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Abstract: Nowadays, the development of the Internet of Things (IoT) concept has increased the
interest in some technologies, one of which is the detection of anomalies in home appliances before
they occur. In this work, in order to contribute to the works that use appliance power profiles
for anomaly detection, a novel Appliance Monitoring and Anomaly Detection System (AM-ADS)
is presented. AM-ADS consists of a main controller, a database, IoT-based communication units,
home appliances, and power measurement units (smart plugs or special measurement equipments)
mounted on appliances. In AM-ADS, a new Control Chart (CC) based method, for the cases that a
limited number of historical power profiles are available; and a new Artificial Neural Network (ANN)
based method, for the cases that a sufficient number of historical power profiles of each anomaly free
and anomalous situations are available, are used according to the developed rule-based AM-ADS
procedure to maximize the advantages and to eliminate the disadvantages of these methods as much
as possible. According to the AM-ADS procedure, power consumptions of appliances, which provide
meaningful information about the health of appliances, are measured during their operations and
the corresponding power profiles are created. Active power, power factor, and operation duration
features of power profiles are considered as decisive control parameters and different characteristics of
these parameters are used as inputs for CC and ANN-based methods. The efficiency and performance
of AM-ADS are validated by application case studies, where the ability to detect anomalies varies
between 94.56% and 99.03% when a limited number of historical data is available; and the ability
to detect and classify anomalies varies between 96.34% and 99.45% when a sufficient number of
historical data is available.

Keywords: IoT; home appliance; power profile; Artificial Neural Network; Control Chart; anomaly
detection

1. Introduction

In recent years, parallel to the development of internet and sensor technologies, the con-
cept of the Internet of Things (IoT) has entered our lives. Within the IoT concept, many
appliances, that we use in our daily lives, have become communicable with each other
and with other internet-connected devices, as well as some appliances acquire information
about their environment and usage situations. Moreover, appliances gain features that
can update their status information by communicating with people. Hence, people gain
opportunities to observe and control them from anywhere, anytime. These opportunities
have brought many technologies to increase energy management, safety, and user comfort,
that make human life easier. One of these technologies still being studied is the detection of
anomalies in appliances before they occur.

Because misuse and aging effects in appliances may cause some anomalies that increase
power consumption and decrease durability as well as create serious safety problems such
as fire and electric shock that will endanger human life. Early detection of anomalies in
appliances can help to avoid these undesirable situations and to reduce after-sale expenses
for both users and manufacturers, and also provides improvements in energy efficiency.
Therefore, anomaly detection in appliances has been given increasing attention.
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Many studies propose to use power profiles of appliances for detecting anomalies.
In some of these studies, power consumption is monitored at the aggregated level by a
common meter located on the home’s main supply. But, it is difficult to associate an anomaly
with an appliance as common power monitoring is performed. Therefore, appliance level
power monitoring, thus the meters are located at the plug level and the power consumption
of each appliance is monitored individually, is more widely used for anomaly detection
of appliances.

Appliance-level power monitoring based works in the literature are composed of
supervised and unsupervised anomaly detection methods. Unsupervised methods detect
anomalies by labeling power profiles as anomaly free or anomalous according to certain
rules and methods without the need for much historical data [1]; while supervised methods
use machine learning classifiers for detection and classification of appliance anomalies
when there exist sufficient numbers of historical anomaly free and anomalous power
profile data.

In this work, in order to contribute to the works in the direction of appliance level
power monitoring for anomaly detection and classification, a novel Appliance Monitor-
ing and Anomaly Detection System (AM-ADS) using both a supervised method and an
unsupervised method according to a rule-based procedure is presented.

In this work, for detecting anomalies, an unsupervised method based on the Control
Chart (CC) which is the most effective tool of Statistical Process Control (SPC) to monitor
and detect unusual fluctuations that arise in the outputs, is developed to be used in AM-
ADS for the cases that a limited number of historical data is available.

