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Abstract: Propulsive force is a determinant of swimming performance. Several methods have
been proposed to estimate the propulsive force in human swimming; however, their practical use
in coaching is limited. Herein, we propose a novel method for estimating the propulsive force
generated by swimmers’ hands using an inertial measurement unit (IMU) and pressure sensors.
In Experiment 1, we use a hand model to examine the effect of a hand-mounted IMU on pressure
around the hand model at several flow velocities and water flow directions. In Experiment 2, we
compare the propulsive force estimated using the IMU and pressure sensors (FIMU) via an underwater
motion-capture system and pressure sensors (FMocap). Five swimmers had markers, pressure sensors,
and IMUs attached to their hands and performed front crawl swimming for 25 m twice at each of
nine different swimming speeds. The results show that the hand-mounted IMU affects the resultant
force; however, the effect of the hand-mounted IMU varies with the flow direction. The mean values
of FMocap and FIMU are similar (19.59 ± 7.66 N and 19.36 ± 7.86 N, respectively; intraclass correlation
coefficient(2,1) = 0.966), and their waveforms are similar (coefficient of multiple correlation = 0.99).
These results indicate that the IMU can estimate the same level of propulsive force as an underwater
motion-capture system.

Keywords: human swimming; underwater motion-capture system; front crawl swimming;
accelerometer; gyroscope

1. Introduction

Swimming is a physical exercise performed in water. Numerous studies have been
conducted on human swimming from a mechanical perspective. Swimmers use their
hands and legs to push water backward and propel their bodies forward. Swimmers
generate propulsive force primarily using their hands during swimming, except for the
breaststroke style. Since the propulsive force is a determinant of swimming velocity, the
propulsive force must be evaluated to analyze the swimmer’s performance. To date, various
methods for estimating the propulsive force have been proposed, such as underwater
video analysis [1–4], force measurement in tethered swimming [5–7], and pushing a fixed
plate submerged in water [8,9]. These studies pioneered methods for estimating the
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propulsive force of swimmers. However, many researchers have highlighted the importance
of considering unsteady flow around swimmers [10–14], and these methods do not consider
the effects of unsteady flow; thus, a different approach is required.

Takagi and Wilson [15] proposed a method of estimating the magnitude of hydro-
dynamic force acting on the hands of swimmers by attaching pressure sensors. Pressure
sensors can obtain the pressure acting perpendicular to the plane of the pressure sensor.
The authors multiplied the pressure difference between the palm and the dorsal sides of
the hand by the hand area to obtain the hydrodynamic force. This method allows one
to investigate the hydrodynamic force acting on the swimmer’s hands and its variations
while considering unsteady flow. However, the direction of the hydrodynamic force cannot
be determined using pressure sensors alone. The hand direction must be evaluated to
determine the direction of the hydrodynamic force acting on the hand.

Recently, underwater motion-capture systems have been introduced for swimming
research [16–19]. Tsunokawa et al. [18] used an underwater motion-capture system com-
bined with pressure sensors to analyze the resultant force (FR) acting on the hand and
estimated the propulsive force. This method enables the estimation of propulsive force
while considering unsteady flow; however, underwater motion-capture systems present
several issues. For instance, when swimmers place their hands in water, bubbles are gener-
ated around them. The bubbles cause the diffusion and absorption of light, which result in
reduced visibility of the reflective markers attached to their hands [16,17,20]. In addition,
underwater motion-capture systems limit the measurement range and require considerable
time for preparing and attaching reflective markers to the participants.

