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Abstract: Color is an essential feature in histogram-based matching. This can be extracted as statistical
data during the comparison process. Although the applicability of color features in histogram-based
techniques has been proven, position information is lacking during the matching process. We present
a conceptually simple and effective method called multiple-layered absent color indexing (ABC-ML)
for template matching. Apparent and absent color histograms are obtained from the original color
histogram, where the absent colors belong to low-frequency or vacant bins. To determine the color range
of compared images, we propose a total color space (TCS) that can determine the operating range of
the histogram bins. Furthermore, we invert the absent colors to obtain the properties of these colors
using threshold hT. Then, we compute the similarity using the intersection. A multiple-layered structure
is proposed against the shift issue in histogram-based approaches. Each layer is constructed using the
isotonic principle. Thus, absent color indexing and multiple-layered structure are combined to solve the
precision problem. Our experiments on real-world images and open data demonstrated that they have
produced state-of-the-art results. Moreover, they retained the histogram merits of robustness in cases of
deformation and scaling.

Keywords: color features; absent colors; apparent colors; total color space; multiple-layered structure;
margin

1. Introduction

Robust matching and searching are challenging problems in image processing [1,2].
These challenges include rotation [3], deformation [4], scale variations [5], partial occlusion [6],
and illumination variation [7]. Existing matching and searching algorithms attempt to
solve these challenges by a single feature or complex feature combinations [8,9]. However,
accurately and robustly matching the background clutter and discriminating similar objects
are difficult. In this study, we aim to estimate the location of a target in an image sequence
with strong robustness and high precision, particularly in the case of rotation, deformation,
and scale variations.

A color histogram is a statistical measure of color feature distribution in an image.
The merits of using color histograms are non-complicated computing processes and robust
to deformation and scale variation in template matching [10–12]. Owing to the lack of
location information, most color histogram-based algorithms can determine the target in
the searched image; however, they still have a precision problem when compared with
the correct location. Utilizing the characteristics of template matching is a breakthrough.
The earlier popular and effective color histogram-based algorithms for template matching,
such as color indexing (CI) and cumulative color histogram (CCH) [13,14], search a target
location in given color space by different similarity measures. They can work well with
the change in deformation and scale variation. However, the ability to handle noise and
illumination is difficult. Han et al. [15] proposed the fuzzy color histogram to solve
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sensitive problems. It involved an adjustable fuzzy membership matrix to process noise
interferences and illumination variation. Therefore, the distinguishable is reduced between
similar objects. The above-mentioned color histogram-based methods have two common
points. The first one is that just use color histograms to match or search. The other one is
that it focuses on bins with high contribution or frequency to design similarity measures.

The conventional template matching algorithms include Sum-of-Squared-Difference
(SSD), Mean-Absolute-Differences (MAD), and Normalized-Cross-Correlation (NCC). They
have a long history of image processing, whereas they can not deal with complicated
conditions, especially deformation and scale variations. Because SSD, MAD, and NCC
are corresponding all pixels based on the location relationship between the template im-
age and compared image in the calculation process. Recently, the Best-Buddies-Similarity
(BBS) [16,17] is introduced for template matching to solve this issue. It divided the template
image into blocks, and then the number of Best-Buddies Pairs is counted between the tem-
plate and target images. Each pair of blocks should correspond based on the theory of the
Nearest-Neighbor. Therefore, BBS is a two-directional comparison for the Nearest-Neighbor.
BBS overcomes the demerit of typical template matching approaches which counted all
pixels within the template or target image to measure their similarity. This is unreasonable
in many cases. For example, the same target is presented in a different background, or
deformation has appeared. In these cases, conventional template matching approaches may
lead to false detection. BBS relies on block-to-block matching to find the best-buddies pair
to avoid the limitation of using all pixels for calculating. However, when the target has
rotational deformation or changes in scale, it is difficult to find an effective best-buddies
pair for BBS. Therefore, the challenges of deformation and scaling still have shortcomings
for BBS. Next, the Deformation Diversity Similarity (DDIS) [18] is proposed to improve the
deficiencies of BBS. Two essential properties are introduced in DDIS. One is the form of
Nearest-Neighbor. The second one only needs a single direction to find the best-matched
Nearest-Neighbor block to solve the deformation issues. It effectively maintains the ad-
vantages of BBS. Meanwhile, finding the best-matched Nearest-Neighbor block in a single
direction can reduce the computational complexity. Thus, DDIS is more robust than previous
algorithms. However, DDIS is also hard to deal with the problem of scale variation.