In the developed CC-based anomaly detection method, upper and lower limits, namely
control limits, and the corresponding control intervals of decisive features of power profiles
are determined from the anomaly-free historical power profiles of appliances. CCs of
decisive properties of each appliance are constructed according to its control intervals.
Anomaly detection of an appliance is performed by placing and checking decisive features
of the present power profile at the corresponding CC. In the CC-based method, only
appliances’ anomaly-free power profiles are stored in a database and only these data are
used to determine the control limits of decisive features. Hence, this method can be used
even when few historical data is available. To the best of the author’s knowledge, a CC-
based method is used for anomaly detection of appliances for the first time in the literature.

In this work, for both detecting and classifying anomalies, a supervised method based
on Artificial Neural Networks (ANNs) is developed to be used in AM-ADS for the cases
that a sufficient number of historical data is available. The relationship between the power
profiles of appliances and their anomalies, which AM-ADS uses basically, has a complex
and non-linear structure. ANNs can learn and model the relationships in that structure.
Besides, ANNs do not impose any constraints on input variables (like how they should be
distributed) as different from the other classification methods. For these scientific reasons,
in AM-ADS, the use of ANN is preferred for anomaly detection and classification.

In the developed ANN-based anomaly detection and classification method, the ANN
model of each appliance is specifically designed. However, every configuration is feed-
forward and with a single hidden layer trained by backpropagation. Input layers of
constructed ANNs consist of features extracted from power profiles, while the output
layers present the anomaly-free situation and the anomalous situations defined for the
belonging appliance. Hidden layers are designed experimentally due to the training perfor-
mance of ANNs. The developed ANN-based method provides a much more diverse and
comprehensive anomaly classification compared to similar works in the literature as it can
detect not only user usage anomalies but also component anomalies.

The proposed AM-ADS in this work consists of a main controller, a database, IoT-based
communication units, home appliances, and power measurement units (smart plugs or
special measurement equipments) mounted on appliances. As described above, AM-ADS
in this work uses both CC and ANN-based methods according to the developed rule-based



Sensors 2022, 22, 6639 3 of 24

AM-ADS procedure to maximize the advantages and eliminate the disadvantages of these
methods as much as possible.

According to the AM-ADS procedure, power consumptions of appliances are mea-
sured during their operations and sent to the main controller in predefined small time
intervals. The main controller creates corresponding power profiles and stores them in a
database as historical power profiles. In AM-ADS, active power, power factor, and opera-
tion duration features are extracted from the power profiles of appliances and considered as
decisive control parameters for anomaly detection. ANN-based method of AM-ADS uses
maximum, minimum, and mean values of these parameters as inputs. CC-based method
of AM-ADS defines upper-lower control limits and the corresponding control intervals of
these parameters to construct the control chart.

At the end of the AM-ADS procedure, if no anomaly is detected at the current opera-
tion, the power profile is labeled as anomaly free; otherwise, it is labeled as anomalous with
the type of anomaly (if it is known). The labeled power profile is stored in the database,
and the relevant decisive parameters are updated according to the newly added data.
The efficiency and performance of AM-ADS are validated by application case studies.

The main contributions of AM-ADS to the literature can be summed up as follows:

• AM-ADS is a realistic method since it is based on real power profiles of appliances.
• AM-ADS is usable independent of the number of historical power profiles.
• To the best knowledge of the author, a CC-based method is used for anomaly detection

of appliances for the first time in the literature.
• Developed ANN-based method provides a much more diverse and comprehensive

anomaly classification compared to similar works in the literature as it can detect not
only user usage anomalies but also component anomalies.

• AM-ADS provides very high accurate results; such that, the CC-based method (used
when a limited number of historical data is available) detects anomalies between
94.56% and 99.03% accuracy; while the ANN-based method (used when sufficient
numbers of historical power profiles of each anomaly free and anomalous situations
are available) detects and classifies anomaly between 96.34% and 99.45% accuracy.