In recent years, the development of microelectromechanical systems technology has
enabled sensor miniaturization. In addition, the development of waterproof technology
has enabled the application of inertial measurement units (IMUs) with multiple sensors in
swimming research [21–30]. Lanotte et al. [29] developed a system that provides informa-
tion about the force and the swimmer’s motion, measured by combination of mini-paddles,
built-in pressure sensors, and an IMU. In this early research, IMUs were used to observe
motion with raw data obtained by the sensor. An IMU is generally equipped with accelerom-
eters, gyroscopes, and magnetometers, and it can estimate its orientation via sensor fusion.
Therefore, using an IMU does not cause issues arising from bubbles. Washino et al. [19]
indicated that reflective markers attached to swimmers produced an additional drag force,
which decreased the swimming speed. Motion-capture systems require multiple markers
to be attached to a single segment to estimate the orientation of a segment. By contrast, a
segment’s orientation can be estimated by mounting a single IMU on the segment, which
may decrease the drag force produced by the measurement equipment. Moreover, IMUs
enable the measurement of a wider range of areas than conventional video analysis. How-
ever, similar to reflective markers, IMUs may affect the water flow. The pressure acting on
the hand changes with the water flow. The water flow around the hand will be different
when an IMU is mounted on the hand, which may result in pressure differences. Therefore,
the effect of IMUs on the pressure around the mounted area must be examined.

The purpose of this study is to propose a novel method for estimating the propulsive
force generated by a swimmer’s hand using an IMU and pressure sensors. To achieve this
goal, two experiments are conducted. The first experiment is conducted to verify whether
the FR acting on the model with or without an IMU differs while the velocity and water flow
direction to the model are changed. The second experiment is performed to compare the
propulsive force estimated using an IMU and pressure sensors via an underwater motion-
capture system and pressure sensors to evaluate the agreement between the two methods.

2. Materials and Methods
2.1. Experiment 1: Effect of Hand-Mounted IMU on Pressure around Hand Model
2.1.1. Experimental Design

To investigate the effect of mounting an IMU on FR, a hand model, waterproof IMU
(SS-WP-HMA16G15, Sports Sensing Co. Ltd., Fukuoka, Japan), and waterproof wired
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pressure sensor (PS05-KC, Kyowa Electronic Instruments Co. Ltd., Tokyo, Japan) were used
in the experiment (Figure 1). The hand model was fabricated using silicone and molded
using a man’s left hand. The shape of the hand model featured a partially abducted thumb
and a slightly convex dorsal side. Three pressure sensors and an IMU were attached to the
dorsal side of the hand model, and the other three pressure sensors were attached to the
palm side, as shown in Figure 2. Double-sided tape was used to mount these sensors, as in
a previous study [18].
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The measurement was performed in a water flume with high reproducibility of the 
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Figure 1. Hand model and sensors used in Experiment 1. (a) Silicone hand model measured
0.19 m × 0.095 m × 0.04 m (length × width × thickness). Projected area of hand model measured
0.014 m2. (b) Waterproof IMU measured 38 mm × 53 mm × 11 mm. IMU weighed 32 g. (c) Pressure
sensor measured 0.6 mm in thickness and 6.0 mm in diameter.
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The measurement was performed in a water flume with high reproducibility of the
flow velocity. Figure 3 shows a schematic illustration of the experiment. The water
temperature was 27 ◦C during the experiment. The hand model was fixed to an aluminum
post, with the fingertips facing the bottom of the pool. The hand model was submerged
approximately 0.3 m below the water surface. The pressure around the hand model was
measured while the flow velocity and direction of the hand model were changed. This
experiment was performed at two different flow velocities (1.2 and 1.6 m·s−1). The flow
velocity was measured using a flow velocity meter (VR-301, KENEK Co., Ltd., Tokyo,
Japan). The orientation of the hand model toward the water flow was changed manually.
The water flow direction from the little finger side was defined as 0◦, that perpendicular to
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the palm was defined as 90◦, and that from thumb side was defined 180◦; these directions
changed every 30◦. Measurements were first performed using the IMU and pressure sensors
attached (referred to herein as “with the IMU”); subsequently, the IMU was removed and
only the pressure sensors were attached (referred to herein as “without the IMU”). The
measurements were performed for 10 s at each velocity and water flow direction, and
were repeated 10 times. Pressure was recorded at a sampling rate of 200 Hz. The signal
output from the pressure sensors was recorded on a personal computer (PC) using an A/D
converter (EDX-100A, Kyowa Electronic Instruments Co. Ltd., Tokyo, Japan). Prior to the
measurement, all the pressure sensors were confirmed to indicate a less-than-2.5% error
toward theoretical hydrostatic pressures when submerged into calm water.
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2.1.2. Data Processing and Statistical Analysis

All the data were analyzed using numerical analysis software (MATLAB R2020a,
MathWorks Inc., Natick, MA, USA). The pressure data were smoothed using a low-pass
Butterworth digital filter. Based on residual analysis, the cutoff frequency for the pressure
data was determined to be 20 Hz [31].

