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Abstract: Mobile edge computing (MEC) has become an effective solution for insufficient computing
and communication problems for the Internet of Things (IoT) applications due to its rich computing
resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has
an important impact on system performance and has become an essential issue in end–edge–cloud
architecture. In this article, we consider specific factors, such as spatial location, power supply,
and urgency requirements of terminals, with respect to building an evaluation model to solve the
allocation problem. An evaluation model based on reward, energy consumption, and cost factors
is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and
allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony
algorithms. The results show that the obtained strategies achieve good evaluation results under
problem constraints. Furthermore, we conduct comparison tests with different attributes to further
test the performance of the proposed method.

Keywords: Internet of Things; mobile edge computing; edge node deployment; genetic algorithm

1. Introduction

The fifth-generation mobile communication system (5G) provides the opportunity for
more devices to access the IoT, and a considerable amount of terminal devices and services
designed to meet user needs is emerging, resulting in a massive increase in the volume of
data required for services accessing wireless networks [1]. The way tasks are uploaded to
the cloud for calculation solves the problem of a large number of services and generated
tasks to be calculated; however, due to the limitation of transmission distance, this solution
is not quite applicable to latency-sensitive task devices. The emergence of MEC makes
it possible to perform resource-intensive and delay-sensitive device tasks, especially in
machine learning and artificial intelligence [2,3] improving user experience [4]. By sinking
computational resources closer to the terminal devices, MEC not only allows for a more
flexible allocation of computational resources [5,6] but also data isolation from the cloud,
improving the stability of the device and network connections [7].

A large number of existing studies have considered edge nodes [8,9], but the location of
the edge node is directly fixed, and the impact of the edge node location on task processing
and computation offloading is ignored [10]. However, in contrast to cloud computing,
the computational resources of MEC are limited by energy and resource costs. In several
deployment scenarios, the appropriate location cannot be determined directly as a matter
of course.

Appropriate locations for edge nodes should be selected based on local topographical
conditions and power supply conditions. In extreme cases, lakes and mountains are not
suitable for node placement, as shown in Figure 1. Solid triangles are represent edge nodes
for data processing, whereas hollow triangles are not selected. Datasets are uploaded from
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terminals to edge nodes, and the processing results are uploaded to the could. Moreover,
the location differences in edge nodes directly determine the distance between edge nodes
and terminals, and the distribution also affects the utilization of computing resources,
which further affects latency and transmission energy consumption [11,12]. If the edge
nodes cannot be reasonably selected for allocation, energy is wasted, and the time delay
caused by unreasonable nodes seriously affects the processing of real-time tasks. Therefore,
selecting an appropriate location for edge nodes and allocating terminal tasks is the basic
condition for making full use of computing resources and improving the performance of the
entire edge computing system. Furthermore, the strategy of location deployment selection
should satisfy the task processing requirements in scenarios with different parameters.
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In this paper, we focus on the problem of edge node deployment and computational
resource allocation for complex terminals. Here, we obtain the solution to the optimization
function with three influencing factors (including processing reward, energy consumption,
and deployment cost) by comparing three evolutionary optimization algorithms, obtaining
the optimal deployment allocation strategy. The main contributions of the present study
are as follow:

• We design a model for complex terminal application scenarios. By analyzing the
characteristics of terminal emergency and power supply modes, the model is suitable
for specific application scenarios. We consider the processing capability of edge nodes
and ultimately select suitable nodes among several potential edge nodes.

• An improved genetic algorithm (GA) is designed and compared with the k-means and
ant colony (ACO) algorithms. We analyze the advantages and disadvantages of the
three algorithms in terms of the iterative process, task assignment balance, and final
optimization results. GA achieves the best performance; therefore, it is used to test
different terminal attributes.

• We test the performance of the algorithm under different scenarios and analyze its
applicability under varying terminal and edge node sparsity conditions, task flow
rates, data volume ranges, and task processing complexities, providing a reference for
subsequent application studies to explore additional scenarios.

The rest of this paper is arranged as follows. In Section 2, we present the mainstream
studies and research progress associated with current deployment problems. In Section 3,
we describes specific problems and the model-building process. In Section 4, we illustrate
three algorithms for model solving. In Section 5, we describe the selection of parameters
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and analysis of the distribution and deployment results. Finally, conclusions are provided
in Section 6.

2. Literature Review

Several studies have been conducted on edge node deployment in different application
scenarios, such as vehicular networking and industrial design. Vehicular networking uses
edge computing applications to process and store vehicle data. Jabri et al. [13] used an
ant colony optimization algorithm to select gateways and the number of connected fog
nodes to improve the utilization of gateways and nodes in both static and dynamic mobility
scenarios. Chang et al. [14] constructed a multi-objective optimization model to characterize
the tradeoffs between three key performance metrics: initial deployment cost, run time cost,
and average delay of the task, decomposing the problem using a heuristic multi-objective
optimization approach.

Industrial applications are focused on data processing of highly sensitive devices in
smart factories and smart manufacturing scenarios. Jiang et al. [15] applied an improved
k-means clustering algorithm to the deployment of edge nodes in smart manufacturing
systems by synthetically balancing the optimization objectives of network latency, com-
putational resource deployment cost, and edge node computational capacity. Wang [16]
established a model to optimize the deployment cost and load balancing, proposing a
fault-tolerant server deployment scheme and improving the global optimal solution of the
algorithm using a binary-based gray wolf genetic policy algorithm.