• Every appliance regardless of its brand and type can be included in AM-ADS simply
with only a smart plug connection without making any mechanical changes in the
appliance itself.

2. Literature Survey

Studies on anomaly detection in appliances have gained acceleration in recent years.
Many studies use power profiles of appliances for detecting anomalies. These power
profiles are obtained by monitoring power consumptions at the aggregated level or at the
appliance level.

In the works using aggregated level monitoring, anomaly detection is performed
by various methods such as presenting a hierarchical probabilistic model [2], an online
learning-based intelligent algorithm [3], a classification algorithm [4], a fuzzy rule-based
intelligent identification method [5], a fast event detection algorithm [6] and a K-means
clustering algorithm [7]. Furthermore, in [8] a method is proposed to save energy by
detecting AC faults in advance, while abnormal energy use of the refrigerator and air
conditioner is tracked for anomaly detection in [9]. However, it is difficult to associate an
anomaly with an appliance by using aggregated level monitoring. Therefore, the appliance-
level power monitoring approach is more preferred for anomaly detection of appliances.
Note that, this method is used in many different applications besides anomaly detection:
in [10], a near-real-time plug load identification method is developed for several office plug
loads, while another device identification method based on the information obtained from
the plug-meter is introduced in [11]. Appliance level power monitoring is also used for
detecting occupancy, occupant movement and user-appliance interaction [12,13].

In the literature, appliance-level power monitoring for anomaly detection consists of
supervised and unsupervised procedures.
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Unsupervised procedures use several methods, such as k-means clustering [14], fuzzy
clustering [15] and one class-neural network [16] etc. Furthermore, in [17], a graphical
visualization tool is proposed for supporting the detection of power consumption anomalies
using a rule-based approach, while a waveform feature extraction model for anomaly
detection in power profiles is proposed in [18]. For the same purpose, ref. [19] proposes a
rule-based model comparing actual energy consumption and the predicted one. In these
studies, it is possible to detect the anomaly in the appliance without the need for much
historical data, but the anomaly can not be classified. Note that, in this work, a CC-based
method is proposed as an unsupervised procedure. Although this method is used for
anomaly detection of appliances for the first time in the literature, it has been widely used
in industrial applications and production processes. For example, in [20], authors use
the CC method to control the production parameters of machine production, while this
method is used for service request management of a help desk in [21] and for controlling
the resistance-layer thickness of integrated circuits in [22]. In [23,24], different dimensions
of various mechanical parts are evaluated and the production parameters of the machine
that produces these parts are tried to be kept under control via CCs.

On the other hand, numerous works in the literature present supervised procedures
using machine learning classifiers for anomaly detection and classification of appliances.
The deep convolutional neural network component introduced in [25] identifies the nonpe-
riodicity of electricity theft and the periodicity of normal electricity usage. In [26], anomaly
detection is performed by using linear and non-linear regression methods by using artificial
neural networks and an autoregressive integrated moving average model. The study [27]
proposes deep learning algorithms that have the capability of removing seasonality and
trend from the power profile data, while [28] proposes a model to identify and localize the
detected anomalies by using a combination of neural network and K-means algorithms.
In another study [29], a hybrid model using recurrent neural networks and quantitative re-
gression is introduced to predict and detect abnormal power consumption. These methods
detect anomalies as well as classify them with high accuracy, but a sufficient number of
anomalous and anomaly-free power consumption data are needed for these methods.

As different from the literature, in AM-ADS, both unsupervised and supervised proce-
dures based on CC and ANN methods are used for anomaly detection and/or classification.
The advantages of AM-ADS compared to the studies in the literature are explained in the
Introduction section.

3. Appliances

A typical living environment contains many home appliances. These appliances
consist of active (motor, fan, etc.) and passive (heater, etc.) components. Each appliance
may have several program modes offering different functionality and features, such as
operation durations, energy consumptions, and more. They perform their functions by
activating one or more of these components [30,31]. As a result, the power consumption
of an appliance at any given moment is the aggregated consumption of all these currently
activated components.

