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Abstract: Insight into, and measurements of, muscle contraction during movement may help improve
the assessment of muscle function, quantification of athletic performance, and understanding of
muscle behavior, prior to and during rehabilitation following neuromusculoskeletal injury. A self-
adhesive, elastic fabric, nanocomposite, skin-strain sensor was developed and validated for human
movement monitoring. We hypothesized that skin-strain measurements from these wearables would
reveal different degrees of muscle engagement during functional movements. To test this hypothesis,
the strain sensing properties of the elastic fabric sensors, especially their linearity, stability, repeata-
bility, and sensitivity, were first verified using load frame tests. Human subject tests conducted in
parallel with optical motion capture confirmed that they can reliably measure tensile and compressive
skin-strains across the calf and tibialis anterior. Then, a pilot study was conducted to assess the
correlation of skin-strain measurements with surface electromyography (sEMG) signals. Subjects did
biceps curls with different weights, and the responses of the elastic fabric sensors worn over the biceps
brachii and flexor carpi radialis (i.e., forearm) were well-correlated with sEMG muscle engagement
measures. These nanocomposite fabric sensors were validated for monitoring muscle engagement
during functional activities and did not suffer from the motion artifacts typically observed when
using sEMGs in free-living community settings.

Keywords: electromyography; health monitoring; graphene; kinesiology tape; movement; physical
performance; skin; strain sensor; wearable

1. Introduction

Quantitative measurements of how muscles are engaged to enable functional move-
ments are invaluable for diagnosing, treating, and managing musculoskeletal disorders
and injuries (e.g., during physical therapy and rehabilitation). Electromyography (EMG),
especially surface electromyography (sEMG), is a well-established method for assessing the
health and activation of muscle fibers and muscle groups. In principle, EMG signals stem
from the depolarization and repolarization of the muscle fiber cell membrane during mus-
cle contraction. The electrophysiological action potentials generated by the transmembrane
flow of positively charged sodium, potassium, and calcium ions across the concentration
gradient in muscle and nerves create an electrical voltage measurable using surface or
indwelling electrodes [1,2]. A single motor unit is composed of a motor neuron and the
muscle fibers it innervates. Depending on the function of the muscle, a motor unit may be
small (fewer fibers per neuron, indicating finer control) or large (greater fibers per neuron,
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indicating greater gross control). The detected voltage measured by the transducer during
efferent depolarization is the summation of individual motor units [3].

sEMG is a noninvasive procedure that employs skin-mounted electrodes to detect
and record muscle group electrical activity. A single electrode or an array of electrodes
are placed on the skin and over the muscle(s) of interest, and the electrical activity is
recorded and commonly analyzed using the root mean square (RMS) of the electrical
action potential [4]. Many studies have utilized sEMG electrodes for understanding human
biomechanics. For example, Elamvazhthi et al. [5] mounted sEMG electrodes on forearm
muscles to establish signal signatures for various magnitudes of forearm movements. In a
study by Antwi-Afari [6], spinal biomechanics during repetitive lifting tasks were measured
by sEMG, and the results revealed that lifting heavier weights corresponded to increased
sEMG signals in certain muscles, while other muscles did not show the same trend.

While sEMG has been used for monitoring and assessing human movements [7],
several challenges still hinder its practical use. For instance, movement artifacts, which
result from the relative motion between the surface electrodes and skin, between skin
layers, and during stretching of skin, make these sensors difficult to use in free-living
community settings [7–10]. Furthermore, muscle crosstalk during complex motion further
limits the ability to assess muscle activity during complex movements, with signal quality
largely dependent on sEMG sensor placement [11]. Even minimal deviations in electrode
placement can induce significant signal variability [12]. For example, armband sEMG
devices have poor placement repeatability during reattachment, which is inevitable in
the case of long-term use [13]. On the other hand, crosstalk, which are unwanted signals
picked up over non-contracted muscles or added by co-contracted muscles, have been
documented as being particularly significant in gait analysis and as reducing sEMG signal
fidelity [14–16].

Various approaches have been undertaken to improve sEMG signal quality, given the
limitations of this modality. For example, Tanweer et al. [17] used inertial measurement
units (IMUs) to characterize motion artifacts and correct sEMG measurements. However,
similarly to many sEMG sensors, IMUs are bulky, which is inconvenient and can affect user
comfort and natural movement. Mithun et al. [18] considered a wavelet-based technique
for suppressing noise and EMG motion artifacts, but the amount of denoising and signal
processing required are barriers to continuous, long-term, and real-time monitoring appli-
cations. Lastly, minimal crosstalk area is an experimentally-defined skin surface area where
the crosstalk versus co-contraction is minimal, but these areas are difficult for non-experts
to identify and thus challenging to put into practice [14,19].

The aim of this pilot study was to investigate the correlation between sEMG mea-
surements and sensing streams from a recently developed, skin-mounted, nanocomposite,
elastic fabric sensor [20]. The wearable sensor, herein referred to as “Motion Tape”, is
formed by integrating piezoresistive graphene nanosheet (GNS) thin films with commercial
K-Tape. The underlying principle is that greater joint exertion results in stronger contrac-
tions and corresponding changes in skin-strains. Thus, our overarching hypothesis is that
Motion Tape skin-strain measurements across major muscle groups are correlated with
sEMG measurements during functional movements. For the purpose of this pilot study,
the aim was to establish that Motion Tape can capture the skin-strain changes associated
with performing biceps curls using different weights.

2. Materials and Methods
2.1. Nanocomposite Fabric Sensor Fabrication

Motion Tape was fabricated according to the procedure illustrated in Figure 1 and
outlined by Lin et al. [20]. In short, Motion Tape was prepared by spray-coating GNS
and ethyl cellulose (EC) thin films onto unidirectionally stretchable K-Tape (Rock Tape®,
Durham, NC, USA). GNS was synthesized by water-assisted liquid-phase exfoliation [21].
First, a 2 wt.% EC solution was prepared by mixing EC in 200 proof ethyl alcohol (EtOH) and
stirring the mixture for 24 h. GNS was added to the EC-EtOH solution at a concentration
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of 15 mg/mL and subjected to 2 h of bath sonication (150 W, 22 kHz). The dispersed
GNS/EC-EtOH solution was then heated at 60 ◦C for ~12 min using a Thermo Fisher
Scientific digital hotplate to evaporate some of the EtOH solvent while increasing viscosity.
The sprayable GNS/EC-EtOH ink was obtained after it cooled to room temperature.
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Figure 1. Motion Tape was fabricated by (1) first preparing the GNS/EC-EtOH solution and
(2) heating while stirring it. (3) Spray-coating was employed to deposit GNS/EC-EtOH ink onto
masked self-adhesive K-Tape substrates (4) to form each Motion Tape specimen.

Second, a Paasche VL-series airbrush (Kenosha, WI, USA) was used to spray-coat the
GNS/EC-EtOH ink onto K-Tape substrates that were masked, to expose only the rectangular
region where the nanocomposite sensing element was desired. Spray-coating was repeated
three times, while pausing ~2 min between each layer for the ink to dry after each deposition
step. An additional and final layer of GNS/EC thin film was drop-casted before drying the
Motion Tape specimen for at least 1 h. It was found that drop-casting enhanced the overall
nanocomposite uniformity and electrical conductivity. Last, measurement electrodes were
established at opposite ends of the GNS/EC sensing element by drying flexible conductive
ink (Voltera, Kitchener, ON, Canada), followed by soldering of multi-strand wires (Digi-Key
Electronics, Thief River Falls, Minnesota, MN, USA). The result is a self-adhesive, elastic
fabric sensor that can be customized to be different sizes during fabrication and can be
affixed practically anywhere on the skin.