The deployment of edge nodes involves the influence of many factors, and many
studies have considered the impact of deployment allocation according to the application.
Cao et al. [17] considered the impact of heterogeneous edge servers and the fairness of base
station response latency on user quality of service. The authors proposed optimization
methods for the offline and online phases to achieve joint optimization of the expected
response delay of the system and the base station based on fairness criteria. Lin [18] mini-
mized the total installation cost using a metaheuristic algorithm combined with a discrete
monkey algorithm, considering the constraints of maximum demand capacity, maximum
delay time, coverage area, and maximum equipment capacity. Jia et al [19] studied cloudlet
placement and terminal allocation to cloudlets in a wireless metropolitan area network
(WMAN). They proposed a density-based clustering (DBC) algorithm to solve the NP
hard problem. Zhang [10] designed a particle swarm optimization algorithm for an edge
cloud placement strategy with a focus on minimizing the total time cost of task execution.
Luo [20] proposed a deep q-learning and reinforcement learning algorithm that models the
problem as a Markov decision process and uses reinforcement learning to obtain optimal
placement results based on latency. Mann [21] proposed a decentralized allocation strategy
to improve overall flexibility, creating fog clusters for devices in different regions and estab-
lishing connections between clusters for transmission. Herrera [22] studied the application
of software-defined networking (SDN) in edge computing scenarios and analyzed the
deployment of nodes in SDN Internet topology and industrial IoT infrastructures using
heuristic methods [23].

Based on our literature review, we conclude that current research is focused on solving
problems using different algorithms and testing the adaptability of the algorithms in
different scenarios. However, existing studies do not consider the extended properties
of terminals, i.e., the task urgency and the power supply mode. Analytical comparisons
between current research and our work are presented in Table 1. The task urgency set can
guarantee the resource tendency in the urgent processing of some tasks, whereas other
authors focus on the power supply mode to keep the system running for a longer time. “

√
”

indicates that the corresponding factor is considered, and “×” indicates that the factor is
not considered.
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Table 1. Factor comparisons based on a literature review.

Reference

Terminal Attributes Evaluations

Data Task Flow
Rate

Power
Supply Mode Urgency Edge Node

Number
Energy

Consumption Latency

This paper
√ √ √ √ √ √ √

[14]
√

× × ×
√

×
√

[18]
√ √

× ×
√

×
√

[16]
√ √ √

×
√ √ √

[15]
√ √ √

× ×
√ √

[17]
√

× × ×
√

×
√

3. System Model

In this section, we analyze the edge node deployment problem and describe the
investigated scenario. To obtain the solution set for edge node selection, we design a multi-
objective optimization function to measure the performance of edge node deployment
based on the three components of concern: reward, energy consumption, and deploy-
ment cost. Finally, latency and data volume balance are added as effects to measure the
optimization function.

3.1. Scenario Description

A square area is established in which IoT terminal devices are located, and terminal
devices and potential edge nodes are randomly distributed, as shown in Figure 2. We
assume that the wireless network has n terminal devices, denoted by ni{i = 1, 2, · · · , n},
whereas there are m potential edge nodes for selection, denoted by mj{j = 1, 2, · · · , m}.
The ni features are represented as Ni = {xi, yi, Di, ∂i, Ci, λi, Pi}, N = {N1, . . . , Ni, . . . , Nn}.
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• Urgency ∂i: In the actual scenario, different locations correspond to terminals with
different requirements for time tolerance sensitivity, so we divide terminals into three
levels of urgency ∂i = {1, 2, 3}, with ∂i = 3 as the most urgent terminal and ∂i = 1 as
the least urgent terminal. During processing, tasks created by high-urgency terminals
have a preference with respect to the degree of reward, as specifically described in
Section 3.2.2.

• Task complexity Ci: Task complexity affects the amount of CPU time spent on task pro-
cessing. The higher the complexity of the task, the longer the processing time. For ex-
ample, edge nodes consume more computational resources than text processing when
dealing with image-type tasks. In this paper, we consider four common task types:
ASCII compression, data table reading, variable-bit-rate (VBR) coding, and constant-
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bit-rate (CBR) coding, with a complexity of y of 330 cycles/byte, 960 cycles/byte,
1300 cycles/byte, and 1900 cycles/byte, respectively [24].

• Task rate λi: indicates the number of tasks generated by terminal i per unit of time,
where the task-generated rate (λi) by terminals obeys the Poisson distribution.

• Power supply modes Pi: Each terminal device has two power supply modes, i.e.,
battery-powered (harsh environment, unable to meet the conditions of the external
power supply) or direct power supply. In particular, only one of the two power supply
modes is available for each terminal. Thus, the power supply method of the terminal
can be expressed as Equation (1). Pi = Pb means that the terminal is powered by a
battery, whereas Pi = Pd means that the terminal is powered by DC. Pb and Pd indicate
the energy consumption weights of the two power supply modes. In Figure 2, the dark
green and light green circles represent different power supply modes of terminals.