In AM-ADS, the set of appliances is represented by L and the set of program modes
of an appliance a is represented by Ma = {1, 2, . . . |Ma|} (|Ma| ≥ 1), while the operation
duration of a program mode j ∈ Ma of an appliance a is indicated by naj which is dis-
cretized into prescribed uniform internal time slots, i.e, t̂ ∈ Daj = {1, 2, , . . . , daj}. Here,
daj = naj /∆t where ∆t represents the length of each internal time slot t̂. A power profile of
an appliance a for a program mode j, i.e., Paj ∈ Rdaj×1, is obtained as the view of its power
consumption in the course of the operation. The set of appliances L can be divided into
two subsets: variable power appliances (thus, Paj(t̂) is time-varying) the set of which is
represented by Lv and fixed power appliances (thus, Paj(t̂) has negligible variations in
time) the set of which is represented by L f ). Note that, L = L f ∩ Lv.

Note that, the power profiles of appliances with cooling and/or heating functions
(washing machine, dishwasher, refrigerator, air conditioner and etc.) may be affected by
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environmental conditions (ambient, water temperature, etc.). For the rest, power profiles
of a program mode of an appliance are similar at every operation. Any considerable
difference in power profiles is considered as an early sign of an anomaly within an electrical
component of the considered appliance or anomalous user usage.

Some of the most used household appliances and their most seen anomalies considered
in this work are described below.

3.1. Refrigerator and Air Conditioner

Refrigerator (Ref) and Air Conditioner (AC) are multi-functional and variable power
appliances with several electrical components, i.e., Ref, AC ∈ Lv. Basic electrical compo-
nents of Ref are the compressor, freezer fan, fresh food fan, and defrost heater, while those
of AC are the compressor, outer unit fan, inside unit fan, and defrost heater. Power pro-
files of these appliances are dominated by the compressor since its power consumption is
much more than that of other components. The compressor switches between on-off states
periodically during the operation of the appliance. Hence, these compressor-containing
appliances have periodic power profiles.

The most common component anomalies in Ref and AC are compressor anomalies
and fan anomalies which affect power profiles of these appliances. As an example, power
profiles of a Ref for anomaly-free and fresh food fan anomalous situations are given in
Figure 1. As it is clear from the figure, the power consumption increases and becomes
unstable in the anomaly situation.
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Figure 1. Power profiles of Ref with/without anomaly.

On the other hand, Ref and AC may be subject to anomalous user usage. The most
common user usage anomalies of AC are open room window and blocking filter anomalies,
while those of Ref are open-door for a long time and overloading anomalies which affect
the power profiles of these appliances. For example, high power consumption duration
increases in the open-door anomaly situation since the compressor runs longer to cool
inside when the door is open.

3.2. Washing Machine and Dishwasher

Washing Machine (WM) and DishWasher (DW) are also multi-functional and variable
power appliances with several electrical components, i.e., WM, DW ∈ Lv. Basic electrical
components of WM are the heater, drum motor, and drain pump; while those of DW are
the heater, circulation pump, and drain pump. Each of these components has significantly
different power consumptions. Besides, these appliances have different program modes
(such as long, express, regular and etc.) due to the laundry or dish to be washed. Therefore,
power profiles of these appliances depend on activated program modes [30].
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The most common component anomalies in WM and DW are heating element, drain
pump, rotating part (for WM), and circulation motor (for DW) anomalies. The power profile
of the long program mode of WM for anomaly-free and rotating part anomaly situations are
given in Figure 2. As it is clear from the figure, the power consumption during the motor
rotation (while the drain shaft is operating) increases due to the increase in mechanical
losses (See Figure 3 for enlarged view).

On the other hand, WM and DW may be subject to user usage anomalies. The most
common user usage anomalies of WM and DW are overloading and underloading. When
WM is overloaded, the power consumption increases since the washer adds extra stress to
the motor and the tub bearings.
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Figure 2. Power profiles of WM with/without anomaly.
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Figure 3. Enlarged view of power profiles of WM with/without anomaly.