It should be mentioned that many other studies have also proposed various skin-
mounted and fabric-based sensors for assessing human movements and muscle engage-
ment. For example, Anaya and Yuce [22] developed a portable, flexible, triboelectric-
nanogenerator-based device for forearm muscles/tendons motion measurement and for
assessing the motor dysfunctions associated with Parkinson’s disease. Yang et al. [23]
developed a textile strain sensor by integrating carbonic ink with spandex/polyamide
fabrics. The sensor successfully demonstrated highly linear, repeatable, and stable signals
during various human motion monitoring events. Similarly, Reddy K et al. [24] fabricated
a flexible strain sensor by coating reduced graphene oxide onto a polyester knitted elastic
band. The resulting sensor showed high strain sensitivity and signal-to-noise ratios when
measuring strains as small as wrist pulses and as large as knee bending movements. This
work not only adds to the breadth of fabric-based skin-strain sensors already proposed but
is also unique in investigating the use of a self-adhesive and unidirectionally stretchable
fabric as the substrate.

2.2. Sensing Characterization

Motion Tape specimens were individually mounted in a TestResources 150R (Shakopee,
MN, USA) load frame for monotonic, uniaxial, and tensile cyclic electromechanical testing,
as shown in Figure 2. Peak strains of 2.0%, 4.0%, 6.0%, 8.0%, and 10.0% were applied at a
constant rate of 0.1 mm/s, while electrical resistance was recorded using a Keysight 34465A
digital multimeter (Santa Rosa, CA, USA) sampling at 2 Hz. The load frame’s crosshead
displacement and applied load were also recorded at 10 Hz. All the data were collected
simultaneously using the Keysight BenchVue software for ease of time synchronization.
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Figure 2. A Motion Tape specimen was mounted in a load frame for characterization tests.

2.3. Human Subject Testing

Three different sets of human subject tests were conducted as part of this study. For all
the tests, the adhesive backing was peeled off to directly affix, without any pre-stretching,
the self-adhesive Motion Tape sensors onto skin that was pre-cleaned using an alcohol
wipe. First, the sensor verification test was based on Motion Tape sensors mounted to
a subject’s calf and tibialis anterior, as shown in Figure 3. Squats were performed, and
the subject’s movements were captured using a 12-camera Vicon optical motion capture
(mocap) system (Vicon Motion Systems Ltd., Oxford, UK), which recorded the 3D positions
of all retroreflective markers at 120 Hz. The Motion Tape sensors were connected to the
Vicon Lock Lab® 64-channel analog interface, so that their time-synchronized electrical
resistance was recorded simultaneously, at a sampling rate of 120 Hz, using the Vicon data
collection software.
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Figure 3. (a) Motion Tapes were mounted to a subject’s calf and (b) tibialis anterior.

In addition to using mocap to measure subject movements, a pair of retroreflective
markers were affixed adjacent to each Motion Tape, so that the 3D positional data of the
markers could be used to estimate the linear strains induced during functional movements.
It should be mentioned that the calf and tibialis anterior were selected for this sensor
verification test because the skin in these regions remained relatively flat during squatting,
which ensured that the mocap-estimated linear strains were comparable to the skin-strains
measured by Motion Tapes. However, estimating skin-strains from the change in distance
between two retroreflective markers would inevitably introduce intrinsic errors. Figure 4
depicts a case when Motion Tape is mounted on a slightly curved surface (e.g., skin). When
the surface is strained (e.g., due to movement or muscle engagement), the curvature of the
surface would change. The actual surface strains are shown in red in Figure 4, but mocap
estimates linear strains by only considering the line-of-sight change in distance between
the two retroreflective markers. Strain is calculated using (LNew − LOriginal)/LOriginal, which
is only accurate if the strains are confined to a flat, rather than curved, surface.
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Figure 4. The illustration depicts errors when estimating surface strains when using the linear
distance between two mocap markers.