The FR acting on the hand model was obtained by multiplying the hand model area
(m2) by the pressure difference (N·m−2) between the palm (p1, p2, and p3) and dorsal (d1,
d2, and d3) sides of the hand model [18]. The hand model area was measured by dividing
the hand plane into three components (S1, S2, and S3) from photographs of the hand
model using image-processing software (ImageJ, NIH, Bethesda, MD, USA) (see Figure 4).
Subsequently, FR was calculated as the product of the pressure difference and the hand
model area in each hand plane, followed by their summation, as shown in Equation (1).

FR = ∑3
i=1 Si(pi − di) (1)
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of two points.

All the statistical analyses were performed using SPSS Statistics (version 25.0; IBM
Corporation, Armonk, NY, USA). The mean values for 10 s of pressure and FR were
calculated as the representative values for each condition (flow velocity and water flow
direction). A paired t-test was performed to examine the differences in the pressure and FR
with and without the IMU. The significance level was set to less than 5%. The effect size d
was calculated using Cohen’s method [32]. The effect size magnitude was assessed using
the thresholds provided by Cohen [33], i.e., d < 0.2 = “negligible”, d < 0.5 = “small”, and
d < 0.8 = “medium”; otherwise, “large” is indicated.

2.2. Experiment 2: Propulsive Force Estimation

Five healthy male collegiate swimmers (age: 21 ± 1 years; height: 1.76 ± 0.04 m;
mass: 70.0 ± 4.5 kg; hand area: 0.017 ± 0.001 m2) participated in this experiment. This
study was reviewed and approved by the Ethics Committee of the institution to which the
author belongs (Approval No. 11–34). All the participants voluntarily participated in this
experiment after receiving an explanation regarding the purpose of the experiment, the
details of the trial, and the risks associated with it. After the participants confirmed their
complete understanding of the explanation, they submitted a consent form for participation
in this experiment.

2.2.1. Experimental Design

Figure 5 shows a schematic illustration of the experimental setup. The experiment was
conducted in an indoor pool (length: 50 m; width: 25 m; depth: 2.0 m; water temperature:
27.5 ◦C). The participants performed 25 m of front crawl swimming twice at each of nine
different swimming speeds from 0.8 to 1.6 m·s−1. The swimming speed was indicated to
the participants via an underwater lighting pacemaker (Swimming Pace Maker System,
Takei Scientific Instruments Co. Ltd., Niigata, Japan) installed at the bottom of the pool.
Prior to each measurement, the participants stood in a position with both arms directed
toward propulsion above the water and their palms facing down and parallel to the
water surface. The participants began swimming by performing a wall push-off at the
supervisor’s discretion. The rest time between each test was at least 1 min, where the rest
time was longer in the latter half of the test when the swimming speed was higher. When
the measurement could not be performed precisely, the same measurement was repeated.
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To measure the pressure around the hands, six wired pressure sensors were attached
to the palm and dorsal sides of both hands using double-sided tape in the same positions,
as shown in Figure 2. The pressure was recorded at a sampling rate of 200 Hz. The signal
output from the pressure sensors was recorded on a PC using an A/D converter (EDX-100A,
Kyowa Electronic Instruments Co. Ltd., Tokyo, Japan). The PC and A/D converters were
mounted on a push cart such that they propagated along with the swimmers.