3.3. Iron, Kettle, and Lamp

Iron, Kettle, and Lamp are single-functional (e.g., kettle, lighting, etc.) and fixed power
appliances with a single active electrical component, i.e., Iron, Kettle, Lamp ∈ L f . In these
appliances, belonging electrical components can have anomaly or long time operation can
lead to anomalous situation. Power profiles of a Lamp for the anomaly-free situation and
anomalous situation (some LEDs are broken) are given in Figure 4. As it is clear from
the figure, power consumption of the Lamp decreases in the anomalous situation due to
broken LEDs.
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Figure 4. Power profiles of a lamp for anomalous and anomaly-free situations.

4. Technical Background

In this study, two different appliance anomaly detection methods based on Control
Chart and Artificial Neural Networks are used for anomaly detection and/or classification.
The background of these techniques will be explained in this section.

4.1. Statistical Process Control-Control Chart

Statistical Process Control (SPC) which is widely used in industrial applications and
production processes, is a technique that uses statistical tools to analyze a process or its
outputs to control, manage, and improve the quality of the output or the capability of the
process [21]. Control Chart (CC) (or Shewhart chart) is the most effective tool of SPC to
monitor the performance of the process and to detect unusual fluctuations that arise in the
process [32].

In CC, measurements are taken regarding the parameter to be monitored and con-
trolled in the process and the corresponding CC of these measurement data is created.

The most common statistically determined control limits for a data set X = {x1, x2, . . . , xn}
used in CC are lower limit lclimx and upper limit uclimx which are calculated as follows [22]:

lclimX = µX − 3σX
uclimX = µX + 3σX

(1)

Here µX is the mean and σX is the standard deviation of X. The corresponding control
interval of the data set X is determined as follows:

∆cX = [lclimX uclimX ] (2)

If one member of a data set X is out of the determined control interval it is labeled as
anomalous. According to the statistical knowledge [33], the probability of the output of an
ordinary process falling outside this control interval is 0.27%.

As an example, in Figure 5, the output (colored blue) of a process, with its CC is
represented. One output point of the process is out of the control interval, thus anomalous.
Hence the health of the process must be examined.
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Figure 5. CC of the output of a process [34].

4.2. Artificial Neural Network

Artificial Neural Network (ANN) which is a soft-computing tool that can learn patterns
and predict, is applied to many engineering problems effectively because of its capability
to provide fast, reliable, and accurate solutions to nonlinear problems easily.

ANN is organized in layers; such as an input layer, a number of hidden layer(s), and an
output layer. These layers are made up of a number of interconnected nodes, namely
neurons. The number of hidden layers and neurons in the layers may vary according to the
problem studied. A typical feed-forward multilayered neural network, which consists of
three layers such as an input layer (with n input nodes), one hidden layer (with m hidden
nodes), and an output layer (with k output nodes), is given in Figure 6.

Figure 6. ANN-General.

ANNs are trained by using training data sets until a predefined terminating condition
is met for the error. Then the accuracy and performance of the trained ANN can be
estimated by testing the data set.

BackPropagation Algorithm (BPA) is the most commonly used training algorithm for
feed-forward multilayered ANNs. It is based on propagating the input in the forward
direction and backpropagating the output in the backward direction by updating the
weights correspondingly until a predefined terminating condition is met for the error.
Detailed information about BPA can be found in [35,36].
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5. Appliance Monitoring and Anomaly Detection System

In this study, an Appliance Monitoring and Anomaly Detection System (AM-ADS),
which provides early detection and classification of anomalies in household appliances by
utilizing both a new CC-based method and a new ANN-based method according to a rule-
based procedure, is proposed. AM-ADS consists of the Main Controller (MC), a database,
IoT-based communication units, home appliances, and power measurement units (smart
plugs or special measurement equipments) mounted on appliances.