Cheng et al. [19] introduced the Quality-Aware template matching (QATM), which
focuses on the soft-ranking of the quality of a matching pair. The different cases, such as 1-to-
1, 1-to-many, many-to-many, and no-matching, can obtain different values. QATM may easy
to deal with different experimental scenarios. However, it is still a challenge for matching the
target that is scaling or deformation. Two-stage object detection approaches (Siam R-CNN)
are proposed for tracking [20]. This approach is combined with a tracklet-based dynamic
programming approach. The merit is it adopts the information of the first frame and previous
frame to handle the target occlusion challenge faced by long-term tracking. The demerit is a
lot of training is required for different datasets, which increases the computation cost.

In contrast to our prior work [21–23], instead of directly exploiting all pixels as color
features, we select two other inner layers as candidates to enhance color features. Here, we
analyze the color distribution in the given dataset to determine the maximum range relationship
of each color channel called total color space (TCS). Next, the multiple-layered matching (ML)
is introduced as an improvement based on our earlier absent color indexing (ABC) concept,
which compared each layer from the reference image and target image in TCS.

In this paper, we propose the ABC-ML to combine the benefit of the color histogram
with template property. A key feature of ABC-ML is that the isotonic principle, that is,
the center location of the bounding box of the same target is not to change with partial
occlusion, rotation, scale variations, and deformation. The other point is to keep integer
multiple relationships based on the number of pixels in each layer. Hence, ABC-ML can
retain the merits of ABC. In addition, it is different from the approaches of the pixel-wise
and blocks to determine the position information, ABC-ML splits the template image into
three layers to keep the central location the same to overcome the existing issue of the drift
phenomenon in color histogram-based matching approaches.
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The main contributions of this paper are summarized: First, we introduce a concept
of TCS on color histogram which defines an accurate range of using color histogram bins.
Second, a novel multiple-layered matching is proposed against the drift problem in color
histogram-based approaches, which is a pure way to use color histograms and combined them
with different layers to add location information and achieve experiment results. This paper
is organized as follows: Section 2 introduces new content about the TCS. Section 3 describes
absent color indexing and a technique to get threshold by a mean color histogram. Section 4
illustrates the multiple-layered matching approach and how to determine the position and size
in each layer. Section 5 includes the experiments to demonstrate the ability of ABC-ML and
analyzes the results of experiments. Conclusions and future works are described in Section 6.

2. Total Color Space

Color space is widely used in the field of image processing [24–26]. Here, we select
CIE L*a *b* color space as a candidate which is used in the proposed approach. CIE L*a *b*
has a concentrated trend in the aspect of color distribution. It is also close to human vision.
Therefore, the application of CIE L*a *b* in ABC-ML is effective. In general, a one- or
multi-dimensional color histogram is generated via selected color space. In color space, a
color range is an area that expresses the composition of colors in a given color space. A larger
color range represents more colors. However, we can find that the maximum and minimum
color ranges of each channel obtained in different experimental datasets are inconsistent.
Furthermore, it is not necessary to use the entire range in a given color space for statistics
on the histogram. Therefore, TCS is defined that is minimum usable or effective range. It
enables a better classification of colors without increasing the amount of computation cost.

Figure 1 shows the range of colors in different channels and pixel distributions by
training the TCS of Girl2 data [27] in CIE L*a *b* color space, where Girl2 data are from
OTB-2015. In CIE L*a *b* color space, the range of each channel is (0, 100), (−128, 127),
and (−128, 127) in L*, a*, and b* channel, respectively. We analyze all of the images from
Girl2 dataset to get the range of each channel. After observing, only the L* channel can
keep the same range, and the range of a* and b* channels are (−52, 74) and (−58, 55). It is
more precise than initial range. Training of TCS is valuable to reduce the time consumption
and to get the minimum usable range of different channels. We also can utilize the TCS in
real-time projects by updating them frame by frame.

(a) (b)

(c) (d)

Figure 1. Example of TCS in Girl2 dataset. (a) Total color space. (b) Color distribution in L-channel.
(c) Color distribution in a-channel. (d) Color distribution in b-channel.
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3. Absent Color Indexing

In this section, we first present our algorithm to explain the apparent colors and absent
colors. Next, we introduce how to get threshold by the mean color histogram. In final, we
use similarity measurement to calculate matched results. To solve the illumination problem,
we obtain a two-dimensional color space by transforming RGB images to CIE L*a *b* color
space and removing the L* channel, where a* and b* channels are utilized to establish a
two-dimensional color histogram in TCS.

3.1. Methodology

Figure 2 shows two template images A and B.

Figure 2. Images A and B are templates with the size 195 × 65.

We set β1 and β2 bins from a* and b* channels by TCS. Two-dimensional color his-
tograms are defined as P =

{
pij
}
(i,j)=(1,1),··· ,(β1,β2)

and Q =
{

qij
}
(i,j)=(1,1),··· ,(β1,β2)

to
represent the histogram form of images A and B. Among them, the total number of pixels
in each image is uniform. Moving forward, P is used as an example to illustrate the specific
algorithm flow.

Figure 3 shows the generated histograms P and Q for images A and B, respectively.
We separete original color histogram P into two-dimensional color histograms PD =

{
pD

ij

}
and P′ =

{
p′ij
}

, where P = PD + P′. To ease of explanation, the subscripts i and j are
omitted to avoid confusion.

pD = p× (1− φ(p)) = p× φ(p), (1)

p′ = p× φ(p), (2)

where φ(·) is an indicator function. If p ≤ hT, φ(p) = 1; when p ≥ hT, φ(x) = 0. hT as a
special parameter is introduced in Section 3.2. PD belongs to apparent color histograms
including the frequency of major colors in image A. P′ is the absent color histograms
that contain low and zero frequencies. We defined minor colors as absent colors because
the property of colors itself is infrequent in color images. The structure of PD and P′ are
same to two-dimensional histogram P, where the elements pD and p′ represent the color
frequencies. It is desirable to systematically utilize the information contained in the low
frequencies in the histogram through the decomposing process.
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(a) (b)

Figure 3. Original color histograms (β1 = 8, β2 = 8). (a) Histogram P for image A. (b) Histogram Q
for image B.

Next, an reverse operation is executed from absent color histogram P′ that is a comple-
mentary feature for given histogram P. However, some special cases should be considered
that how to treat zero frequency cases. Assume that P′, P, and Q are one-dimensional
histograms as shown in Figure 4 to easily explain zero frequency cases, such as p′ = 0,
during the inversion process of the absent color histogram. P

′
is the absent color histogram

from histogram P. P and Q are compared histograms, where Q is a vital reference for
judging whether the zero bins from absent color histogram P′ need to be reversed. In
Figure 4, the first case (1) in Figure 4a describe if p′ = 0 and p > hT, then pN = 0; the
second case (2) in Figure 4b, if p′ = 0, p = 0 and q > 0, then pN = hT; and the last case (3)
in Figure 4b, if p′ = 0, p = 0 and q = 0, then pN = 0. We summarize these three cases in
Table 1 to make a clear explanation.

(a) (b)

Figure 4. Explanation of how to deal with zero frequency p′ = 0 in the inverting process. (a) shows
the case (1) when p′ = 0 and p > hT. (b) shows the cases (2) and (3) when p′ = 0, p = 0 and q > 0 or
q = 0.

Table 1. Value of pN in conditions of p′ = 0.

pN p′ = 0, p > hT p′ = 0, p = 0

q > 0 0 hT

q = 0 0 0

In Equation (3), we define PN =
{

pN
ij

}
is the absent color histogram after inverting by

abovemention to represent minor or zero frequencies.

pN = (hT − p
′
)φ(p)ψ(p) + hTψ(p)ψ(q). (3)

where ψ(·) is another indicator function that satisfies the following conditions, such as
p > 0, ψ(p) = 1; otherwise, if p ≤ 0, ψ(p) = 0. Finally, it is necessary to normalize both
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PD and PN to satisfy the condition that all components should sum to 1. Apparent color
histograms PD and QD and absent color histograms PN and QN from image A and B are
shown in Figure 5, respectively. Note that the initial values of the other elements without
any indication were set to 0 in the above equation description.

(a) (b)

(c) (d)

Figure 5. Apparent and absent color histograms. (a) PD for image A. (b) PN for image A (c) QD for
image B. (d) QN for image B.