The second muscle engagement human subject verification test involved participants
performing biceps curls using different weights (Figure 5). Following visual cues and in-
struction, subjects performed biceps curls to approximately the same angle (i.e., ~51◦–52◦).
Elbow angles during biceps curls were measured using two Xsens DOT™ IMUs (Enschede,
The Netherlands) worn at the biceps and the forearm. Motion Tape was applied perpendic-
ular to the biceps brachii, as shown in Figure 5, and its electrical resistance was recorded
using a PXIe-4082 digital multimeter data acquisition (DAQ) system (National Instruments
[NI], Austin, TX, USA) sampling at 296 Hz. A Delsys Trigno™ Avanti (Natick, MA, USA)
wireless sEMG sensor (aluminum bar electrodes with 10-mm inter-electrode spacing) was
also worn adjacent to the Motion Tape, but in parallel with the biceps brachii, to measure
muscle engagement, as shown in Figure 5. The skin was also cleaned with EtOH prior to
sEMG sensor attachment, which was secured on the skin using bare K-Tape. The sEMG
data were recorded using the Delsys EMGworks® analysis software running on the same
personal computer (PC), to ensure time-synchronized measurements.
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Figure 5. (a) Subjects wore Motion Tape perpendicular to the biceps brachii, along with an sEMG
sensor and two IMUs, for (b) biceps curl muscle engagement verification tests.

The third test for validating muscle engagement monitoring followed a similar protocol
as the aforementioned biceps curl verification tests. Here, Motion Tape was affixed to the
forearm, perpendicular to the flexor carpi radialis, as shown in Figure 6, and its electrical
resistance was also recorded using the NI DAQ system. A Delsys Trigno Avanti sEMG
sensor was attached adjacent to the Motion Tape but in parallel with the flexor carpi radialis
(Figure 6). Biceps curls were performed using different weights, while the sensing streams
from both the Motion Tape and sEMG were recorded simultaneously.
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Figure 6. Motion Tape and an sEMG sensor were worn on a subject’s forearm while biceps curls
were performed.

3. Results and Discussion
3.1. Strain Sensing Properties

The hypothesis that Motion Tape could capture skin-strain measurements correlated
with the degree of muscle engagement was tested in this study. First, the strain sensing
properties of Motion Tape were verified by subjecting them to tensile cyclic loads to different
peak strains while simultaneously measuring their electrical resistance (Figure 2). Here, a
10% strain limit was selected, because the expected skin-strains over major muscle groups
should be below this threshold, unlike joints, which can be greater than 30%.

The electrical responses of tests loaded to different peak strains are overlaid in
Figure 7a. Since all the tensile cyclic tests were conducted at the same loading rate of
0.1 mm/s, the overlaid plots in Figure 7a were produced by normalizing the time scale
(x-axis) with respect to the shortest duration test (i.e., 2% peak strain). This post-processing
step allows one to directly compare Motion Tape sensing response corresponding to differ-
ent peak strains. Overall, the set of representative resistance time histories acquired during
tensile cyclic testing confirmed the Motion Tape’s stable and repeatable strain sensing
behavior (Figure 7a). In addition, sensor linearity was assessed by normalizing its change
in resistance (∆R) with respect to its unstrained baseline resistance (R0) and then plotting
the data against applied strains, as shown in Figure 7b. Linear least-squares regression
lines fitted to the data confirmed sensor linearity (with correlation coefficients, ρ, that all
exceeded 0.99) and consistent sensitivity, which ranged from 13.0 to 18.5. These results are
consistent with the findings presented by Lin et al. [20], where Motion Tape sensor linearity
and sensitivity remained constant, with no baseline resistance drifts, even after >200 cycles
of cyclic loading.
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Figure 7. (a) Motion Tape resistance time history measurements with different peak strains (from 2%
to 10%) show its stable and repeatable sensing response. (b) Linearity was confirmed by fitting linear
least-squares regression lines (dashed lines) to the normalized change in resistance data (solid lines)
with respect to the applied strains.
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3.2. Verification of Motion Tape for Skin-Strain Monitoring

Verification tests of skin-strain monitoring during functional movements were per-
formed with two participants wearing Motion Tapes at the calf and tibialis anterior, which
was described in Section 2.3. The sensor verification tests were performed by affixing a
pair of retroreflective markers adjacent to each Motion Tape placed on the calf and tibialis
anterior. An optical motion capture system recorded their 3D positions during squatting
motion. The linear strain of each Motion Tape was estimated from changes in marker
pair distances with respect to their initial separation distance when the subject stood still
(Figure 4) [25]. Muscle engagement verification tests were conducted by placing an sEMG
electrode over the upper arm and forearm so that the Motion Tape electrical resistance
could be compared against muscle engagement during biceps curls.

Motion Tape electrical resistance and mocap data were first collected when subjects
performed squats. Figure 8a plots the normalized change in resistance time history of the
Motion Tape on the calf (Figure 3a), and this dataset was also overlaid with the mocap-
estimated linear strains. Mocap confirmed that compressive skin-strains were induced
due to contraction of the gastrocnemius medialis (i.e., calf muscle), which corresponded to
decreasing the normalized change in resistance (Rn = ∆R/R0) of Motion Tape as the subject
moved from a standing to a squatting posture. Plotting Rn with respect to linear strains
verified its linear and low-hysteresis sensing performance, which was supported by the
high correlation coefficient (ρ = 0.98) of the fitted linear least-squares regression line in
Figure 8b. No apparent baseline resistance drifts were observed.
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Figure 8. (a) The normalized change in resistance time history of Motion Tape on the calf is overlaid
with linear strains estimated from optical motion capture. (b) Linear and low-hysteresis compressive
strain sensing was confirmed.

The same conclusions could be drawn from the data collected from mocap and Motion
Tape mounted on the tibialis anterior during squatting (Figure 3b). Tension was induced
in the tibialis anterior, which caused Rn to increase (as opposed to decreasing on the calf),
as shown in Figure 9a. Strong linear skin-strain sensing response was also observed,
where ρ = 0.96 based on the best-fit linear least-squares regression line shown in Figure 9b.
However, in both cases, Figures 8b and 9b show some hysteresis response. This hysteresis
may be an artifact from errors associated with estimating linear strains from mocap, which
was explained in Section 2.3 and Figure 4. While the Motion Tape characterization tests
did not reveal any hysteresis behavior (Figure 7), the sensors could potentially exhibit
hysteresis at high strain rates (such as the case during these movements). Future tests will
investigate if and how Motion Tape behavior changes during different applied strain rates
during intense physical activities.
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Figure 9. (a) The time history results for Motion Tape on the tibialis anterior are overlaid (b) with
similar strain sensing properties observed with a tension similar to the compression case.

In fact, further analyses were also performed to examine the Motion Tape’s sensing
response among eight different trials. Normalized cross-correlation was applied between
the Motion Tape Rn and mocap-estimated linear strain time histories. The results in
Figure 10a show that the average time lag was 0.10 s, suggesting nearly instantaneous
Motion Tape response to changes in skin-strains. The correlation coefficients for all eight
trials are also summarized in Figure 10b. The average ρ was 0.90, with a standard deviation
of ±0.06, again confirming a strong sensor linearity and Motion Tape’s ability to accurately
quantify skin-strains.
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Figure 10. (a) The normalized cross-correlation between Motion Tape and motion capture estimated
strains confirmed a low time lag. (b) The subject tests were repeated in eight trials, and all the results
suggested a strong linear skin-strain sensing response.

3.3. Verification of Motion Tape for Measuring Muscle Engagement

Building upon the skin-strain sensing verification test results presented in Figures 8 and 9,
biceps curl subject tests were performed to test the hypothesis that Motion Tape could measure
muscle engagement during functional movements (see Section 2.3). In addition to mounting
Motion Tape over the biceps brachii, a wireless sEMG sensor was also worn in parallel with
the biceps brachii to measure muscle activation (Figure 5). Two IMUs were also attached
to the forearm and upper arm to measure the change in elbow angle during biceps curls.
Each subject then performed biceps curls using three differently weighted dumbbells, while
maintaining approximately the same range of movement (as confirmed by IMU-derived
angles of rotations). Although sEMGs and IMUs can both suffer from movement artifacts,
especially during high-intensity activities, the biceps curls were performed slowly to avoid
such experimental errors.