AM-ADS is based on the fact that for an appliance any anomaly in any component
or anomalous user usage affects the power consumption characteristics of the considered
appliance. Within this context, active power, power factor, and operation duration features
of power profiles of appliances are considered as decisive control parameters in AM-
ADS. CC-based method of AM-ADS uses upper-lower control limits and the corresponding
control intervals of these parameters for detecting anomalies, while the ANN-based method
of AM-ADS uses maximum, minimum, and mean values of these parameters for detecting
and classifying anomalies.

AM-ADS procedure, whose flowchart is given in Figure 7, consists of data acquisition,
working mode detection, power profile creation, program mode detection, data classifi-
cation, and anomaly detection steps respectively. The general procedure applied to an
appliance a is explained below.

Data acquisition: Power consumption of the appliance a is monitored during its operation
and the smart plug connected to the appliance measures its active power (pa(t̂)), voltage
(va(t̂)), current (ia(t̂)) and power factor (p f a(t̂)), and sends these data to MC at each internal
time slot t̂.

Working Mode Detection: MC detects the working mode, i.e., on (operating), standby and
off, of an appliance a due to the following rule:

WMode(t̂) =


On , i f pa(t̂) ≥ pa

std,
Standby , i f pa(t̂) > 0∧ pa(t̂) < pa

std,
O f f , i f pa(t̂) = 0,

(3)

Here, pa
std is the maximum stand-by power of appliance a.

Power profile creation: If a is operating, MC creates the power profile Pa ∈ Rda×1 and
power factor vector PFa ∈ Rda×1 of the appliance a for its operation duration da, as follows

Pa(t̂) = pa(t̂) t̂ ∈ {0, ..., da} (4)

PFa(t̂) = p f a(t̂) t̂ ∈ {0, ..., da} (5)

Note that, operation durations of some appliances (i.e., TV, lamp, kettle, iron and etc.)
depend on user preferences, while that of some (i.e., WM, DW and etc.) depends on the
running program mode. For example, active power evaluation of a Ref during a day is
given in Figure 8.



Sensors 2022, 22, 6639 10 of 24

START

Data Acqusition

Main 

Controller

Working Mode 
Detection

Working or 
Standby is Active

Create power 
profile

Operation is 
completed?

Data 
Classification 

and Converting

Anomaly 
Detection

• Historical Database
• Appliance ANN model
• Upper and lower control 

limit parameters 
(statistical)

• Season (month)

• If appliance have an ANN model, supervised learning (ANN) 
applied.

• If appliance does not have an ANN model, control chart is 
used.

Update the 
historical data, 

upper and 
lower control 

limit 
parameters

No Yes

No

Yes

Anomaly is 
detected?

Yes No

Inform user or call center

Result Evaluation

ANN - BasedCC - Based 

Program Mode 
Detection

Figure 7. The flowchart of AM-ADS procedure.

0 3 6 9 12 15 18 21 24
Time (hh:mm)

0

50

100

150

200

250

300

P
ow

er
 (

W
)

High power mode

Medium power mode

Low power mode

Figure 8. Power profile of a Ref.



Sensors 2022, 22, 6639 11 of 24

Program Mode Detection: MC determines the program mode ma ∈ Ma of the appliance
by comparing the minimum and maximum values of the duration of its program modes
with the present operation duration (length of the power profile).

ma =


1 , if da <=

d
a1
max+da2

min
2 ,

2 , if da >
d

a1
max+da2

min
2 ∧ da <

da2
max+d

a3
min

2 ;
.. .. ..

n , if da >=
dan−1

max +dan
min

2 ,

(6)

Here, d
aj
max and d

aj
min are the maximum and minimum operation durations of a program

mode j ∈ Ma, respectively.

Data classification: In AM-ADS, in order to make a precise analysis, members of power
profiles of appliances are divided into parts, namely power modes, according to their
values. The set of power modes of an appliance a is represented by Pma.

