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Abstract: The recognition of warheads in the target cloud of the ballistic midcourse phase remains a
challenging issue for missile defense systems. Considering factors such as the differing dimensions
of the features between sensors and the different recognition credibility of each sensor, this paper
proposes a weighted decision-level fusion architecture to take advantage of data from multiple radar
sensors, and an online feature reliability evaluation method is also used to comprehensively generate
sensor weight coefficients. The weighted decision-level fusion method can overcome the deficiency of
a single sensor and enhance the recognition rate for warheads in the midcourse phase by considering
the changes in the reliability of the sensor’s performance caused by the influence of the environment,
location, and other factors during observation. Based on the simulation dataset, the experiment
was carried out with multiple sensors and multiple bandwidths, and the results showed that the
proposed model could work well with various classifiers involving traditional learning algorithms
and ensemble learning algorithms.

Keywords: ballistic missile defense; target classification; multi-sensor data fusion; online feature
evaluation; weighted decision-level fusion

1. Introduction

All ballistic missiles follow a common trajectory from launch to impact, which is
divided into three phases: boost, midcourse, and terminal. Each phase has a different
level of difficulty in implementing an intercept. It is hard to intercept in the boost phase
as the interceptor is required to be inside the attack range within a few minutes while
the missile engines are firing. The defensive technologies used in the terminal phase are
usually the easiest to build because they require only short-range missiles and radars,
but the main disadvantage of terminal attacks is that there may not be enough time to
schedule all interceptions when countering many large-scale attacks. The midcourse phase
represents the majority of the flight time of a ballistic missile, from minutes to the better
part of an hour, depending on the range of the missile. The midcourse phase provides the
best opportunity to intercept an incoming warhead and gives the defense system more
time to observe and discriminate countermeasures from the targets.

The efficient identification of a true warhead is a prerequisite for accurate interception
by defense systems. With the increasingly complex battlefield environment, the mature
application of warhead attitude control technology, and the development of hypersonic
weapons, traditional ballistic missile defense systems face great challenges. Modern high-
tech warfare can be regarded as information warfare. When using multi-source information
to describe all aspects of an incoming target, the defense system can identify the target
more accurately, and more reliably [1,2].

Multi-sensor data fusion technology for target recognition can be represented at three
different levels ([3], pp. 51–56): signal-level fusion, feature-level fusion, and decision-
level fusion.
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Fusion at the signal-level applies a combination operator to each set of registered
pixels, which correspond to associated measurements from each sensor. The merged
signal has a higher quality than the original source. Then, feature extraction and pattern
classification are performed to achieve target identification [4–6]. In feature-level fusion,
the measurement signals of each sensor are first converted to the original source features
and then merged as a new feature to classify the target. Classification of the merged feature
is essentially a general pattern recognition problem [7,8]. Decision-level fusion involves
performing signal preprocessing, feature extraction, and pattern classification locally and
then establishing a preliminary conclusion about the observed target. The fusion center
combines the recognition results from each sensor to obtain the final ballistic target identity
description [1,9–11].

Generally, signal-level fusion requires a wide communication bandwidth if sensors are
located on different platforms. Feature-level fusion can synthesize homogeneous or hetero-
geneous sensors, and the dimensionality of the merged feature is generally relatively high,
which leads to difficulties in the subsequent pattern classification. The decision-level fusion
structure has low communication bandwidth requirements and can asynchronously process
echo signals, which makes it more appropriate for complex ballistic missile problems.

However, most of the research on multi-sensor fusion for ballistic target recognition
ignores a critical problem; that is, the quality of the target echo signal is influenced by
the environmental working methods, the physical factors, etc. The quality of echo sig-
nals of the same target received by the same radar sensor at different times may be quite
different. For a new target, it is necessary to know how reliable the online feature pro-
vided by the sensor is and how credible the output of each sensor classifier is. Therefore,
proper dynamic reliability and credibility evaluation methods are helpful in improving
recognition performance.

This paper considers the following two factors of the ballistic target classification
problem in the midcourse phase: (1) each radar sensor has different working modes and
signal resolutions, and (2) each sensor has different weights at each process time. Therefore,
a weighted decision-level fusion architecture is proposed to take advantage of data from
multiple radar sensors, for which an online feature reliability evaluation method is used to
comprehensively generate sensor weight coefficients.

The remainder of this paper is organized as follows. Section 2 introduces the back-
ground knowledge on the characteristics of ballistic missiles and radar observation for
the recognition of a ballistic target. Sections 3 and 4 provide a novel reliability evaluation
algorithm and the proposed architecture. Section 5 illustrates the results of the experiment.
Section 6 provides the discussion and summary.

2. Radar Network System for Ballistic Target Classification

This section primarily describes the flight characteristics of ballistic targets and the
characteristics’ wide-band and narrow-band radar observation signals. It then introduces
the radar echo signal simulation method to prepare data for the subsequent multi-sensor
fusion target classification research.

2.1. Ballistic Target Characteristics

Figure 1 shows the general characteristics of ballistic missile flight, where the launch
of the threat missile is detected by forward-based radars at (1), the threat missile releases its
warhead and decoys at (2), the ground-based radar begins tracking the targets at (3), and
discrimination radars observe the targets to try to determine which object is the warhead
at (4).
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Figure 1. The scenario for a ballistic missile defense system includes a complex, global network of 
components. (1) The launch of the threat missile is detected by forward-based radars, (2) the threat 
missile releases its warhead and decoys, (3) the ground-based radar begins tracking the targets, (4) 
discrimination radars observe the target to try to determine which object is the warhead. The red 
dashed box highlights the specific functions that are addressed in this paper. 

Targets released by missiles in the midcourse phase follow the ballistic trajectory but 
have special micro-motion characteristics. Warheads and decoys move with precession 
motion due to the separation disturbance and retain this motion until they re-enter the 
atmosphere [12]. Compared to warheads and decoys, debris is lighter in weight and 
generally tumbles due to gravity and because of the absence of a spinning motor.  