For motion-capture analysis, five landmark points were specified for each hand,
similar to the procedure in [18]. Four 19 mm reflective markers were attached to the second
and fifth metacarpophalangeal joints (hereinafter denoted as second MCP and fifth MCP,
respectively), radial styloid (RST), and ulnar styloid (UST) using strong magnets and elastic
medical cotton tape (Figure 6). Reflective tape was wrapped around the tip of the third
finger, which was defined as the third TIP marker. Fourteen underwater cameras (Oqus3+
underwater, Qualisys, Göteborg, Sweden) and ten land-based cameras (Oqus3+, Qualisys,
Göteborg, Sweden) were used for the experiment. The three-dimensional coordinates of
the markers were recorded using motion-capture software (Qualisys Track Manager 2.15,
Qualisys, Göteborg, Sweden) at a sampling rate of 200 Hz. The origin of the underwater
motion-capture system was set at the water surface and 12.5 m away from the start. The
transverse direction of the global frame was defined as the X-axis (right direction positive),
the swimming direction as the Y-axis (forward positive), and vertical direction as the Z-axis
(upward positive). The measurement volume was 2.0 m (X-axis) × 7.0 m (Y-axis) × 3.0 m
(Z-axis), i.e., 1.5 m underwater and 1.5 m above the water surface. The measurement
volume was set 9.0 m away from the pool wall. The accuracy within the analysis range
after calibration was obtained using a 600.1 mm rod, and the errors on land and in water
were confirmed to be 2.3 and 1.9 mm, respectively.

Waterproof IMUs were mounted on the dorsal side of each hand with double-sided
tape and elastic medical cotton tape. The IMUs were mounted such that the yIMU direction
coincided with the direction from the midpoint of the UST and RST to the third TIP marker
(Figure 6b). The IMUs were recorded in the on-board memory at a sampling frequency of
200 Hz. Start signals from the IMU system were recorded in the underwater motion-capture
system and A/D converter simultaneously, and then, used for data synchronization in the
post-process.
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Figure 6. (a) Schematic diagram showing calculation of hand’s orientation using underwater
motion-capture system. zMocap (hand’s orientation) was calculated from the coordinates of five
reflective markers on the hand (black dots). zMocap_y represents the component of propulsive
direction. (b) Schematic diagram showing estimation of hand’s orientation using IMU. Third col-
umn components of R represent zIMU direction in global frame. zIMU_y represents component of
propulsive direction.

2.2.2. Data Processing

The underwater stroke phase was defined using the third TIP marker as the duration
from entry into the water to exit from the water. In this study, one or two stroke cycles
performed in the motion-capture area were analyzed, and the propulsive force during
the underwater stroke phase was estimated. All the data were analyzed using numerical
analysis software (MATLAB R2020a, MathWorks Inc., Natick, MA, USA). The coordinates
and pressure data were smoothed using a low-pass Butterworth digital filter. Based on
residual analysis [31], the cutoff frequencies were determined to be 6 and 20 Hz for the
coordinate and pressure data [18], respectively.

The FR of each hand was calculated by multiplying the pressure difference with the
hand area (Equation (1)). The hand area was divided based on the UST, RST, and the
midpoints of the UST and RST.

To estimate the propulsive force generated by the hands, hand orientations were
obtained using an underwater motion-capture system and an IMU. For the method using
an underwater motion-capture system, the hand orientations were calculated using the co-
ordinates of markers attached to the hands, based on procedures reported previously [4,18]
(Figure 6a). The vector from the midpoint of the UST and RST to the third TIP marker is
defined as V1. For the right hand, the vector from the second to the fifth MCP is defined as
V2. By contrast, for the left hand, the vector from the fifth to the second MCP is defined
as V2. The hand orientations, zMocap =

[
zMocap_x, zMocap_y, zMocap_z

]T
, are unit vectors

calculated by the cross-product of V2 and V1 and normalized by its own norm. Therefore,
the propulsive force estimated using the underwater motion-capture system and pressure
sensors (FMocap) can be determined using Equation (2).

FMocap = FR·zMocap_y (2)

For the IMU, the hand orientations were obtained using the sensor fusion algorithm
proposed by Madgwick (the divergence rate: β = 0.033) [34]. Researchers have reported
that the magnetometer may be disturbed by ferromagnetic objects, such as water pumps
under the pool [35,36]. Hence, the sensor orientation was obtained by processing the
raw acceleration and angular velocity. The orientation was expressed by a quaternion
comprising a scalar component, q0, and vector components, q1 to q3. The representation
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of the hand orientation was transformed from a quaternion to a rotation matrix (R) using
Equation (3), as follows:

R =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (3)

In the matrix above, each column of R represents the axis direction of the sensor frame
(xIMU, yIMU, and zIMU) in the global frame (Figure 6b). zIMU is assumed to be orthogonal
to the palm, and the Y component of zIMU (zIMU_y) is used as the swimming direction for
estimating the propulsive force (Equation (4)).

FIMU = FR·zIMU_y = FR·2(q2q3 − q0q1) (4)

2.2.3. Statistical Analysis

FMocap and FIMU were compared using data from five participants, which comprised
297 strokes. The agreement between the two methods was evaluated based on the mean
values and waveforms of FMocap and FIMU. The mean values of FMocap and FIMU during
the underwater stroke phase are denoted as FMocap and FIMU, respectively. Agreement
between FMocap and FIMU was assessed using the intraclass correlation coefficient (ICC(2,1))
and Bland–Altman analysis [37]. The waveform similarity between the FMocap and FIMU
waveforms was assessed based on the coefficient of multiple correlation (CMC).

ICC(2,1) was calculated using a two-way random-effects model. Values from 0.75 to
0.90 have been suggested as acceptable values; in fact, they should exceed 0.90 for most
clinical measurements [38,39]. In this study, ICC(2,1) values less than 0.75 were defined as
low agreement, 0.75 to 0.90 as medium agreement, and greater than 0.90 as good agreement,
based on [38].

Bland–Altman analysis was performed to confirm fixed and proportional biases. The
fixed bias was examined using a one-sample t-test (test value = 0) of the difference between
FMocap and FIMU (Diff). The proportional bias was examined using the Pearson product-
moment coefficient of correlation r between the mean and Diff. The significance level was
set to less than 5%. The effect size d was calculated and assessed using the same methods
and thresholds as in Experiment 1. The standard deviation of the difference between FMocap

and FIMU was corrected based on the mean square and denoted as SDDiff. The 95% limit
of agreement (95% LOA) was calculated by multiplying SDDiff by ±1.96 based on [40].
In addition, the upper and lower limits of the confidence interval for the 95% LOA were
calculated using Equations (5) and (6) [37,40], respectively.

Upper limits =
(

Diff + 1.96·SDDiff

)
− t
√

3·SDDiff
2/n (5)

Lower limits =
(

Diff − 1.96·SDDiff

)
+ t
√

3·SDDiff
2/n (6)

where Diff is the mean of Diff, t is the t-value with a two-sided probability of 5% in the
t-distribution with n−1 degrees of freedom, and n is the sample size (n = 297).

The CMC was used to evaluate the waveform similarity, and it was calculated using
the formula provided in [41]. The CMC values were defined as having poor similarity
(0–0.64), moderate similarity (0.65–0.74), good similarity (0.75–0.84), very good similarity
(0.85–0.94), or excellent similarity (0.95–1), based on [42].

3. Results
3.1. Effect of Mounted IMU on Hand Model

Figure 7 shows the differences in FR with and without the IMU at two different flow
velocities. At 1.2 m·s−1, significant differences were indicated between the cases with and
without the IMU at 0◦ (t = −11.99; p < 0.001; d = 4.38), 30◦ (t = −7.60; p = < 0.001; d = 3.20),
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and 90◦ (t = −3.05; p = 0.014; d = 0.18). Meanwhile, at 1.6 m·s−1, significant differences
were indicated at 0◦ (t = −32.60; p < 0.001; d = 8.57), 60◦ (t = −2.50; p = 0.034; d = 0.47), and
180◦ (t = −9.46; p < 0.001; d = 0.72).
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The most significant difference was observed at 0◦ for both flow velocities. Therefore,
the pressure at 0◦ was prioritized in this study. Tables 1 and 2 show the pressures on
the palm and dorsal sides of the hand model at 0◦. Significant differences were indicated
between the pressure recorded with and without the IMU in all six pressure sensor positions.
In particular, the effect size of d3 was the largest in the six pressure sensors for both flow
velocities (1.2 m·s−1, d = 9.03; 1.6 m·s−1, d = 8.81). This suggests that when water flows
from the little finger side, the hand-mounted IMU affects the pressure at d3.
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Table 1. Comparison of pressure on hand model between cases with and without the IMU based on
0◦ and 1.2 m·s−1.