3.2. Threshold Selection

The threshold hT has one of the main roles for definition the apparent and absent
colors. We discuss in this section how to define it for making a meaningful algorithm
and its effectiveness performance. Mean color histogram, M in short, is introduced to
obtain an average tendency of color distribution by two color histograms. Meanwhile, it
is also utilized to realize a stable definition of threshold hT. M =

{
mij
}
(i,j)=(1,1),··· ,(β1,β2)

is
defined as

mij =
pij + qij

2
. (4)

Mean color histogram as a medium is a vital stage before threshold selection. The
proportion of each color in the color histogram is analyzed from a statistical perspective in
the matched two images. Consequently, we improved the rationality and dynamics of the
threshold selection. As a result, the accuracy of the final similarity measurement is ensured.
In Equation (5), two-dimensional histogram M is converted to another descending order
sorted one-dimensional histogram Msorted as follows:

Msorted =
{

msorted
i−1 ≥ msorted

i

}
. (5)

The threshold value hT is described by the following equation. It can separate the set
of all of the bins into two sets, apparent and absent colors, in consideration of how rare the
absent colors are in the images.

hT =
msorted

s + msorted
s+1

2
. (6)
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where msorted
s and msorted

s+1 are the frequencies of adjacent bins in one-dimensional histogram
Msorted. s and s + 1 represent the order index of bins. s is defined as

s = min

{
n|

n

∑
i=1

msorted
i ≥ 1− α

}
. (7)

where α is a significant rate of absent colors, which is used to control the proportion of
absent colors in the histogram. The larger α can obtain more absent colors. 1− α is the
significant rate of apparent colors. ∑n

i=1 msorted
i represents the cumulative frequency of bins

from 1 to n. s is the minimum value of n that satisfies the cumulative frequency greater
than 1− α. Hence, if we give a value of α, s can be found through Equation (7), and then hT
is calculated through Equation (6). By using α to dynamically calculate the threshold hT, we
can perform a stable and efficient decomposition in the range of TCS in comparison with a
constant threshold. In the definition of the absent color histogram, since zero frequency
has a part of important role for neglecting any effect of noises, we need to remove those
frequencies close to zero in the absent color histogram. In our experiments, we define the
bins that frequency is less than 0.2× hT in the color histogram as noise. Figure 6 shows the
mean color histogram by using histograms P and Q.

Figure 6. Mean color histogram.

Figure 7 is a Pareto chart [28].

Figure 7. Pareto chart of parameter α and sorted histogram Msorted.

It shows that the value of s is determined by the significant rate α to represent the
effectiveness and rareness of absent colors. Next, s is utilized to design the threshold hT.

3.3. Intersection

Histogram matching algorithms depend mainly on similarity measures to match a
histogram to other histogram. One of simple similarity measurements is intersection [29],
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and it has been used in many algorithms and applications. Here, we utilized two color
histograms P and Q in TCS as

I(P, Q) =
(β1,β2)

∑
(i,j)=(1,1)

min
{

pij, qij
}

(8)

According to two types of histograms proposed in this paper, we scheme to combine the
two intersections from different types of histograms into one through weighting coefficients.

S = wD I
(

PD, QD
)
+ wN I

(
PN, QN

)
(9)

where wD and wN are weights by the constraint wN = 1− wD. Absent color indexing
provides a fair way to treat apparent colors and absent colors, and weighting coefficients
are a bridge to connect each type of color histogram.

4. Multiple-Layered Matching

Histogram-based matching algorithms have some good properties against rotation,
deformation, and scaling. Because these approaches focused on the statistical distribution
of given data. Therefore, the reduction of matching precision becomes a common issue.

For template matching algorithms, they utilize the form of pixel or pixel blocks to
compare that can well-controlled precision issues. However, if the case of deformation
or scaling is produced during the movement, template matching approaches are difficult
to ensure the matching precision. We introduce the demerit of color histogram-based
approaches and the merit of combining with multiple-layered matching as shown in
Figure 8. In the previous color histogram-based approaches, we may obtain the same
similarity when we compare two images in positions (a) and (b). Observing the positions (a)
and (b), the feature of color distributions are exactly the same. That is why color histogram-
based approaches have weaknesses in matching precision. To solve the offset problem in
the matching process, we improve our proposed absent color indexing to combine with
the merit of template matching approach through layering the image. Thereafter, multiple-
layered struture is proposed as shown in Figure 9, which is based on the isotonic principle
to keep the location of the center not changed.