Figure 2a illustrates a typical cone target with precession, where the precession mo-
tion can be viewed as a combination of two types of rotational motion: spinning of the 
target around its symmetry axis and conical rotation, such that the symmetry axis rotates 
conically around the precession axis. Cylinder debris tumbles around the precession axis 
illustrated in Figure 2b. The object micro-motion can be modelled by these parameters: 
spin frequency 𝜔 , precession frequency 𝜔 , tumbling frequency 𝜔 , and nutation angle 𝜃, which serve as a vital theoretical basis to distinguish different types of micro-motions. 
Chen [13] and Liu [14] give a more detailed mathematical analysis of the micro-motion of 
ballistic targets. 
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Figure 2. Micro-motion model of ballistic target: (a) precession motion; (b) tumbling motion. 

2.2. Radar Observation 
Radar systems used for ballistic target recognition usually comprise low-resolution 

radars and high-resolution imaging radars. They have different advantages and com-
plementary resources. Low-resolution radar can obtain radar cross section (RCS) time 
series, target polarization information, and micro-Doppler information [15]; these signals 

Figure 1. The scenario for a ballistic missile defense system includes a complex, global network
of components. (1) The launch of the threat missile is detected by forward-based radars, (2) the
threat missile releases its warhead and decoys, (3) the ground-based radar begins tracking the targets,
(4) discrimination radars observe the target to try to determine which object is the warhead. The red
dashed box highlights the specific functions that are addressed in this paper.

Targets released by missiles in the midcourse phase follow the ballistic trajectory but
have special micro-motion characteristics. Warheads and decoys move with precession
motion due to the separation disturbance and retain this motion until they re-enter the
atmosphere [12]. Compared to warheads and decoys, debris is lighter in weight and
generally tumbles due to gravity and because of the absence of a spinning motor.

Figure 2a illustrates a typical cone target with precession, where the precession motion
can be viewed as a combination of two types of rotational motion: spinning of the target
around its symmetry axis and conical rotation, such that the symmetry axis rotates conically
around the precession axis. Cylinder debris tumbles around the precession axis illustrated
in Figure 2b. The object micro-motion can be modelled by these parameters: spin frequency
ωs, precession frequency ωp, tumbling frequency ωt, and nutation angle θ, which serve
as a vital theoretical basis to distinguish different types of micro-motions. Chen [13] and
Liu [14] give a more detailed mathematical analysis of the micro-motion of ballistic targets.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 1. The scenario for a ballistic missile defense system includes a complex, global network of 
components. (1) The launch of the threat missile is detected by forward-based radars, (2) the threat 
missile releases its warhead and decoys, (3) the ground-based radar begins tracking the targets, (4) 
discrimination radars observe the target to try to determine which object is the warhead. The red 
dashed box highlights the specific functions that are addressed in this paper. 

Targets released by missiles in the midcourse phase follow the ballistic trajectory but 
have special micro-motion characteristics. Warheads and decoys move with precession 
motion due to the separation disturbance and retain this motion until they re-enter the 
atmosphere [12]. Compared to warheads and decoys, debris is lighter in weight and 
generally tumbles due to gravity and because of the absence of a spinning motor.  

Figure 2a illustrates a typical cone target with precession, where the precession mo-
tion can be viewed as a combination of two types of rotational motion: spinning of the 
target around its symmetry axis and conical rotation, such that the symmetry axis rotates 
conically around the precession axis. Cylinder debris tumbles around the precession axis 
illustrated in Figure 2b. The object micro-motion can be modelled by these parameters: 
spin frequency 𝜔 , precession frequency 𝜔 , tumbling frequency 𝜔 , and nutation angle 𝜃, which serve as a vital theoretical basis to distinguish different types of micro-motions. 
Chen [13] and Liu [14] give a more detailed mathematical analysis of the micro-motion of 
ballistic targets. 

  
(a) (b) 

Figure 2. Micro-motion model of ballistic target: (a) precession motion; (b) tumbling motion. 

2.2. Radar Observation 
Radar systems used for ballistic target recognition usually comprise low-resolution 

radars and high-resolution imaging radars. They have different advantages and com-
plementary resources. Low-resolution radar can obtain radar cross section (RCS) time 
series, target polarization information, and micro-Doppler information [15]; these signals 

Figure 2. Micro-motion model of ballistic target: (a) precession motion; (b) tumbling motion.

2.2. Radar Observation

Radar systems used for ballistic target recognition usually comprise low-resolution
radars and high-resolution imaging radars. They have different advantages and comple-
mentary resources. Low-resolution radar can obtain radar cross section (RCS) time series,
target polarization information, and micro-Doppler information [15]; these signals have
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good real-time recognition performance, but it is difficult to extract the fine features of
the target. High resolution radar can achieve more accurate measurement of target struc-
ture and micro-motion information, but it is expensive and requires extensive processing
resources. This study utilized RCS time series and high-resolution range profile (HRRP)
time sequences.

2.2.1. RCS Time Series

RCS measurement is affected by factors such as scattering properties and the attitude
of the target. For a given target, the value of the monostatic RCS is related to the incident
wavelength and the observation angle, so the RCS can be defined as σ( f , ϕ, θ), where f is
the frequency of the incident wave, ϕ is the elevation angle, and θ is the aspect angle [16].
Here, the aspect angle of the target is set as a constant value of θ0, so the RCS becomes
σ( f , ϕ)θ0

. Three typical metal ballistic targets, shown in Figure 3, are considered here: cone,
cone plus cylinder, and cylinder. Setting the frequency of the incident wave as 3 GHz
and θ0 as 90

◦
, the scattering characteristics for different ϕ values for the three targets can

be calculated with the Feldberechnung bei Körpern mit Beliebiger Oberfläch (FEKO), as
shown in Figure 4. Considering ϕ ∈

[
50
◦
, 80

◦]
, the usual range of observation of a defense

radar, the RCS of the cylinder is the largest and the RCSs for the cone and the cone plus
cylinder are similar, but the fluctuations in the RCS of the cone plus cylinder are more
obvious than those of the cone.
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Figure 3. Sketch of three typical metal target models: (a) cone; (b) cone plus cylinder; (c) cylinder.
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Figure 4. The full attitude-angle static RCS for ϕ ∈ [0◦, 180◦ ]: (a) static RCS of cone; (b) static RCS of
cone plus cylinder; (c) static RCS of cylinder.