Variable power appliances a ∈ Lv have three power modes such as low, med, high,
i.e., Pma = {low, med, high}, while fixed power appliances a ∈ L f has only f ix power
mode, i.e., Pma = { f ix}

For power mode i ∈ Pma and program mode j ∈ Ma of a variable power appliance
a ∈ Lv, the power profile set, i.e., P

aj
i , the power factor set, i.e., PF

aj
i , and the duration

parameter, i.e., d
aj
i , are constructed as follows:

P
aj

low =
{

Paj (i)|min
i

{
Paj
}
< Paj (i) <

µ
P

aj +min
i

{
Paj
}

2
}

PF
aj

low =
{

PFaj (i)|Paj (i) ∈ P
aj

low , i ∈ {1, 2, .., |Paj |}
}

with the size of d
aj
low = |Paj

low| = |PF
aj
low|.

P
aj

med =
{

Paj (i)|
µ

P
aj +min

i

{
Paj
}

2 < Paj (i) <
µ

P
aj +max

i

{
Paj
}

2
}

PF
aj

med =
{

PFaj (i)|Paj (i) ∈ P
aj

med , i ∈ {1, 2, .., |Paj |}
}

with the size of d
aj
med = |Paj

med| = |PF
aj
med|.

P
aj

high =
{

Paj (i)|
µ

P
aj +max

i

{
Paj
}

2 < Paj (i) < max
i

{
Paj
}}

PF
aj

high =
{

PFaj (i)|Paj (i) ∈ P
aj

high , i ∈ {1, 2, .., |Paj |}
}

with the size of d
aj
high = |Paj

high| = |PF
aj
high|.

For a fixed power appliance a ∈ L f , corresponding sets of program mode j ∈ Ma are
as follows:

P
aj

f ix = P
aj

f ix = Paj PF
aj

f ix = PFaj d
aj

f ix = daj

For example, classified power profile of a Ref, whose power profile is given in Figure 8,
is represented in Figure 9.
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Figure 9. The classified power profile of a Ref.

Anomaly detection: AM-ADS consists of two methods for detection and/or classification
of anomalies: CC-based method that can detect anomalies when a limited number of
historical power profiles is available and ANN-based method that can detect and classify
anomalies when sufficient numbers of historical power profiles of each anomaly free and
anomalous situations are available.

• Control Chart method for Anomaly Detection (CC-AD):
Anomaly control parameters considered in CC-AD are active power, power factor,
and operation duration of power profiles. In this work, control intervals of these
parameters are calculated according to Equation (2) for each power mode by using the
historical anomaly-free power profiles.
For program mode j ∈ Ma and power mode i ∈ Pma of an appliance a ∈ L, control
intervals of decisive parameters are defined as follows:
∆cP

aj
i := [lclimP

aj
i

uclimP
aj
i
] is the power control interval where lclimP

aj
i

/uclimP
aj
i

repre-

sents lower/upper power control limit
∆cPF

aj
i := [lclimPF

aj
i

uclimPF
aj
i
] is the power factor control interval where lclimPF

aj
i

/

uclimPF
aj
i

represents lower/upper power factor control limit,

∆cD
aj
i := [lclimd

aj
i

uclimd
aj
i
] is duration control interval where lclimd

aj
i

/uclimd
aj
i

repre-

sents lower/upper control limit of duration.
If an appliance a ∈ L is anomaly-free, control parameters of its operation outputs
satisfy the following three conditions by 99.7% ∀j ∈ Ma and ∀i ∈ Pma:

i Each power value at each power mode of the present power profile is in the
corresponding control interval:

P
aj
i (t̂) ∈ ∆cP

aj
i ∀t̂ ∈ D

aj
i (7)

ii Each power factor value at each power mode of the present power profile is in
the corresponding control interval:

PF
aj
i (t̂) ∈ ∆cPF

aj
i ∀t̂ ∈ D

aj
i (8)

iii Duration of operation at each power mode of the present power profile is in the
corresponding control interval:

d
aj
i ∈ ