermal conditions.

4.1. Specimen Preparation

Qinshui Basin in Shanxi Province is one of the coal-bearing basins with large coal
reserves in China. The coal-bearing area is more than 40,000 square kilometers. The basin
has a simple structure, stable coal seam occurrence, and large CBM reserves, which is a
promising area for the exploitation of CBM resources in China.

In this test, in order to explore the gas composition and total gas yield generated by
coal-rock deformation, anthracite with Ro, Max = 3.6% from the Shanxi Formation in Qinshui
Basin was selected for the temperature–pressure-coupled deformation test in this paper. To
reduce the anisotropy effect, all the tested specimens were cored from a single coal-rock
block along the same direction, and then the obtained coal-rock specimens were processed
into cylindrical specimens with the dimensions of ϕ50 mm × 100 mm, and the weight of
each specimen was measured to be approximately 135g. The ends of each specimen were
polished to be smooth and parallel in accordance with the ISRM standard [37].

4.2. Test Scheme

Since the pyrolysis reaction of coal-rock begins at 150 ◦C, in order to avoid the influence
of coal pyrolysis on the experimental results and the slow reaction rate caused by the low
temperature, the test temperature was set at 100 ◦C after comprehensive consideration.
The confining pressure was set to 20 MPa, 30 MPa, and 40 MPa, and the axial pressure
was set to 40 MPa based on the uniaxial compression test results, which was slightly
higher than the confining pressure to simulate the stress environment of coal-rock at deep
buried depths. At the same time, in order to avoid the premature failure of coal-rock
specimens caused by excessive axial pressure or confining pressure, the axial pressure and
confining pressure were increased synchronously in accordance with the corresponding rate
during loading and were manually adjusted if necessary. After the above three conditions
were set up, the temperature–pressure-coupled gas generation test was carried out on the
coal-rock specimen.

Before the test, after the specimen components were installed on the test device, the
triaxial chamber was put down and filled with silicone oil. First, vacuum treatment was
performed for more than 30 min to remove the remaining gas in the coal-rock pores and
the air in the test device. Then, the temperature of the silicone oil was heated to 100 ◦C
and maintained. The gas desorbed by the coal-rock specimen at the temperature of 100 ◦C
was collected by the gas collection device until the flowmeter monitoring showed that no
gas was generated, and then the vacuum treatment was performed again. After loading
the axial pressure and confining pressure to the design values, the gas production test of
coal-rock was started. The test time was set to 72 h, and the gas generation was monitored
by the high-precision flowmeter during the loading process. After reaching the desired
time, the pressure relief and cooling treatment were performed on the test system, and the
residual gas in the test device was extracted by the gas pump to ensure the accuracy of
the test results. Finally, the gases collected in the two stages were analyzed by GC-MS to
determine the composition and content of the collected gases.

4.3. Test Results

The gas production volume is one of the important parameters reflecting the gas
production efficiency of coal-rock [29]. After 72 h of triaxial pressure–temperature-coupled
tests, all gases were collected, and the concentration of methane was detected by GC-MS,
as tabulated in Table 1. It can be seen that the total gas production volume collected from
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the coal-rock specimen under the confining pressure of 20 MPa, 30 MPa, and 40 MPa was
548 mL, 573 mL, and 607 mL, and the measured methane concentration was 4778.92 ppm,
4854.15 ppm, and 4897.63 ppm, so the total gas production volume of methane can be
calculated by Equation (1) as 2.619 mL, 2.781 mL, and 2.973 mL, respectively.

QTM = CMQT × 10−6 (1)

where QTM represents the total production volume of methane, mL; CM is the measured
concentration of methane, ppm; and QT is the total production volume of all gases collected
in the test, mL.

Table 1. Total production volume of gas and methane collected in the test.

Specimen No. T/◦C σ1/MPa σ3/MPa QT/mL CM/ppm QDM/mL

SX-20 100 40 20 548 4778.92 0.594
SX-30 100 40 30 573 4854.15 1.026
SX-40 100 40 40 607 4897.63 1.353

The residual methane content of coal-rock specimens SX-20, SX-30, and SX-40 mea-
sured by the laboratory test was 0.015 mL/g, 0.013 mL/g, and 0.012 mL/g, respectively.
Since the weight of the standard coal-rock specimen is 135 g, the volume of residual
methane (QRM) contained in the coal-rock specimen is 2.025 mL, 1.755 mL, and 1.620 mL, re-
spectively. Then, the actual production volume of methane by coal-rock deformation (QDM)
under the temperature–pressure coupling can be calculated by Equation (2) as 0.594 mL,
1.026 mL, and 1.353 mL, respectively.

QDM = QTM − QRM (2)

From this, it is certain that methane and other gases were generated from the coal-rock
specimen under the coupled effect of triaxial pressure and temperature. In addition, it
could be found that with the increase in confining pressure, the total production volume
of methane and other gases generated by coal-rock deformation both increased, and the
concentration of methane also increased slightly.

The composition analysis by GC-MS showed that CO was the main gas, except
methane, in the triaxial pressure–temperature-coupled test. The mass fraction of car-
bon, hydrogen, and other elements in the coal-rock specimen also decreased, indicating
that the gas generated by coal-rock deformation may mainly come from the change in the
chemical structure of the coal-rock itself [29,30].

5. Conclusions

(1) Considering the sub-high-temperature and sub-high-pressure environments and
long-term loading requirements for gas production by coal-rock deformation, a triaxial
gas production measurement system of coal-rock under temperature–pressure coupling
was developed. The system has the functions of axial loading, confining pressure loading,
continuous heating, gas collection, etc., and has the characteristics of high reliability, good
air tightness, and long-term loading and heating.

(2) The developed test system was used to conduct a preliminary test on the gas
production of anthracite under temperature–pressure coupling. It was found that the gas
yield generated by coal-rock deformation increased with increasing confining pressure.
In addition, GC-MS analysis showed that the main components of the gas generated by
coal-rock deformation included CO, methane, and other hydrocarbon gases, which verified
the generation of methane in the anthracite deformation.

(3) The functionality and practicability of the developed test system were verified by
the preliminary test. However, only the change in confining pressure was considered in
the present study. Therefore, more systematic gas production tests will be carried out on
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different coal-rocks under different temperatures and triaxial pressures, so as to deepen the
understanding of the gas production mechanism in coal-rock deformation.
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