2.2.2. HRRP Sequences

HRRP is the sum of the projection vector of the sub-echo of the target scattering point
along the radar line of sight (RLOS). When the bandwidth of the radar is so large that the
distance resolution of the radar is much smaller than the size of the target, the equivalent
scattering centers of the target are separated in the RLOS. It contains information on the
structure, size, and shape of the target. It is important to effectively acquire and use this
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information in the field of ballistic target recognition. In addition, HRRP can also be used
to extract the target radial length feature.

HRRP can be obtained by inversely Fourier-transforming the frequency of the target,
which can be written as:

X( f ) =
K

∑
k=1

Bke−j 4πRk
c f (1)

where f is the frequency, c is the speed of light, K is the number of scattering points on the
target, and Bk and Rk are, respectively, the amplitude of the kth scattering point and the
range between the kth scattering point and the observation radar at a certain time. Setting
the radar center frequency f0 as 9.5 GHz, the frequency step ∆ f as 15.625 MHz, and the
range sample number N as 64, the number of visible scattering points varies with the radar
line of sight for the three targets, as shown in Figure 5, where the cylinder has the highest
number of visible scatter points and the cone has the smallest in ϕ ∈

[
50
◦
, 80

◦]
.
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2.3. Radar Echo Signal Generation

The generation of radar echo signals by the scheme is depicted in Figure 6. It begins
with three basic components: the object 3D model, the ballistic missile trajectory, and the
object micro-motion. The details of the process are introduced below.
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Figure 6. Flowchart for radar echo signal simulation.

The typical types of ballistic targets in the midcourse phase are warheads, decoys,
and debris. The 3D models shown in Figure 3 are used to represent these targets. The
monostatic RCSs at the different carrier frequencies of the targets was computed with
FEKO software.
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The ballistic trajectory was formulated using the Systems Tool Kit (STK). The STK
establishes the missile launch scene. The missile is launched from point A (44, 60) and lands
at point B (110, 42). Five radars are located along the trajectory to observe the targets, and
their positions are R1 (85,45), R2 (95,45), R3 (94,45), R4 (85,40), and R5 (95,40), respectively.
The types of radar and the pulse repetition frequency (PRF) are shown in Table 1, including
two narrowband radars and three wideband radars. Figure 7a illustrates the simulation
ballistic missile trajectory, with radars measuring the ballistic target from 540 s to 820 s after
its launch, as shown with the red bold line. The five radars’ observation angles as functions
of the time sequence are shown in Figure 7b.

Table 1. Ground-based radar net parameters.

Radar Work Type Prf, Hz Window Length, s

R1 Narrowband radar,
carrier frequncy: 3 GHz 1 10

R2 Narrowband radar,
carrier frequncy: 1.5 GHz 500 2

R3

Wideband radar,
center frequency: 10.5 GHz,

bandwidth: 1 GHz
frequency interval: 15.625 MHz

1 10

R4

Wideband radar,
center frequency: 10.5 GHz,

bandwidth: 1 GHz
frequency interval: 15.625 MHz

10 4

R5

Wideband radar,
center frequency: 10.5 GHz,

bandwidth: 1 GHz
frequency interval: 15.625 MHz
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Figure 7. Ballistic missile trajectory and radar network simulation data: (a) model of ballistic missile
trajectory; (b) multiple radar observation angle sequence.

From practical experience, the nutation angle of the warhead is small due to attitude
control, and the precession axis is often the reentry direction. In contrast, the nutation
angle of the decoy is large. Debris usually presents a tumbling motion. Therefore, eight
targets with various types and micro-motions were simulated and classified as four kinds
according to the motion characteristics of the ballistic target, as shown in Table 2.
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Table 2. Target micro-motion parameters.

Class 3D Model Type ωs, Hz ωp, Hz θ, deg

Warhead
Cone 3 1.5 5

Cone plus cylinder 3 2 8

Heavy decoy
Cone 3 1.5 10

Cone plus cylinder 3 1.5 12

Light decoy
Cone 3 2 15

Cone plus cylinder 3 1.8 20

Debris
Cylinder Tumbling : ωt = 2 Hz 90

Cylinder Tumbling : ωt = 4 Hz 90

The target attitude time series can be obtained from the missile trajectory and target
micro-motion using STK simulation. Then, theoretical echo signals can be obtained by
combining the attitude time series and electromagnetic calculation results. Finally, complex
white Gaussian noise with an SNR of 12 dB can be added to the theoretical radar echo
signals to obtain the radar observation echo signals.

3. A Novel Online Feature Reliability Evaluation Based on Dependence

As is well known, the quality of the echo signal received by the radar changes in a
real-world online environment, and these constraints and correlations that exist in the
physical world can be seen as dependencies. Therefore, Bayes’ theorem can be used to
establish a dependence measure, which can automatically adjust to various conditions and
track the characteristics of a dynamic system for ballistic target classification.

For an input feature vector x of a newly arriving target, the online feature reliability is
denoted as

rn(x) = p(c(x) = θp
∣∣ĉ(x) = θp) (2)

which expresses the conditional probability that x potentially belongs to the class θp when
it is classified to the class θp by the radar’s classifier Mn. c(x) = θp denotes the true class of
x, and ĉ(x) represents the predicted class declared by Mn.