Pi =

{
Pb battery− powered
Pd DC− powered

(1)

The feature set for mj is represented as Mj =
{

xj, yj, Cj, djmax, Djmax
}

,
M =

{
M1, . . . , Mj, . . . , Mm

}
.
{

xj, yj
}

indicates location information of edge nodes, Cj in-
dicates the processing performance of the edge node in processing tasks, dijmax indicates
the farthest wireless transmission distance between edge nodes and terminals (distance
between ni and mj is presented as dij), and Djmax indicates the maximum amount of data
that the node can receive per unit time. Due to the limitations of power supply and special
terrain conditions, only m potential location points in the square area satisfy the possibility
of becoming edge computing nodes. After the selection of potential nodes, the final number
of placed edge nodes is obtained and set as k.

The connection matrix of edge nodes and terminals is represented as Equation (2). If
Oij = 1, ni is connected to mj; otherwise, Oij = 0.

O =

O11 · · · On1
... Oij

...
O1m · · · Onm

 (2)

In the remainder of this section, we display the optimization function to evaluate the
merits of deployment, as well as the calculation methods of latency, energy consumption,
and cost factors.

3.2. Optimization Function Design

To measure the optimal function of different edge node selections and allocations,
three factors are included: the reward function that an edge node can receive to successfully
transmit and process tasks, the impact of transmission on energy consumption cost in
terms of power supply mode, and the varying cost required to deploy varying numbers of
edge nodes.

3.2.1. Optimization Function

The function associated with deploying edge nodes uses a reward–cost structure;
therefore, we use profit to represent the function, integrating the impact of deployment
cost, processing completion reward, and energy consumption cost on edge node selection
and allocation.

max : Fpro =
Freward

α

Fpower βFcostγ
(3)

m

∑
j=1

Oij = 1 (3a)
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n

∑
i=1

OijDi ≤ Djmax (3b)

dij < dijmax (3c)

µj >
1
Tj

(3d)

The function Fpro consists of three parts: the value of the reward (Freward), energy
consumption (Fpower), and deployment cost (Fcost). α, β, and γ are the exponential elements
for each of the three parts. Our aim is for the reward value to increase and the energy
and cost to decrease, so Fpower and Fcost are set as the denominator, and Freward is set as
the numerator.

The constraints are explained as follows. All the terminals need to be and can only be
connected to one edge node, which avoids the situation of missed or multiple connections
(3a). The total amount of data volume received by each edge node per unit of time should
be less than or equal to its maximum carrying data volume, which ensures the balance of
task distribution and protects the carrying capacity of the edge nodes (3b). With respect
to the communication distance constraint between edge nodes and terminals (3c), when
the task load is too heavy and queues are blocked, the allocation fails to meet the task
requirements, so such cases should be directly removed from the deployment strategies,
and the variables (µj) are expressed in Equation (12) (3d). Details of the three-part function
are described below.

3.2.2. Influencing Factor of Reward

The whole system is rewarded by completing tasks. Thus, the task completion reward
function is determined by the latency (ti) of task transmission, queuing, and processing.
Terminals with different urgency requirements have different latency sensitivities, so the
function for each urgency is as follows.

Freward =


n
∑

i=1
crOijλi(

√
∂is− ∂iti)(ti ≤ ti0)

0 (ti > ti0)
(4)

The area of the reward function for different urgency degrees is a constant value (S),
that is, the product of the task time and the reward value is a constant value in order to
ensure the fairness of the rewards obtained for tasks with different degrees of urgency,
which leads to Equation (4). The task has a maximum latency limit (ti0), which is the
intersection of the function with the horizontal axis.

ti0 =

√
s
∂i

(5)

If the total latency (ti) of the task is less than ti0 , the corresponding reward is obtained,
whereas if ti exceeds ti0 , no reward is be obtained. Tasks with high urgency requirements
have an appropriately higher degree of reward, and latency is more tolerated for low-
urgency tasks.

An example of different urgencies of the reward function is shown in Figure 3, which
demonstrating the reward function of urgency ∂0 and ∂0

′ when Oij and λi are fixed. The
function f0 has a higher urgency than that of function f0

′. The horizontal coordinate of
the intersection of the two functions is tic . Along the horizontal coordinate, as the latency
increases, the values of the reward functions f0 and f0

′ continuously decrease. If ti ∈ (0, tic ],
f0 has a higher reward value. If ti ∈ (tic , ti0 ], low-urgency tasks have greater tolerance
for latency, and the reward value ( f0

′) is higher compared to f0. If ti ∈ (ti0 , ti0
′], f0 = 0,

indicating that the reward for the higher-urgency function ( f0) could not be obtained, and
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the reward value of the low-urgency function ( f0
′) decreases until it reaches the maximum

tolerance latency (ti0
′).

ti = tTi + tQi + tPi + tRi (6)
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The calculation of latency includes the time of task transmission (tTi), task queuing
(tQi), processing time (tPi), and data return (tRi). Due to the low data volume of data return,
tRi is negligible and omitted here, compared with other latency.

1. Transmission latency tTi

The transmission time of tasks is determined by data volume (Di) and wireless com-
munication transmission rate (Rij). The transmission rate between terminals and edge
nodes can be obtained according to Shannon’s theorem as follows.