Figure 8. Analyze the color feature distribution at different positions under the multiple-layered structure.
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Figure 9 shows when the object occurs rotation, scaling, and deformation during
the movement, image features in the central region are kept especially color features.
Hence, a multiple-layered structure that divides an image into three layers can be used
to obtain the position information, where each layer should restrain the other two layers’
positional relationship. Meanwhile, we can get a more optimized effect in the matching
result. In Figure 9, the inner layer is Ml1 including pm1 pixels in the rectangle; the second
and third layers are Ml2 and Ml3 where they have the relationship as pm2 = 2× pm1 and
pm3 = 3× pm1.

Figure 9. The concept and merit of multiple-layered structure.

Assume that, the whole template image is [0, 0] and [h, w] in position and size.
The upper left of the image is the initial position [0, 0]. Next, we should follow be-
low two conditions to satisfy the multiple-layered structure. One is the center point
is consistent in each layer; the other is each layer in pixels has the relationships: pm2 =
2 × pm1 and pm3 = 3 × pm1. As an example, the position and size of template image
in Ml2 layer are

[(
1−

√
3

3

)
× h

2 ,
(

1−
√

3
3

)
× w

2

]
and

[√
3

3 h,
√

3
3 w

]
, and the Ml3 layer is[(

1−
√

6
3

)
× h

2 ,
(

1−
√

6
3

)
× w

2

]
and

[√
6

3 h,
√

6
3 w

]
. We expressed the multiple-layered simi-

larity measure as follows

Sml =
1
3
×

3

∑
1

Si (10)

where the similarity Si=1,2,3 of each layer is calculated by using our proposed absent color
indexing. ABC-ML is an image matching approach based on color histograms. In an image,
pixels are counted as samples to generate the histogram. The number of statistical samples
plays a crucial role in the accuracy of statistical analysis. Fewer statistical pixels can easily
lead to the generated histogram cannot effectively represent the distribution of colors in the
image. More layers can increase computational costs. The demerit of the histogram-based
algorithm is that is difficult to obtain the position information of the color by statistics pixels.
Therefore, the phenomenon of offset is easy to occur in the matching process, which leads
to a decrease in the matching accuracy. By layering the template image, the color feature
statistics of the relationship between each layer can indirectly add position information to
solve the lack of the color histogram approach. For the above reason, images are divided
into three layers. The pseudo-code of ABC-ML approach is shown in Algorithm 1.
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Algorithm 1 Proposed ABC-ML approach

Input: Reference image Ir and compared image Is.
Extract each layer Ir

κ and Is
κ of image Ir and Is, where κ = 1, 2, 3.

Train the given dataset to determine the range of TCS.
Initial parameters: α = 0.2, wD = 0.6, wN = 0.4, β1 = 8, β2 = 8, κ = 1.

Output: Target location LT in the searched image.
repeat

repeat
1: Generate two-dimensional color histograms Pκ and Qκ by images Ir

κ and Is
κ in

TCS.
2: Divide color histograms into apparent color histograms PD

κ , QD
κ and absent color

histograms P
′
κ , Q

′
κ .

3: Invert absent color histograms P
′
κ and Q

′
κ to PN

κ and QN
κ . κ = κ + 1.

until κ > 3;
4: Calculate each layer similarity Sκ(x, y) by PD

κ and QD
κ , PN

κ and QN
κ where κ = 1, 2, 3.

5: The result of ABC-ML similarity at (x, y) position is Sml(x, y).
until All locations are scanned, then find position LT with max(Sml(x, y));

5. Experiments

The structure of ABC-ML can be solved the problem of the shift of histogram-based ap-
proaches, which is without combining it with other features. In Section 5.1, the performance
of our proposed ABC-ML is compared with color histogram-based approaches including
color indexing (CI), cumulative color histogram method (CCH), and absent color indexing
(ABC). Thereafter, template-based matching methods SSD, NCC, and BBS are utilized to
illustrate the robustness and precision of ABC-ML in Section 5.2. To fair comparing, we set
using experimental parameters β1 = 8, β2 = 8, α = 0.2, wP = 0.6, wN = 0.4 for all images
or sequences in ABC-ML.

5.1. Performance Evaluation for Color Histogram-Based Methods

To provide a detailed explanation, we evaluate the experimental results of ABC-ML on
real-world images. Five challenges are included, rotation, deformation, occlusion, scaling,
and illumination variation, to observe the performance of our proposed approach with
other color histogram-based approaches. The size of reference image in Figure 10a is
98× 50 pixels. We set the same scene where the size is 360× 640 pixels in the experiments.
Euclidean distance is calculated to evaluate the performance of matching results. Among,
the best-matched position from CI, CCH, ABC, and ABC-ML is compared with ground
truth, respectively, to show the error in the matching process. In Figure 10, we can observe
four color histogram approaches have a property of robustness. However, matching
precision is unstable, which is easily appeared in the phenomenon of shift. Therefore, we
improved our previous ABC approach for handling this problem, ABC-ML.

Under the case of rotation, four approaches can find the correct position of target
image in the scene. After observing their profiles, the gap between the highest peak or
the best-matched position and the second peak or matched position in our proposed ABC
and ABC-ML approaches were larger than another two approaches as shown in Figure 11.
Margin as a symbol represents a good distinguishability in image processing, especially in
similar object matching. The matching results of ABC and ABC-ML are shown in Figure 12.
White bounding boxes are ground truth. Observing the results, the matching location of
ABC is roughly correct, but it has a shift. The matching results of ABC-ML are more precise.
One reason is the position of the center point of each layer in ABC-ML is not changed; the
other reason is we improved matching precision by the positional relationship and mutual
control of each layer.
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(a) Reference (b) Rotation

(c) Deformation (d) Occlusion

(e) Scale variation (f) Illumination variation

Figure 10. Comparison of color histogram-based matching methods. (a) Reference image. (b–f) show
searching results by using different color histogram-based methods under different cases. Bounding
blue, green, red, and black boxes are searching results by CI, CCH, ABC, and ABC-ML, respectively.

(a) (b)

(c) (d)

Figure 11. Analysis of profile plots which are used CI, CCH, ABC, and ABC-ML methods in
Figure 10b. (a) The profile of similarity in ABC. (b) The profile of similarity in CI. (c) The profile of
similarity in CCH. (d) The profile of similarity in ABC-ML.
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(a) (b) (c) (d) (e)

Figure 12. Comparison of matching precision between ABC and ABC-ML. ABC and ABC-ML results
show in red and black bounding boxes. Ground truth is shown by white bounding box. (a) Rotation,
(b) Deformation, (c) Occlusion, (d) Scale variation, (e) Illumination.

A comparison of the matching error of location is shown in Table 2. It is based on
different color histogram approaches to challenges. Then, the location error of matching
was calculated using the Euclidean distance, which is matched position to compare with
the ground truth. The cases of rotation and occlusion, CI and ABC, can search for the best
position in the experiments. In the other three cases, our proposed ABC-ML as it obtained
the lowest error shows the best matching results.

Table 2. Location error in color histogram-based methods.

CI CCH ABC ABC-ML

Rotation 3.60 5.09 7.21 4.24

Deformation 3.60 11.04 14.31 2.23

Occlusion 29.06 158.1 12.04 14.86

Scale variation 11.40 16.27 11.04 9.21

Illumination variation 7 4.12 11.04 4

5.2. ABC-ML Based Matching Analysis

Eight color histogram-based and template-based approaches are selected for com-
parison, which include SSD, NCC, CCH, CI, BBS, QATM, Siam R-CNN, and ABC. The
comparison of matching results is described by location error. We calculate the Euclidean
distance between the searched center- and ground truth center-point. We use the open
data, Skiing data [27], to do experiments, and evaluate the performance of nine approaches.
The skiing data are from OTB-2015. Images and ground truth are provided in this data.
Among, ground truth is presented in the form of the location and size of the target. It
includes challenges of illumination variation, scale variation, deformation, and rotation. In
this sequence, a skier wearing a red ski coat and yellow ski pants slipped into the air and
completed complicated movements such as flips. The scenes are dynamically changing
and similar, mainly composed of the colors of trees, snow, and sky. For the skier, there
have been scale variations from the beginning to the end of the sequence. There are a total
of 81 frames in the data. The size of each frame is 360× 640 pixels. In this experiment,
reference image is 32× 35 pixels. It contains a large amount of red and yellow, and a small
amount of black. These color features can more intuitively reflect the different roles played
by apparent and absent colors in the histogram. Furthermore, different challenges enable a
more comprehensive evaluation of these contrasting algorithms. Therefore, skiing data are
selected for evaluating the performance.