Training information is used to measure rn(x). The neighborhood patterns of x in the
training feature space χn generally have close attribute values. The k-nearest neighbors of x
(xk, k = 1, · · · , K) are found first in the training feature space χn according to the Euclidean
distance. p(c(x) = θp

∣∣xk) is used to expresses the probability that sample xk comes from
the class θp and is obtained through following dependence formula:

p
(
θp
∣∣θj
)
=

K

∑
k=1

p(c(xk) = θp
∣∣xk)p(xk

∣∣θj) (3)

where the conditional probability p(xk
∣∣θj) is the probability of the neighbor sample xk when

drawn from the class θj. When the item xk is regarded as a random variable, Equation (3) is
written as a multiplication between a coefficient matrix A and a vector y:

Ay = b (4)

where A is a C× K matrix,

A =

 p(x1
∣∣θj) · · · p(xK|θ1)

...
. . .

...
p(x1|θC) · · · p(xK|θC)

 (5)
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and b is a C× 1 column vector containing the right sides of the conditional probability:

b =
[
p
(
θp
∣∣θ1
)
· · · p

(
θp
∣∣θC
)]T (6)

and
y =

[
p
(
θp
∣∣x1
)
· · · p

(
θp
∣∣xK
)]T (7)

Depending on K unknown variables and K equations, solutions to the normal system
of linear equations can be found as follows:

y = A−1b (8)

Finally, the online feature reliability rn(x) is obtained by calculating the mean of K
dependence probabilities:

rn(x) = p
(

c(x) = θp
∣∣x) = 1

K

K

∑
k=1

p(θp
∣∣xk) (9)

Supposing that the training data of each class fits a Gaussian distribution, the neighbor
sample xk is assigned to a class θj only with its intensity level, and the conditional density
function is defined by:

p(xk
∣∣θj) =

1

(2π)
d
2
∣∣εj
∣∣ 1

2
× exp

(
−1

2
(
xk − uj

)T
ε−1

j
(
xk − uj

))
(10)

where uj and εj are, respectively, the mean d-vector and the d × d covariance matrix
associated with θj (d is the dimension of the feature vector). The elements p

(
θp
∣∣θj
)

of b
represent a conditional probability obtained through the confusion matrix of the classifier
Mn, which can be regarded as expert experience.

p
(
θp
∣∣θj
)
=

qpj

∑C
i=1 qij

(11)

where the element qpj represents the number of samples that classifier Mn predicts for the
class θp in relation to the class θj.

4. Proposed Multi-Sensor Fusion Architecture for Ballistic Target Classification

The workflow of the proposed multi-sensor fusion architecture is described in Figure 8,
and it comprises five stages as follows:

(a) Observation. This stage involves the collection of measured signals from the radar
network, such as the RCS time series and the HRRP time sequence, in which the
ballistic missile observation network is supposed to be comprised of N radars, i.e.,
S = {S1, · · · , SN}.

(b) Signal preprocessing. At this stage, the radar echo signal is processed using feature
extraction, and relatively stable and highly separable features are selected for identifi-
cation. The intuition behind the signal preprocessing is to extract key signal features
that depict the target details. In the proposed architecture, two measurement signals
are mainly considered: the RCS time series and the HRRP time series. The RCS time
series contains the following target characteristic information: (1) location characteris-
tics, which describe the average location and specific location of the target RCS, such
as the mean, quantile, minimum, and maximum; (2) dispersion characteristics, which
indicate the dispersion of the target RCS sequence across the entire real number axis,
such as the variance and standard deviation, standard mean deviation, and coefficient
of variation; (3) distribution characteristics, such as the standard skewness coefficient
and the standard kurtosis coefficient. HRRP sequences contain information about the



Sensors 2022, 22, 6649 9 of 18

structure, size, and shape of the target. It is important to effectively acquire and use
this information in the field of ballistic target recognition. The use of HRRPs can make
it possible to not only extract features, such as target distance and speed, but can also
obtain target features, such as the number, position, and scattering intensity of the
target. In addition, HRRPs can also be used to extract the target radial length feature.
The features of the original signal extracted from the raw signal can be expressed as
A1, · · · , Adn , where dn is the total number of the features of the sensor Sn.

(c) Feature transformation. At this stage, the signal features of each sensor are merged
into a long vector. The dimension of the long feature vector is the sum of the data
dimensions of the original signal features. Feature transformation reduces the impact
of the high-dimensional feature space by removing redundant and irrelevant features.
Principal component analysis (PCA), independent component analysis (ICA), and
linear discriminant analysis (LDA) are popular methods for feature transformation.
The transformation method is used for the radar signal feature vector of the radar Sn,
and result is a new feature vector F′s =

[
f1 · · · fd′n

]
.

(d) BPA generation using trained classifier and sensor weight evaluation. At this stage,
each piece of information extracted from the sensor is modeled as a basic probability
assignment (BPA). The BPAs are generated based on the output of the trained classifier.
Online feature quality evaluation and dynamic sensor credibility evaluation are used
to obtain a comprehensive weight, which is used to modify the BPA of each sensor.

(e) Weighted decision-level fusion. At this stage, weighted decisions are made.
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Figure 8. The workflow of our proposed multi-sensor fusion architecture for ballistic target
classification.

More details about stage (d) and stage (e) are introduced in the following section.

4.1. BPA Generation Using Trained Classifier

There are many mathematical theories available to represent the imperfection of data,
such as Bayesian probability theory [17], fuzzy set theory [18], or belief function theory [19].
Most of these approaches can represent specific aspects of imperfect data. For example,
probabilistic methods rely on probability distribution functions to express the uncertainty
of the data. Fuzzy set theory introduces the novel notion of partial set membership, which
enables imprecise reasoning. Belief function theory is a popular method for dealing with
uncertainty and imprecision with a theoretically evidential reasoning framework.

In our work, belief function theory is exploited to construct the evidence given by each
radar because of its advantages in being able to separate the two sources of uncertainty
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and its fairly simple modeling of doubt and lack of information. Let Θ = {θ1, · · · , θC}
represent the frame of discernment. The elements of the power set 2Θ = {H|H ⊆ Θ} are
called hypotheses. A basic probability assignment (BPA) defines a belief function m from
2Θ → [0, 1] , satisfying:

m(∅) = 0 (12)

∑
H⊆Θ

m(H) = 1 (13)

where ∅ denotes an empty set and H is any subset of Θ. The value taken by the BPA at H is
called the basic probability mass and represents the accurate trust degree for the evidence
for H in the recognition framework.