TTi =
Di
Rij

(7)

Rij = wij log2(1 +
Ptx Hi

σ2 ) (8)

In Equation (8), wij denotes the communication bandwidth, Ptx denotes the transmis-
sion power of terminals, and Ptx Hi

σ2 is the signal-to-noise ratio of the uplink channel. The
average channel gain (Hi) follows the free-space path loss model.

Hi = Ad(
3× 108

4π fcdij
)

de

(9)

dij =
√
(xi − xj)

2 + (yi − yj)
2 (10)

where Hi denotes the antenna gain, fc denotes the carrier frequency, de denotes the path
loss index, and dij is the Euclidean distance between ni and mj.

2. Queuing latency tQi

The task rate received by mj gathering from the terminals that are connected with mj,
shown as λj, is obtained through the tasks generated by ni per unit of time.

λj =
n

∑
i=1

Oijλi (11)

µj =
1

n
∑

i=1
OijtPiλi

n
∑

i=1
Oijλi

(12)
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The maximum number of tasks (µj) that a node can process per unit time is calculated

according to the time required to process a unit number of tasks, expressed as

n
∑

i=1
OijtPiλi

n
∑

i=1
Oijλi

.

tQi =
1

µj − λj
− 1

µj
=

λj

(µj − λj
)
µj

(13)

The difference between the time a task stays at an edge node 1
µj−λj

and the time it takes

for the task to be processed ( 1
µj

) is the queuing time (tQi) required for the task to arrive.

3. Processing latency tPi

tPi =
Ci
Cj

(14)

The processing time (tPi) is determined by the complexity of the task (Ci) generated
by ni and the processing capability (Cj) of mj.

3.2.3. Influencing Factor of Battery Power

The energy consumption factor is related to the power supply mode of terminals. In
order to ensure a longer service life of the battery-powered terminal, we emphasize the
energy consumption value of the battery-powered terminals.

Fpower =
n

∑
i=1

cpPiλiEi (15)

The influence factor of consuming unit energy is denoted as cp. The transmission
distance within the set range of energy consumption is available in the free space model,
and the distance factor has the following effect on energy loss [25].

Ei = DiEelec + Diξ f cdij
2 (16)

where Eelec denotes the energy consumed per unit of data received and transmitted,
and ξ f c is the energy consumed per unit of data transmitted per unit length of the
transmitting amplifier.

3.2.4. Influencing Factor of Deployment Cost

The number of edge nodes to be deployed is constrained by the value of the deploy-
ment cost.

Fc = kcc (17)

The actual number of deployed edge nodes (k) indicates that the amount of edge
nodes determines the cost, and cc indicates the cost associated with deployment per unit
edge node.

3.2.5. Performance Metrics

To fully characterize the results of edge node allocation, we select two values that
have received attention in task processing and computation to aid the objective function in
measuring the merit of the function.

1. Latency

Latency is generated during the resolution of each terminal task, and the latency of
each task is aggregated to reflect the overall processing sensitivity of the system.
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latency =
n

∑
i=1

Ti (18)

2. Deployment balance

The balance of deployment has a considerable impact on the stability of the system, so
the variance of data volume is used as a measure of deployment balance.

Bj =
n

∑
i=1

OijDiλi (19)

Variance =

√√√√√ k
∑

j=1
(Bj − B)2

k
(20)

When deployed, the total amount of data (Bj) received by mj is the product of the
amount of data (Di) per task and the task-generated rate (λi). The value of Variance is an
important measure of the algorithm when several algorithms are compared.

4. Description of Algorithms

To obtain the best edge node selection and allocation strategy, we use three evolution-
ary optimization algorithms: k-means, ACO, and GA. In this section, we describe, in detail,
the solution concepts of the three algorithms applied to a complex scenario.

4.1. k-Means

k-means is a cluster analysis algorithm for fast cluster resolution based on the distance
value of each point from the cluster center [26]. The k-means algorithm requires specification
of the size of k values in advance, so we designed the selection of k, which is determined by
the data volume (Djmax) received by mj.

k ≥

n
∑

i=1
Di

Djmax
(21)

The k value must be chosen to satisfy the limit of the maximum capacity of data volume
and minimize the deployment cost of the device with reasonable settings. Terminals are
divided into subclusters, and each subcluster has an edge node for task processing. We
define the whole set of subclusters (Ck) as C(Ck ∈ C). The cluster center (pk),which is
located in Lpk(xpk, ypk), in a single subcluster (Ck), is the center of all terminals in the
subcluster (Ck) by distance. The terminals in the subcluster (Ck) are defined as nk, and
the total number of terminal locations is nc; an update of Lpk(xpk, ypk) is shown in the
following equations.

Lpk(xpk, ypk) =

(
nc
∑

nk=1
xnk,

nc
∑

nk=1
ynk)

nc
(22)

di,pk =

√(
xi − xpk)2 + (yi − ypk)

2 (23)

The updated cluster center location is calculated by aggregating all the node location
information within the cluster, as shown in Equation (22). Then, the Euclidean distance
(di,pk) from the terminal to each center is recalculated, and the nearest cluster center is
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selected for the terminal until the position of the center no longer changes, and the final
cluster center (pk0) is obtained.

dj,pk0 =

√(
xj − xpk0)

2 + (yj − ypk0)
2 (24)

After obtaining the subclusters and their centers (pk0), the potential node with the
shortest distance (dj,pk0 ) between mj and pk0 is selected as the edge node for each subclus-
ter. The connection between the terminal device and the edge node is derived from the
subcluster, from which the final edge node selection and terminal assignment are directly
derived. The pseudocode of k-means is shown in Algorithm 1.