Pressure
Sensor’s Position

Pressure without
the IMU (kPa)

Pressure with
the IMU (kPa)

t Value
(p Value) Cohen’s d

p1 −0.63 ± 0.02 −0.70 ± 0.02 −7.30 (<0.001) 2.94
p2 −0.73 ± 0.02 −0.77 ± 0.01 −8.59 (<0.001) 2.04
p3 −0.69 ± 0.04 −0.74 ± 0.03 −3.97 (<0.001) 1.31
d1 −0.85 ± 0.03 −0.89 ± 0.02 −11.21 (<0.001) 1.45
d2 −0.99 ± 0.02 −0.95 ± 0.04 6.26 (<0.001) 1.45
d3 −0.98 ± 0.04 −0.63 ± 0.03 22.38 (<0.001) 9.03

Table 2. Comparison of pressure on hand model between cases with and without the IMU based on
0◦ and 1.6 m·s−1.

Pressure
Sensor’s Position

Pressure without
the IMU (kPa)

Pressure with
the IMU (kPa)

t Value
(p Value) Cohen’s d

p1 −0.65 ± 0.05 −0.75 ± 0.04 −18.61 (<0.001) 2.14
p2 −0.90 ± 0.06 −1.01 ± 0.08 −7.93 (<0.001) 1.51
p3 −0.70 ± 0.08 −0.79 ± 0.08 −23.67 (<0.001) 1.15
d1 −1.09 ± 0.09 −1.12 ± 0.09 −6.00 (<0.001) 0.37
d2 −1.25 ± 0.09 −1.14 ± 0.10 13.96 (<0.001) 1.19
d3 −1.48 ± 0.07 −0.92 ± 0.06 35.24 (<0.001) 8.81

3.2. Comparison of Two Propulsive Force Estimation Methods

A comparison of the mean values shows that the FMocap and FIMU of all 297 strokes in
Experiment 2 were 19.59 ± 7.66 and 19.36 ± 7.86 N, respectively. Diff was 0.23 N (relative
error: 0.4%), and SDDiff was ±2.08 N. The ICC(2,1) between FMocap and FIMU was 0.966 (95%
confidence interval: 0.958–0.973, p < 0.001), which indicates good agreement between them
(Figure 8a). The Bland–Altman analysis showed neither fixed (p = 0.051) nor proportional
(p = 0.087) biases between FMocap and FIMU (Figure 8b).
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Figure 9 shows the ensemble means ±1.96 standard deviations (SDs) for the FMocap
and FIMU of all the strokes. The waveform of FMocap is similar to that of FIMU (CMC = 0.99).
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4. Discussion
4.1. Effect of Hand-Mounted IMU on FR Acting on Hand

In Experiment 1, the effect of a hand-mounted IMU on the FR acting on the hand was
investigated by changing the flow velocity and water flow direction relative to the hand.
The results showed that the hand-mounted IMU affected FR; however, the effect of the
hand-mounted IMU varied depending on the water flow direction. In this study, the water
flow direction from the little finger side was set to 0◦, and the water flow direction from
the thumb side was set to 180◦. From 60◦ to 150◦, the effect of the hand-mounted IMU on
FR was negligible or small (Figure 7). For both flow velocities, decrements in the resultant
force were observed at the water flow direction of 0◦ from the hand-mounted IMU, and
significant pressure differences were observed between the cases with and without the IMU
at each pressure sensor position (Tables 1 and 2). The difference in pressure is attributable
to the change in the water flow around the hand model owing to the hand-mounted IMU.
Figure 10 shows a conceptual diagram of the difference in water flow with and without the
IMU when the water flow direction was 0◦. The pressure was predicted to increase owing
to the decreased flow velocity due to flow obstruction by the hand-mounted IMU. In this
experiment, the pressure at d3 without the IMU was lower than that with the IMU, and the
effect of the hand-mounted IMU on the pressure at d3 was the most prominent among the
pressure sensor positions investigated. Therefore, mounting the IMU on the dorsal side of
the hand may change the flow and pressure, particularly on the dorsal hand side. However,
assuming front crawl swimming, the water flowing from the little finger side was at the
end of the underwater stroke phase, immediately before the hand exited the water. The
phase immediately before the hand exited the water was confirmed to be short throughout
the entire underwater stroke phase [43]. In addition, swimmers typically maintain the
angle of attack of their hands at 50◦–70◦ in three swimming styles: front crawl, backstroke,
and butterfly [1,44]. Therefore, the effect of using an IMU in front crawl swimming on FR
would be insignificant.
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We examined the effect of a hand-mounted IMU on FR at two different velocities using
a hand model fixed to an aluminum post. However, many researchers have indicated the
importance of considering unsteady flow and motion in swimming research because swim-
ming is a complex motion with repeated acceleration and deceleration [10–14]. Therefore,
the effects of hand-mounted IMUs on FR at higher velocities and in actual swimming mo-
tion should be investigated more comprehensively in future studies. The smaller size of the
IMU (especially the thinner IMU) will reduce the obstruction of water flow on swimmers’
hands. However, the influence of sensors on swimming never disappears compared to
bare hands. A more detailed investigation is possible through flow analysis, such as a
simulation or particle image velocimetry.

4.2. Agreement between Propulsive Force Estimation Using IMU and Underwater
Motion-Capture System

In Experiment 2, the propulsive force estimated via a novel method using an IMU
and pressure sensors (FIMU) was compared with the propulsive force estimated using a
method that utilizes an underwater motion-capture system (FMocap). A high ICC(2,1) was
obtained, and no fixed or proportional biases were indicated between FMocap and FIMU. The
similarity evaluation of the waveforms of both propulsive forces showed a CMC of 0.99,
which reflects high waveform similarity. These results indicate that the IMU and pressure
sensors can be used to evaluate the propulsive force generated by the swimmer’s hands,
similar to the method using an underwater motion-capture system and pressure sensors.

In land exercises, oscillations between the body and IMU (or reflective markers), i.e.,
soft-tissue artifacts, are often regarded as error factors for estimating orientation [36,45–48].
The effect of soft-tissue artifacts is predicted to be significant for explosive movements [36].
For example, in front crawl swimming, the effect of soft-tissue artifacts is predicted to be
more prominent when the hands and feet enter the water, particularly at high swimming
speeds. Furthermore, it has been reported that vortices are generated around the hand, and
that the water flow becomes more complex and faster in the latter half of the underwater
stroke phase when a large force is generated [13,14]. Therefore, the effect of the IMU
and reflective marker oscillations on the estimation of hand orientation during swimming
must be considered. This effect may be minimized, for example, by using smaller sensors.
Furthermore, drift errors caused by long-period measurements were not considered because
the measurements performed in this study were short. Nonetheless, further investigations
are required.

Unlike underwater motion-capture systems, IMUs are not affected by bubbles when
estimating hand orientation. Moreover, IMUs require less time for post-processing and
incur a lower cost than underwater motion-capture systems. Hence, IMUs can be applied
widely to coaching, e.g., the daily evaluation of swimmers’ performance. Using an IMU and
pressure sensors to evaluate the propulsive force generated by the hands offers advantages
that cannot be provided by underwater motion-capture systems. To render the proposed
method more accessible for coaching, we believe that efforts should be undertaken to
minimize the burden on swimmers, such as miniaturizing IMUs and eliminating pressure
sensor cables by integrating IMUs with pressure sensors.
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5. Conclusions

The aims of this study were (1) to verify the effect of a hand-mounted IMU on the
FR acting on the hand, and (2) to propose a method of evaluating the propulsive force
generated by the hands using IMUs and pressure sensors (FIMU); then, we compared the
results with the value estimated using an underwater motion-capture system and pressure
sensors (FMocap). In Experiment 1, decrements in FR were observed in the water flowing
from the little finger side by mounting an IMU at flow velocities of 1.2 and 1.6 m·s−1.
Significant differences in pressure were indicated for the cases with and without the IMU
at each pressure sensor position. In Experiment 2, the mean values of FMocap and FIMU
indicated good agreement and exhibited neither fixed nor proportional biases. Additionally,
the waveforms of FMocap and FIMU were similar.
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