The sensor’s BPA is constructed from the likelihood of different classes of the output
of Mn. Let x = F′s be the input feature vector of the trained classifier Mn, and the output of
the classifier is the posterior probabilities µn

i (x), i = 1, · · · , C for each possible class.
The µn

i (x) ∈ [0, 1] represents the degree to which x belongs to the class θi according to
the classifier Mn. Then, the likelihood value for each hypothesis under the framework Θ is
defined by:

ln(θi) = µn
i (x) (14)

and the likelihood of the unknown (the universal) set Ω is determined by:

ln(Ω) = 1−max(ln(θi)) (15)

We can normalize every likelihood to obtain the BPA:

mn(θi) =
ln(θi)

ln(θ1)+, · · · ,+ln(θC) + ln(Ω)
(16)

mn(Ω) =
ln(Ω)

ln(θ1)+, · · · ,+ln(θC) + ln(Ω)
(17)

where mn(Ω) captures the total ignorant information about the classification undertaken
by the classifier Mn and plays a neutral role in the combination with the output of
other classifiers.

4.2. Dynamic Sensor Weight Evaluation

Here, the online feature reliability and sensor credibility from the classifier perfor-
mance are employed to determine the weights used in the given scenario. For an input
feature vector x of a newly arriving target, each sensor obtains two reliability values:
(1) rn(x), the reliability of the online feature; and (2) βn, the credibility of the sensor.

The credibility of sensors is evaluated based on the degree of support between the
basic probability assignments (BPAs) provided by sensors. We used the evaluation method
proposed by Yong [20]. The sensor weight obtained after combining the two values is:

vn = rn(x)× βn (18)

and it is then normalized by:

wn =
vn

∑N
i=1 vi

(19)

4.3. Weighted Decision-Level Fusion

There are several decision-level fusion techniques, such as voting, weighted decision,
Bayesian inference, the Dempster–Shafer method, generalized evidential processing the-
ory, etc. The selection of an appropriate fusion strategy depends mainly on the output
formats of the classifier. The purpose of this section is to obtain m f used using a variety of
fusion techniques.
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4.3.1. Dempster–Shafer

The Dempster–Shafer method enables the fusion of several sources using the Dempster
combination operator. Given two distinct BPAs in the set Θ, the aggregation can be achieved
using the conjunctive combination rule [21]:

m(H) = m1(H)⊕m2(H) =
1
K ∑

A∩B=H
m1(A)m2(B) ∀A, B ⊆ Θ (20)

K is defined by:
K = 1− ∑

A∩B=∅
m1(A)m2(B) (21)

The normalization coefficient K evaluates the conflict between m1 and m2. The fused
BPA m f used can be obtained by using Equation (20) to fuse the weighted BPAs of each sensor
(N − 1) times.

4.3.2. Bayesian Inference

The Bayesian fusion structure uses a priori information on the probability that a
hypothesis exists and the likelihood that a sensor can classify the data to the correct
hypothesis [22]. The inputs to the structure are (1) p

(
θj
)
, a prior probability that the object

θj exists; (2) p(Dn,i
∣∣θj) , the likelihood that each sensor Sn will classify the data as belonging

to any one of the C hypotheses; and (3) Dn, the input decision from the nth sensor.
In accordance with the independence assumption, the estimated probability for the

true class label θj can be calculated by

p
(

D
∣∣θj
)
= p

(
D1, · · ·DN

∣∣θj
)
=

N

∏
n=1

p
(

Dn
∣∣θj
)

(22)

Denote by p(Dn) the probability that the nth classifier labels x in the class Dn ∈ Θ.
N is the number of sensors and C is the number of classes, where D = [D1 · · ·DN ] denotes
the vector that generates the label of the ensemble. Then, the posterior probability needed
to label x is

p(θj
∣∣D) =

p
(
θj
)

p
(
D
∣∣θj
)

p(D)
(23)

The denominator does not depend on θj and can be ignored, so the final support for
class θj is

m f used
(
θj
)
= p(θj

∣∣D) ∝ p
(
θj
) N

∏
n=1

p
(

Dn
∣∣θj
)

(24)

For each sensor’s classifier model, a C× C confusion matrix CMn is calculated from
the testing dataset. cmn

k,s is the number of elements in the dataset whose true class label is
θk and which is assigned by the classifier to class θs. We denote ck as the total number of
elements in the dataset from class θk. Then,

p(Dn|θk) =
cmn

k,s

ck
(25)

and prior knowledge p(θk) can be regarded as equal when unknown. Considering the
sensor weight, the final support for class θk is

m f used
(
θj
)

∝
N

∏
n=1

wn
cmn

k,s

ck
(26)
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4.3.3. Majority Vote

Voting is the simplest method and involves just counting the number of decisions for
each class and assigning the object to the class that obtains the highest number of votes.
The weighted voting fusion structure is described by:

m f used
(
θj
)
=

N

∑
n=1

[
wnmn(θj

)
+

wnmn(Ω)

C

]
(27)

4.3.4. Winner Takes All

The output of the most reliable sensor is taken as the judgment output:

wk = arg max
n=1,··· ,N

wn (28)

m f used = mk (29)

4.4. Final Decision

A probability function must be constructed from the mass functions to make the final
decision; that is, the one that maximizes the expected utility. The Pignistic transforma-
tion [23] is used and defined by

BetP(H) = ∑
A⊆Θ

|H ∩ A|
|A|

m f used(A)

1−m f used(∅)
∀H ⊆ Θ (30)

where |H ∩ A| is the cardinality of set |H|. Given m f used(∅) = 0 and θ1, · · · , θC ⊆ Θ,
BetP(H) can be expressed as follows:

BetP({θ}) = ∑
θ⊆B

m f used(B)
|B| B ⊆ Θ (31)

and the unknown target for the class with the highest Pignistic probability can be obtained
as follows:

A∗ = arg max
θ⊆Θ

BetP({θ}) (32)

5. Experimental Results

The proposed architecture was tested on a simulation dataset. Through the progressive
simulation described in Section 2.3, a ballistic missile dataset with four types of ballistic
targets measured by five radars was obtained. In this section, the experiment parameters
and the results are described.

5.1. Experiment Setup

Firstly, the midcourse echo signal of the target was recorded over 280 s. Then, the
records of each radar were sliced to form the signal samples, and the signal slicing window
sizes are shown in Table 1 with a window step size of 1 s. Finally, the available datasets were
randomly divided into training sets (four out of five of all the datasets) and a testing set (the
remaining dataset). It is worth noting that each data splitting operation was synchronized
for the five radars.

The signal features of each radar are shown in Table 3. In the feature transformation
stage, PCA and ICA were exploited separately. In pattern classification, traditional learning
algorithms and ensemble learning algorithms are applied to verify the adaptability of the
proposed model. Traditional learning algorithms include decision tree (DT), k-nearest
neighbor (kNN), and Gaussian naïve Bayes (NB) algorithms. Ensemble learning algorithms
include bagging, random forest bagging (RFB), adaptive boosting for multiclass classifica-
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tion (AdaBoostM2), random subspace boosting (RSB), stacking, and linear programming
boosting (LPB) algorithms. The classifiers’ output is a probabilistic score for each hypoth-
esis class for an unknown object. In the experiment, the class scores from the stacking
classifier are calculated using Equation (11), that is, the confusion matrix of the classifier is
used to calculate the posterior probability of the target. The target scores of other classifiers
are given by their respective classifiers. When the target score is obtained, the BPA of each
sensor is calculated according to Equations (16) and (17).

Table 3. List of radar signal features.

Radar Signal Type Signal Feature Total

R1 RCS time series

Mean, standard deviation, kurtosis,
skewness, second-order central moment,

third-order central moment, range, energy
spectrum entropy, coefficient of variation,

standard mean difference

10

R2 RCS time series

Mean, standard deviation, kurtosis,
skewness, second-order central moment,

third-order central moment, range, energy
spectrum entropy, coefficient of variation,

standard mean difference, period

11

R3 HRRP time series

Number of scattering points, skewness,
target length, SVD principal component,
entropy, echo power, irregularity, length

change range, length change period

9

R4 HRRP time series

Number of scattering points, skewness,
target length, SVD principal component,
entropy, echo power, irregularity, length

change range, length change period,
precession frequency

10

R5 HRRP time series

Number of scattering points, skewness,
target length, SVD principal component,
entropy, echo power, irregularity, length

change range, length change period,
precession frequency

10

Due to the balanced sample size of each class in our simulation dataset, model perfor-
mance was evaluated using the mean of the accuracy and the F1-score.

5.2. Accuracy of the Weighted Decision-Level Fusion Model

Table 4 shows the classification accuracy of the multi-sensor weighted decision-level
fusion model, which uses the PCA method in the feature transformation stage. The result
for a single sensor was obtained by directly inputting the transformed feature vector into
the classifier. When comparing the five single sensors, R1 had the worst classification
performance, while R2 had the best performance. Compared to R2, DS, BAYES, MV, and
WTA, the average accuracy rates of the four fusion strategies increased by 4.43%, 8.46%,
8.23%, and 3.75%, respectively.

Table 5 shows the classification accuracy of the fusion model with the ICA method in
the feature transformation stage. After weighted decision-level fusion, compared to R2,
which had the best performance, the average accuracy rates of the four fusion strategies
DS, BAYES, MV and WTA increased by 0.69%, 4.24%, 4.07%, and 0.32%, respectively.
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Table 4. Mean accuracy of independent sensor and fusion model with PCA (in %).

Classifier
Single Sensor Proposed Fusion Model

R1 R2 R3 R4 R5 MDS MBAYES MMV MWTA

DT 66.52 89.51 77.23 83.71 83.71 79.02 95.76 96.43 94.87
kNN 68.53 89.29 83.71 86.38 81.7 94.87 97.99 98.88 95.09
NB 64.06 69.87 64.51 62.72 69.42 80.8 91.52 88.62 75.45

Bagging 73.88 91.07 85.94 87.95 90.18 98.88 97.99 99.55 95.54
RFB 75.89 91.07 83.71 89.06 90.18 98.88 98.21 99.11 96.88

AdaBoostM2 59.38 75.67 49.55 63.39 72.32 84.82 94.42 89.06 79.69
LPB 66.96 99.55 87.05 93.97 97.54 99.78 100 100 98.66
RSB 66.96 95.76 69.87 72.1 92.63 98.21 95.98 98.21 94.42

Stacking 67.19 91.96 81.47 89.73 83.04 97.54 97.99 97.99 96.88

Average 67.71 88.19 75.89 81 84.52 92.53 96.65 96.43 91.94

Table 5. Mean accuracy of independent sensor and fusion model with ICA (in %).

Classifier
Single Sensor Proposed Fusion Model

R1 R2 R3 R4 R5 MDS MBAYES MMV MWTA

DT 67.19 92.19 82.81 84.15 89.73 78.35 97.1 98.44 97.54
kNN 66.29 98.66 89.06 89.96 91.52 96.88 99.78 99.55 98.44
NB 60.94 80.36 65.18 72.77 85.04 88.84 95.09 95.54 85.49

Bagging 73.44 96.88 85.94 91.07 92.41 99.78 98.66 99.55 97.32
RFB 75.45 99.11 89.51 91.96 90.85 100 98.88 99.78 98.21

AdaBoostM2 58.04 87.05 60.27 73.44 82.81 84.82 96.21 85.04 89.51
LPB 52.9 98.44 78.57 76.34 86.61 99.33 97.32 99.78 93.75
RSB 56.92 86.61 73.21 63.84 83.93 96.65 93.3 97.54 75

Stacking 66.74 98.21 85.04 89.51 89.51 99.11 99.33 98.88 99.33

Average 64.21 93.06 78.84 81.45 88.05 93.75 97.3 97.12 92.73

5.3. F1-Scores of Classes

Table 6 shows the F1-scores of each class using the multi-sensor weighted decision-
level fusion method with the PCA method in the feature transformation stage. Compared
to R2, which had the best recognition performance, the F1-scores for the warheads increased
by 3.31%, 9.19%, 8.77%, and 0.46%, respectively, with the four fusion strategies DS, BAYES,
MV, and WTA.

Table 6. F1-scores of four classes in the proposed model with PCA (in %).

Classifier Class
Single Sensor Proposed Fusion Model

R1 R2 R3 R4 R5 MDS MBAYES MMV MWTA

DT

Warhead 47.75 86.32 75.21 68.49 72.17 69.59 92.64 93.33 92.04
Heavy decoy 72.25 80.36 70.39 80.53 85.58 78.76 93.58 96.33 92.24
Light decoy 64.6 92.45 65.7 85.46 77.53 75.79 96.86 96.07 95.15

Debris 81.45 99.11 97.3 100 100 94.93 100 100 100

kNN

Warhead 44.21 87.61 84.43 74.11 69.16 90.76 96.43 97.78 92.73
Heavy decoy 75.52 81.61 76.02 83.84 86.49 94.93 97.76 98.64 93.69
Light decoy 67.3 90.83 75 88.18 71.19 94.01 97.78 99.11 95.15

Debris 81.1 96.94 98.65 99.55 100 100 100 100 98.68

NB

Warhead 24.49 71.37 50.75 40.37 60.14 75.94 90.5 86.54 64.39
Heavy decoy 71.08 53.54 54.04 51.95 73.96 79.7 86.96 86.17 69.27
Light decoy 60.77 58.75 55.14 58.3 44.12 77.6 88.69 85.57 71.77

Debris 79.72 92.95 97.78 100 100 87.84 100 95.73 94.12
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Table 6. Cont.

Classifier Class
Single Sensor Proposed Fusion Model

R1 R2 R3 R4 R5 MDS MBAYES MMV MWTA

Bagging

Warhead 49 89.18 87.76 75.7 82.19 97.78 97.76 99.11 92.66
Heavy decoy 80.83 83.04 79.82 83.12 92.59 98.21 96.83 99.11 94.12
Light decoy 71.7 93.02 77.57 92.51 86.08 99.55 97.37 100 95.69

Debris 89.34 99.11 98.2 100 100 100 100 100 99.56

RFB

Warhead 57.71 89.47 84.17 77.93 82.51 98.21 97.35 98.2 95.02
Heavy decoy 79.17 83.33 75 84.62 92.66 99.11 96.83 99.11 95.54
Light decoy 74.77 92.52 76.99 93.33 85.71 98.21 98.67 99.11 97.35

Debris 88.8 99.11 98.2 100 100 100 100 100 99.56

AdaBoostM2

Warhead 15.38 67.23 3.36 55.98 65.09 80.19 92.05 86.27 58.39
Heavy decoy 63.93 50.59 48.12 24.64 90.74 78.23 90.65 82.35 78.07
Light decoy 56.72 86.42 50.68 61.78 6.78 81.69 94.98 88.26 87.74

Debris 78.85 90.32 96.04 100 100 99.55 100 100 88.19

LPB

Warhead 55.23 100 92.24 88.61 96.86 100 100 100 97.74
Heavy decoy 62.98 99.11 76.6 87.74 96.04 99.55 100 100 97.78
Light decoy 54.08 99.11 79.82 99.55 97.3 99.56 100 100 99.11

Debris 94.69 100 100 100 100 100 100 100 100

RSB

Warhead 47.78 96.83 68.07 57 91.74 98.65 97.3 98.65 94.27
Heavy decoy 67.46 91.7 61.73 66.08 91.89 96.4 92.17 96.4 92.58
Light decoy 61.69 94.59 51.61 64.71 87.07 97.8 94.55 97.8 92.02

Debris 83.65 100 95.2 100 100 100 100 100 98.68

Stacking

Warhead 44.55 90.21 81.39 79.64 71.86 96.86 96.89 97.32 95.15
Heavy decoy 72.73 84.16 72.46 84.21 85.58 95.54 96.83 96.43 96.43
Light decoy 70 93.52 74.26 95.07 75.22 97.78 98.23 98.21 95.93

Debris 79.82 100 97.74 100 100 100 100 100 100

Table 7 shows the fusion methods when using the ICA method in the feature trans-
formation stage. Compared to R2, the warhead F1-score was improved by 0.14%, 5.29%,
4.77%, and −3.29%, respectively, with the four fusion methods DS, BAYES, MV, and WTA.

Table 7. F1-scores of four classes in the proposed model with ICA (in %).

Classifier Class
Single Sensor Proposed Fusion Model

R1 R2 R3 R4 R5 MDS MBAYES MMV MWTA

DT

Warhead 49.06 88.45 84.75 71.36 86.22 68.06 95.81 97.78 96.89
Heavy decoy 70.74 82.76 72.25 76.39 86.73 74 95.15 97.3 95.45
Light decoy 67.62 97.25 75.6 88.5 85.97 78.76 97.39 98.67 97.8

Debris 79.18 100 98.21 100 100 95.81 100 100 100

k NN

Warhead 43.69 98.64 92.77 79.25 87.18 94.12 99.56 99.56 98.67
Heavy decoy 72.5 97.76 79.61 86.96 90.41 97.72 99.55 99.11 97.74
Light decoy 67.69 98.68 83.12 93.04 88.58 95.81 100 99.55 97.78

Debris 77.65 99.56 100 100 100 100 100 100 99.56

NB

Warhead 12.5 77.98 51.58 47.73 74.07 86.67 93.1 91.87 73.96
Heavy decoy 71.16 57.71 53.66 64.44 91.15 89.45 92.31 94.42 83.76
Light decoy 62.43 84.54 56.54 75.22 74.78 87.25 94.98 95.65 83.61

Debris 71.15 100 98.25 100 100 91.43 100 100 99.11

Bagging

Warhead 53.81 95.65 87.8 82.41 86.88 100 97.78 99.55 95.65
Heavy decoy 77.97 93.64 77.98 87.93 92.04 99.55 97.3 99.11 96.4
Light decoy 69.91 98.2 80 93.75 90.67 99.56 99.56 99.56 97.27

Debris 88.61 100 97.3 100 100 100 100 100 100
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Table 7. Cont.

Classifier Class
Single Sensor Proposed Fusion Model

R1 R2 R3 R4 R5 MDS MBAYES MMV MWTA

RFB

Warhead 53.47 98.18 89.54 83.64 82.95 100 97.82 99.55 96.52
Heavy decoy 81.36 98.25 82.51 86.84 93.09 100 97.72 99.56 96.8
Light decoy 75.68 100 86.12 97.32 87.39 100 100 100 99.55

Debris 88.14 100 99.56 100 100 100 100 100 100

AdaBoostM2

Warhead 14.06 81.75 60.93 39.74 65.06 79.45 95.58 80.37 84.16
Heavy decoy 63.79 71.84 21.52 63.29 90 73.39 92.31 73.39 84.08
Light decoy 63.59 94.39 50.64 79.57 74.13 88.35 96.89 87.8 90.99

Debris 67.71 100 96.46 100 100 99.55 100 100 98.68

LPB

Warhead 38.76 96.77 83.7 61.59 78.51 98.64 95.32 99.55 89.17
Heavy decoy 49.5 96.97 59.62 60.1 84.91 98.68 94.39 99.56 88.12
Light decoy 51.1 100 72.73 85.71 83.49 100 99.55 100 97.39

Debris 75.6 100 97.72 100 100 100 100 100 100

RSB

Warhead 37.62 83 72.1 51.14 78.51 95.15 93.02 96 56.25
Heavy decoy 62.34 73.43 59.26 51.16 86.49 95.5 88.31 96.83 72.2
Light decoy 53.39 90.57 67.94 65.79 71.22 95.96 92.04 97.35 79.85

Debris 71.07 99.11 91.6 85.47 98.68 100 100 100 83.58

Stacking

Warhead 46.85 99.1 87.22 78.7 83.76 98.65 99.11 98.21 98.67
Heavy decoy 73.68 96.52 77.48 85.71 88.48 98.65 98.64 98.2 99.1
Light decoy 69.03 97.27 77.88 93.1 85.97 99.56 99.56 99.11 99.56

Debris 77.27 100 97.74 100 100 99.56 100 100 100

In summary, Bayesian fusion rules in the four types of fusion algorithms showed
better performances; the reason may have been that the algorithm integrates the a priori
probability of each class. The winner takes all method was not as stable as other fusion
methods, and the reason may have been that it selects the output of the most reliable sensor
each time, but the classification effect of the sensor affects the final judgment.

The most significant contribution of this work is that the accuracy of the ballistic target
classification was increased by taking advantage of a combination of sensor data. Due
to differences in working bandwidth, carrier frequency, and data rate, radar recognition
performances can be quite distinct. As mentioned before, micro-motion feature extraction
is an important means to distinguish the real warhead from other targets in the ballistic
midcourse phase. It is easy to identify the debris, as it tumbles randomly and its motion
form is single. The real warhead and the decoy have similar shapes and similar motion
forms and, when only a single sensor observation is relied on, a certain degree of misjudg-
ment about the true warhead can occur, especially when the data rate is relatively low.
However, by using the comprehensive fusion model proposed in this study, it is obvious
that the advantages of the radar systems can complement each other. The proposed model
has good applicability, and it showed improved performances under different classification
algorithms, where the average accuracy rate increased in the range from 0.32% to 8.46%,
and the improvement in the F1-score for the warhead ranged from 0.14% up to 9.19%.

6. Discussion and Summary

Considering factors such as the different dimensions of the features between sensors
and the different levels of recognition credibility of each sensor, a weighted decision-level
fusion architecture using multiple radar sensors was proposed, and an online feature
reliability evaluation method was also used to comprehensively generate sensor weight
coefficients to overcome the deficiency of a single sensor and enhance the recognition rate
for warheads in the midcourse phase.

Firstly, background knowledge on ballistic missiles was introduced. Then, the multi-
sensor fusion architecture was described, which was divided into five stages: the obser-
vation stage, the signal preprocessing stage, the feature transformation stage, the sensor
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BPA and weight coefficient generation stage, and the weighted decision-level fusion stage.
Finally, we described the experiment carried out under with multiple sensor locations
and multiple bandwidths, which showed that the proposed model could work well with
various classifiers, including traditional learning algorithms and ensemble learning algo-
rithms. The average accuracy rate increased in the range from 0.32% to 8.46%, and the
improvement in the F1-score of the warhead ranged from 0.14% up to 9.19%.

However, for ballistic target identification, the experiments and performances de-
scribed above had limitations. Firstly, the model employs decision-level fusion at the
highest level, and it is unnecessary to assume that five radars work simultaneously at
each fusion node. If only one radar system is active in a fusion node, the online feature
reliability calculation will use the sensor’s own training data and observations to optimize
the BPA function, while the output of the fusion stage depends only on the BPA-adjusted
sensor. Secondly, the fusion performance was only assessed through the limited ballistic
simulation data, and it would be necessary to analyze the fusion performance of multi-track
and multi-position data in the future. Finally, anti-missile operations presently have more
requirements for the real-time performance of a system, with the micro-feature extraction
and target imaging of ballistic targets often relying on long-term observations, but the
evaluation metrics in this paper only considered the classification accuracy, so how to
extract stable features and achieve maximum classification accuracy under the restrictions
of the data rate, accumulation time, bandwidth, and other conditions is a problem that will
be studied further.
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