Algorithm 1: k-means for the Placement Scheme

Input: M, N, Number of cluster k
Output: O, Fpro
Randomly select k points as the starting center
Ck = ∅
Do:
Set Ck by min : di,pk(xpk, ypk)

While Lpk changes
Lpk ← Lpk0

Find Oij by minimal dj,pk0 (x, y)
Calculate Fpro

4.2. ACO

The ACO is a method to optimize the goal problem by simulating an ant path search
using the pheromone while searching for a specific goal [27]. The ant search path is set as
a combination of the selected edge node numbers for each terminal; therefore, the path
can be expressed in an m× n grid, in which the ant searches for the best path, as shown in
Figure 4. Each column represents the selection range of one terminal, and the ant searches
each column from left to right to obtain the edge node for each terminal. In Figure 4, the
na path is n1 terminal connected to edge node m2, n2 terminal connected to edge node m5,
and go forward by column until the search path (Pana = {2, 5, m− 1, · · · , 4}) is obtained.

T =

τ1,1 · · · τ1,n
... τj,i

...
τm,1 · · · τm,n

 (25)

The pheromone matrix (T) records the pheromone intensity of connection between
edge nodes and terminals, indicating the pheromone value of the grid in row j and column
i.

Based on the current pheromone matrix, the probability (pij(t)) of an ant selecting
different edge nodes for terminal ni in iteration t can be calculated as:

pij(t) =
τ

αph
j,i (t)

m
∑

j=1
τ

αph
j,i (t)

(26)

The information factor (αph) indicates the degree to which the ant’s path selection is
influenced by the pheromone. There are a total of Na ants, and the ant is defined as na. The
path (Pana(t)) is selected via roulette wheel selection to generate a new ant, from which the
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connection matrix (O(t)) can be obtained. The value of the objective function under such a
selection strategy is obtained from the connection matrix, which is defined as Fpro

na(t).

∆τj,i(t) =


Na
∑

na=1
Fpro

na(t) (Oij(t) = 1)

0 (Oij(t) = 0)
(27)

τj,i(t + 1) = (1− ρ)τj,i(t) + ∆τj,i(t) (28)

The new pheromone (τj,i(t + 1)) is obtained based on the value of the function, which
means the difference is the updated value of the pheromone (∆τj,i(t)). ρ is the volatiliza-
tion factor of the pheromone. ACO updates the pheromone intensity matrix (T) and the
probability (pij(t)) to provide a reference for the path selection of ants in the subsequent
generations. After multiple generations of ant evolution, the pheromone update enables
the paths of ants to converge to an optimal route, at which time the best allocation and
deployment scheme is obtained. The pseudocode of the ACO is shown in Algorithm 2.

Algorithm 2: ACO for the Placement Scheme

Input: M, N
Output: O, Fpro
na ← 0 , PaNa×n = ∅
While na < Na
Initial Pana

PaNa×n ← PaNa×n ∪ Pana

na ← na + 1
End
While t < Nr
Foreach Pana (t) do
Create Pana (t) by pij(t)
Get Oij(t) &Fpro(t)
τj,i(t)← τj,i(t + 1)
End
t← t + 1
End
Find Oij by τj,i
Calculate Fpro
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4.3. GA

GA simulates the principle of generation of individuals in natural biological popula-
tions, an optimization algorithm that uses cross-mutation rules similar to those of genes to
generate quality individuals [28]. There is a total of Np individuals in the population, and
the final dominant individual is obtained after the population is updated for Nr iterations
based on the crossover probability (Pc) and mutation probability (Pm). We set the r individ-
ual in the population that is a deployment scheme individual Gr =

{
gr,1, gr,2, · · · , gr,n

}
:

the length of the individual gene is n, indicating that n terminals are required to select their
corresponding edge nodes, and the value of each gene is chosen in the range {1, 2, 3, . . . , m},
which corresponds to the total set of potential edge nodes.

Edge nodes and the corresponding connections between terminals and edge nodes (O)
can be directly selected from specific individuals, followed by calculation of the function
value. The individuals in the population must satisfy the constraints of the problem:
the connection distance cannot exceed the maximum communication requirement, and
the amount of received data cannot exceed the maximum capacity of the edge node. If
the newly generated individuals do not satisfy the constraints, then the cross-variation
operation should be performed again until individual sets reach the population size. The
process of GA is divided into four parts.

1. Selection of parents

To select suitable parents, roulette wheel selection is used to screen individuals. The
fitness of individuals (pr) in a population determines the probability that an individual can
produce offspring, with the most fit individuals being more likely to produce offspring and
less fit individuals less likely to produce offspring.

pr =
Fpro

r

Nr
∑

r=1
Fpror

(29)

We set the fitness as the function (Fpro
r) for each individual and obtain the fitness

probability of selecting r individuals for the crossover variation as the probability (pr) that
individuals with greater fitness are more likely to be selected as parents. The probability of
crossover (Pc) determines the number of new individuals generated by each population
crossover, and the number of new individuals is NrPc. Therefore, in one iteration, there are
Nr Pc

2 selection processes, and the individuals that have already been selected will not be
selected in the next parent selection.

2. Crossing

To improve the efficiency of offspring diversification, the crossover strategy involves
the selection of three genes for exchange in each crossover operation. For instance, as
shown in Figure 5, the third, sixth, and (n−1)th genes are selected.
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3. Mutation

Because the possibility of mutation-generating gene change during the process of
population update improves the diversification of offspring, we design the mutation
strategy to decide whether new individuals generate mutation according to the mutation
probability value (Pm). After determining the individuals to be mutated, a gene is randomly
selected, and one edge node is selected to replace the former.
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4. Generation of new populations

To save the dominant individuals of the population, the number of Nr(1− Pc) domi-
nant individuals from the original population for the new population is selected. The new
population retains Nr individuals, which ensures that the total number of individuals in
the population does not change from generation to generation.

The pseudocode of the GA is shown in Algorithm 3.

Algorithm 3: GA for the Placement Scheme

Input: M, N
Output: O, Fpro
na ← 0 , Gngene×n = ∅ Gngene×n

′ = ∅
While ngene < Np
Initial Gngene

Gngene×n ← Gngene×n ∪ Gngene

ngene ← ngene + 1
End
While t < Nr
Sort Gngene×n(t) by Fpro(t)
While parents < NrPc do
Select parents Gn0 (t) &Gn1 (t) by pr
Apply crossing to get offspring Gn0 (t + 1) &Gn1 (t + 1)
Apply mutation to Gn0 (t + 1) &Gn1 (t + 1)
Gngene×n(t + 1)← Gngene×n(t + 1) ∪ Gn0 (t + 1) ∪ Gn1 (t + 1)
parents← parents + 2
End
Sort Gngene×n(t) for finding GNr(1−Pc)(t)
Gngene×n(t + 1)← Gngene×n(t + 1) ∪ GNr(1−Pc)(t)
Gngene×n ← Gngene×n(t + 1)
t← t + 1
End
Find Oij by Gngene×n
Calculate Fpro

5. Results
5.1. Experimental Conditions

All simulation experiments described in this section are performed on a PC equipped
with an i5-11400 CPU and 16 GB RAM, and all algorithms are implemented in MATLAB
(R2016a, MathWorks. Inc., Natick, MA, USA). The simulation experiments are set up in a
1000 × 1000 m2 IoT square, and the initial number of terminals and potential edge nodes is
set to n = 50 and m = 25, respectively. The specific parameters of the optimization function
are shown in Table 2, and the parameters of the algorithms are illustrated in Table 3.

To simplify the model and adapt to the needs of a variety of scenarios, it is necessary
to set some initial rules for the scenario. The location of devices within the scenario is fixed,
and the location of potential edge nodes is determined by the preliminary site inspection;
we use specific points to delegate potential locations, and these points are also set to a fixed
location. We set the complexity of terminal tasks within a particular scenario to a fixed value,
that is, the complexity of a terminal task is uniquely determined, and the complexity of the
generated task changes as the scenario changes. To meet the processing requirements of all
scenarios, the storage resources of the edge nodes are set to accommodate all application
services. The communication parameters are set as Ad = 4.11, fc = 915 MHz, de = 2.8 [29].
Eelec = 50 nJ/bit, and ξ = 10 pJ/bit [30].
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Table 2. Summary settings of key notations.

Notation Details

n [20, 80]
m [10, 40]
Pb 1
Pd 0.2
∂i [1, 2, 3]
S 1
λi [0.2–1.2]
Ci [330, 960, 1300, 1900, 2100] cycles/byte
Di [0.5–2] MB

Djmax 8 MB
dijmax 500 m

Cj [8, 10, 12] GHz
α, β, γ 1, 1, 1.3

cr, cp, cc 50, 100, 1

Table 3. Summary settings of key parameters for the algorithms.

Notation Details

Nr 1000
Na 400
αph 1
ρ 0.7

Np 400
Pc 0.9
Pm 0.05

5.2. Results Analysis

In this section, we present an analysis and discussion of the algorithm comparison.
First, in Section 5.2.1, we analyze and compare the performance of the three investigated
algorithms according to reference factors: energy consumption, data distribution balance,
and deployment cost. The genetic algorithm achieves the best performance; therefore, we
change the relevant key evaluation indices under different parameter settings, which are
tested in Section 5.2.2.

5.2.1. Comparison of Three Algorithms

The comparison experiments of the three algorithms are conducted with the processing
task of 960 cycles/byte and the computing processing performance of the edge nodes at
10 GHz. (a), (b), and (c) in Figure 6 show the deployment planes of the three algorithms.
The characteristics of terminals are identified by power supply and urgency. The power
supply mode is distinguished by icon shape; the DC power supply is presented as a hollow
circle, whereas the battery power supply represented by is a quincunx mark. Urgency is
marked by color, and terminals with an urgency of 1, 2, and 3 are indicated by green, blue,
and red, respectively. Potential edge node locations are indicated by hollow triangles, and
whether they are selected is distinguished using color, with pink indicating selected and
black indicating unselected.

The result of the k-means algorithm has a k value of 12, and the number of terminals
connected to each edge node varies between one and six; the ACO results in 14 edge
nodes, and the terminals connected to each edge node varies between two and five; the
GA results in 12 edge nodes, and the number of terminal devices connected to each edge
node vary between three and seven. In the k-means algorithm, the number of connected
edge nodes varies within a wide range, and connecting only one terminal causes the
computational resources of the nodes to be wasted, whereas the number of connected
nodes with the GA and ACO span a narrow range with appropriate clusters. The process of
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algorithm convergence is shown in Figure 6d. K-means searches for the final value within
20 generations, ACO converges to the best deployment result after around 600 generations,
and GA converges after around 300 generations. GA obtains the best function value
after convergence.
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A parameter comparison of the three algorithms is shown in Table 4. The three
algorithms obtain relatively consistent reward parameter values, with the ACO having
the highest reward value, GA with the second highest reward value, and k-means with
the lowest reward value. The k-means algorithm obtains the highest value for the energy
consumption component, and the ACO consumes the least energy. The ACO selects 14 edge
nodes, resulting in higher deployment cost compared to the GA and k-means models. The
final total objective function value of the GA is the highest, which means that the best
deployment result can be obtained by combining the three partial parameters of reward,
energy consumption, and the number of nodes. The GA algorithm has the lowest variance
value of clustering and the best data balance, which means the possibility of blockage is
reduced, and system allocation is improved. The k-means algorithm only considers the
single distance factor, but obtains a clustering result faster with a computation time of
0.883 s. Due to the lack of other factors, the performance of the k-means algorithm is not
sufficient in terms of energy consumption and data balance. The computation time of the
ACO is 46.574 s; however, a longer computation time is not conducive to deployment.
Combining various factors, we conclude that the GA achieves the best performance and
the best convergence effects.

Table 4. Comparison of three algorithms.

Algorithm Fpro Freward Fpower Number of Edge Nodes Latency Run Time Variance

k-means 1.075 1834.894 67.494 12 5.749 0.883 0.441
ACO 1.099 1854.426 54.580 14 5.463 46.574 0.390
GA 1.156 1842.622 63.005 12 5.637 13.918 0.282

5.2.2. Four Parameter Changes for the Investigated Scenario

To observe the performance of the deployment strategy under different scenarios
when the device and edge node parameters are changed, we design the following four sets
of experiments. According to the solution of described in Section 5.2.1, GA is used
for simulation.

1. Changing the number of edge nodes and terminals
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For this experiment, the terminal task complexity is set as Ci = 960 cycles/byte, and
node computational power is set to 10 GHz. The number of terminals varies between 20
and 80, and analysis is performed for cases with 15, 25, and 35 potential edge nodes. The
obtained experimental results are shown in Figure 7.
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Figure 7. (a) Number of selected edge nodes; (b) energy cost; (c) latency when changing the number
of edge nodes and terminals.

The change in the number of terminals influences the sparsity of the scenario, whereas
an increase in the number of potential edge nodes results in more selections of potential
nodes. As shown in Figure 7a, the processing requirement of computing resources forces
the number of selected nodes to increase if there are more terminals; hence, the number of
selected edge nodes increases by an average factor of one during the increase in the number
of terminals from 20 to 80. As the number of selected nodes increases, the distance between
terminals and nodes decreases, leading to mitigation of the energy consumption shown
in Figure 7b and the latency of data presented in Figure 7c. As shown in Figure 7c, as the
number of terminals increases, the time consumption increases from about 3 s to 12–14 s.
In the case of fixed terminals, the number of potential edge nodes varies by 15, 25, and
35; the latency gradually decreases; and the decrease in latency of potential nodes from
the blue line (15 potential edge nodes) to the orange line (25 potential edge nodes) is more
obvious, whereas latency is not obvious when the number edge nodes varies from 25 to 35.
This indicates that researchers should focus on the number of potential nodes and provide
enough potential edge nodes for calculation processing. In the process of increasing the
number of terminals from 20 to 80, the distribution of terminals gradually becomes denser,
requiring more edge nodes and consuming more energy. In a dense terminal scenario,
providing more potential locations for edge nodes effectively reduces the delay of the
whole system and saves resources by reducing energy consumption.

2. Changing the number of terminals and node processing capacity

We set the data volume to 1–1.5 MB, the task frequency to 0.8/s, the terminal task
complexity to Ci = 960 cycles/byte, and the number of potential edge nodes to m = 25. The
performance and parameters of the system are analyzed when the number of terminals
varies between 20 and 80, and the processing performance of potential edge nodes is 8 GHz,
10 GHz, and 12 GHz. The obtained results are shown in Figure 8.

The larger the number of terminals, the more edge nodes are selected to meet the
demand for computing resources under the condition that the processing performance
of potential edge nodes remains unchanged. When the potential edge node processing
performance increases from 8 GHz to 12 GHz, the number of edge nodes required decreases,
as indicated by the blue line passing through the yellow line to the gray line in Figure 8a.
The increase in the number of terminals causes the number of processing tasks to increase
exponentially; hence, the total reward value obtained by completing tasks increases by
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2.4 times from 20 to 80 terminals in Figure 8b with a processing capacity of 8 GHz. Further-
more, as the processing capacity of the edge node increases, the reward value obtained
in the case of the same number of terminal devices also gradually increases, as indicated
by the lines in the figure. An increase in processing capability can significantly reduce
the latency, as shown in Figure 8c. When the node capability is increased from 8 GHz to
10 GHz with 80 terminals, the latency time decreases by 28.0% and by 13.6% when the
processing capability is increased from 10 GHz to 12 GHz.
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Figure 8. (a) Number of selected edge nodes: (b) energy cost; (c) latency when changing the number
of terminals and node processing capacity.

3. Changing the amount of data and generated task rate

The initial values set for this experiment are n = 50, m = 25, Ci = 960 cycles/byte,
and Cj = 10 GHz. We analyze the performance of the system when the frequency of
terminal-generated tasks varies between 0.2/s and 1.2/s and the amount of task-generated
data ranges are 0.5–1 MB, 1–1.5 MB, and 1.5–2 MB. The results are shown in Figure 9.
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Figure 9. (a) Reward; (b) energy cost; (c) latency when changing the amount of data and task rate.

With a constant range of data generated by the task, the higher the frequency of the
task generated by the terminals, the more energy consumed to meet the demand of the
transmission, as shown in Figure 9b. For the data range of 1.5–2 MB, the1.0–1.2/s rate
increases energy consumption by 1.13 times compared to the 0.2–0.4/s rate. The latency
increases in Figure 9c, and the obtained reward value increases, as shown in Figure 9a,
with an increased rate of task generation. As shown in Figure 9a, for tasks in the range of
1.5–2 MB (the gray line), the 1.0–1.2 MB/s rate increases the reward value by a factor of
1.87 compared to a rate of 0.2–0.4 MB/s. When the generated data ranges from 0.5–1 MB
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to 1.5–2 MB, the time required for transmission increases and affects the reward value
function, as shown by the blue line passing through the yellow line to the gray line in
Figure 9a, indicating a decrease in the reward value, suggesting that the limitations of the
transmission require that the end task be generated in such a way that the amount of data
transmitted is compressed as much as possible to obtain an improved reward value for the
tasks while satisfying all the information requirements for the calculation.

4. Changing task complexity and edge node processing capability;

The initial values set for this experiment are n = 50 and m = 25, with the data volume
of the terminal task in the range of 1–1.5 MB, and a task-generated rate of 0.8/s. The
performance and parameters of the system are analyzed when the processing complexity of
the terminal-generated tasks are 330, 960, 1300, and 1900 and the processing performance
of the potential edge nodes is 8 GHz, 10 GHz, and 12 GHz. The obtained experimental
results are shown in Figure 10.
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Figure 10. (a) Number of selected edge nodes; (b) reward; (c) latency when changing the task
complexity and edge node processing capability.

With respect to the constant processing performance of the potential edge nodes, the
higher the complexity of the task generated by the terminal, the higher the demand for
computing resources of the edge nodes. When the processing capacity is constant, e.g., the
8 GHz blue line in Figure 10a, the number of nodes selected gradually increases from 11
to 21 when the task complexity increases from 330 cycle/type to 1900 cycle/type. When
the potential edge node processing performance increases from 8 GHz to 12 GHz in the
process, the number of edge nodes required decreases, as shown by the blue line passing
through the yellow line to the gray line in Figure 10a. Similar to changing experiment 2,
increasing the computational power can reduce the number of edge nodes selected and
save the cost of the number of deployed edge nodes. The more complex the task, the
longer the time required to queue and process the task, as shown in Figure 10c; the total
latency increases as the complexity of the horizontal coordinate increases. Furthermore,
enhancement of the processing capability of the edge nodes can significantly reduce the
latency time of the system; when the node capability is increased from 8 GHz to 10 GHz, the
latency significantly decreases. For example, when the processing complexity of the task is
1900 cycle/type, the latency time decreases by 23.5%, whereas when the node capability
is increased from 10 GHz to 12 GHz, the latency time decreases by 21.9%. As shown in
Figure 10b, due to the influence of increased latency, the reward reduces with the increased
task complexity when the other parameters are fixed. As the processing capacity of the
edge node increases, the reward value obtained in the case of the same number of end
devices is gradually increased, as indicated by the difference between the three lines.
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6. Conclusions and Future Work

The deployment allocation problem of edge nodes has an important impact on the
flexible design of edge computing components and the improvement of resource and energy
utilization efficiency. In this paper, we propose a measurement method for deployment
allocation of edge nodes, integrating three influencing factors: processing reward, energy
consumption, and deployment cost. We also conduct a comparison test of the three
algorithms through simulation to select the best algorithm for a variety of scenarios and
system performance analysis.

This work can be extended in many directions. In the future, we will mainly focus on
the following aspects.

• The current complex actual deployment scenario involves more requirements with
respect to the service types of edge node task processing, and we hope to add plan-
ning for the services of edge nodes in conjunction with the deployment strategy in
the future.

• Using a machine learning approach to strategic allocation for edge node selection can
improve efficiency and simplify planning [31].

• In response to the increase in the number of terminals and the change in data, we will
introduce more parameter settings that match the actual situation, fully consider the
nonlinear relationship between generated task data volume and task complexity, and
design a more scientific and complete system cost model.

• Due to the variety of mobile edge node applications, subsequent work should consider
a dynamic edge node deployment strategy.
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