Figure 11a overlays Motion Tape and sEMG data for biceps curls performed using 2,
5, and 10 lb dumbbells, where the maximum angle of rotation was maintained at 51◦–52◦.
The sEMG data shown were denoised using an RMS calculation based on a moving
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window (0.125 s window length and 0.0625 s window overlap) [26], and the data were also
normalized with respect to the peak voltage amplitude (i.e., results are displayed from 0%
to 100%). Figure 11a shows that Motion Tape measured larger skin-strains on the biceps
as heavier weights were lifted. The same trend and greater muscle engagement were also
recorded by sEMG.
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To show that these trends are not unique for a particular subject, Figure 11b plots
similar results when a different subject performed biceps curls using 0, 3, and 5 lb weights.
Similar trends were observed, with both the Motion Tape skin-strains and sEMG signal
peaks increasing when heavier weights were lifted. The 0 lb case also showed changes in
skin-strains (i.e., much greater than the sEMG signal changes), but this is expected because
Motion Tape is a skin surface measurement and does not solely measure muscle engage-
ment. The correlation between Motion Tape skin-strain measurements and sEMG signals
suggest that Motion Tape is sensitive enough to capture skin-strain features associated with
different degrees of muscle engagement. Furthermore, a comparison of Figure 11a,b shows
that the magnitude of Rn varies between different subjects. This is expected, given that
muscle properties, body fat, and other subject-specific parameters would influence Motion
Tape outputs, as they would for sEMG signals as well.

3.4. Validation of Motion Tape for Measuring Muscle Engagement

Additional Motion Tape and sEMG tests were conducted on a different muscle group
to show that the sensing principle applies elsewhere on the body (Section 2.3). Both types
of sensors (i.e., Motion Tape and sEMG) were mounted on a subject’s forearm (flexor
carpi radialis), as shown in Figure 6. Biceps curls using 5, 10, and 20 lb dumbbells were
performed while maintaining a similar range of movement. The sEMG signals of Figure 12
confirm a greater muscle activation as heavier weights were lifted, and the Motion Tape
Rn time histories also showed greater amplitudes, following a similar trend. These results
successfully validated that Motion Tape skin-strain measurements are well-correlated with
sEMG muscle engagement measurements. However, it should be noted that the biceps
brachii and flexor carpi radialis are major muscle groups. Other and smaller muscle groups
will be considered in future tests, to further validate this technology, as well as during other
types of functional movements.
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Figure 12. (a) The sEMG results showed greater muscle activation when heavier weights were lifted,
and (b) the corresponding Motion Tape results exhibited the same trends.

4. Conclusions

In summary, a self-adhesive, low-profile, conformable, and disposable wearable skin-
strain sensor for muscle engagement monitoring was presented. Experiments on Motion
Tape conducted using a load frame and on human subjects successfully verified their linear,
stable, and repeatable strain sensing properties. To show that Motion Tape could measure
different degrees of muscle engagement during functional movements, biceps curl tests
were performed with subjects also wearing an sEMG sensor. Sensor data from directly
mounting Motion Tape over the biceps brachii, as well as over the flexor carpi radialis
(i.e., forearm), showed that greater muscle activation (i.e., higher amplitude sEMG signals)
was correlated with greater changes in Motion Tape resistance. It is worth noting that, while
sEMG is considered the gold standard for muscle engagement monitoring, it is relatively
rigid and susceptible to motion artifacts when not secured properly to the skin, whereas
Motion Tape can remain affixed firmly in place on the skin while deforming freely. Overall,
these wearable textile-based sensors and their continued testing and development could
lead to their potential use for sports coaching, physical rehabilitation, and telemedicine,
among many other healthcare, athletic, and military applications. While Motion Tape can-
not replace sEMGs for quantifying muscle activation, these sensing streams can potentially
provide insights about the degree of muscle engagement, especially during movement-
intensive activities. Future work will focus on clinical studies that rigorously test Motion
Tape for muscle engagement monitoring in different body areas, among diverse subjects,
and with larger subject pools.

5. Patents

K.J. Loh and Y-A. Lin, “Smart Elastic Fabric Tape for Distributed Skin Strain, Move-
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