Figure 13 shows the tracking performance of ABC-ML in open data. The horizontal
axis represents the video frame sequence. The vertical axis represents the location error by
calculating the Euclidean distance between their best-matched positions and the ground
truths. We use some representative frames as examples to show the difference in these nine
approaches. In Frame #35, eight approaches can get good matching results, except SSD.
Frame #42 shows NCC matched result is around the tree. Because template-based matching
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utilized the pixel value to calculate the matching result. In the scene, the similarities
between correct and incorrect positions are almost identical. The challenges of deformation
and scale variation are shown in Frames #61 and #64, where Siam R-CNN, ABC, and
ABC-ML can match the target. The approaches of ABC and ABC-ML can catch absent
or minor colors, which are red and yellow. The Siam R-CNN can find the target at the
correct position as well. The difference between ABC-ML and Siam R-CNN is that ABC-ML
searches pixel by pixel on each frame without relying on the information of the previous
frame, while Siam R-CNN further combines the tracking track information of previous
frames to predict the target position of the current frame. Because the skier is far away from
the camera, background features occupy a large proportion. For another six approaches,
it is hard to handle large deformation and scale variation. When the proportion of target
colors is too small, for color histogram-based algorithm CI, background information in the
scene is more matched than the correct position of the target. Therefore, CI cannot match
the correct position of the target from Frame #61. Furthermore, the precision of ABC-ML is
better than our prior proposed ABC approach.

Figure 13. The matching performance of ABC-ML in Skiing data.

To analyze the performance of our approach, we select four measurements as evalua-
tion indicators, which include Accuracy, Precision, Recall, and F-measure. The formulas are
defined as

Accuracy =
1
N

N

∑
i=1

TP(i) + TN(i)
TP(i) + TN(i) + FP(i) + FN(i)

, (11)

Precision =
1
N

N

∑
i=1

TP(i)
TP(i) + FP(i)

, (12)

Recall =
1
N

N

∑
i=1

TP(i)
TP(i) + FN(i)

, (13)
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F−measure =
2× Precision× Recall

Precision + Recall
. (14)

where TP(i) and FP(i) are numbers of true and false positive pixels in frame i. TN(i) and
FN(i) are numbers of true and false negative pixels in frame i. N is the total number of
frames of the experiment. Table 3 lists the measure results of the performance of these
nine approaches.

Table 3. Comparison of performance in different approaches.

Accuracy Precision Recall F-Measure

SSD 0.9927 0.1086 0.1154 0.1119

NCC 0.9930 0.1325 0.1468 0.1393

CCH 0.9940 0.2324 0.2694 0.2496

CI 0.9968 0.5072 0.7309 0.5988

BBS 0.9941 0.2717 0.2902 0.2806

QATM 0.9968 0.5007 0.7406 0.5975

Siam R-CNN 0.9969 0.5190 0.8399 0.6416

ABC 0.9955 0.3794 0.6285 0.4732

ABC-ML 0.9969 0.5138 0.8592 0.6431

The ABC-ML approach demonstrated the best overall performance among all
the approaches.

The computation cost of ABC-ML is calculated by using Visual Studio with OpenCV
4.4 library. For the hardware, a Windows 10 PC with a 2.2 GHz Intel Core i7-8750H CPU
is used without parallel processing or GPU acceleration. A reference image with the size
of 50× 50 pixels was searched or matched pixel-wise in a scene. The size of the scene is
100× 100 pixels. After searching, we obtained the entire computation cost which is 0.1865 s
by the OpenCV timing function and 0.1866 s by the QueryPerformanceCounter function.

6. Conclusions

We propose a simple multiple-layered structure to improve the ABC method. ABC-
ML learnt the color location information for robust and precise matching or tracking.
The isotonic principle was used to control and define the structure of the three layers.
Matching was performed using our proposed ABC approach. The original color histogram
was decomposed into apparent and absent color histograms using threshold hT. Absent
colors, which are minor or nonexistent colors, are described to enhance distinguishability,
especially for similar objects. The concept of the multiple-layered model provides strong
support for overcoming the disadvantages of offset problems in color histogram-based
approaches. The experimental results tested on real-world images and open data showed a
high discrimination ability and robustness even under difficult conditions. The multiple-
layered model can be extended to other application domains to roughly provide the position
information and reduce the algorithm complexity.
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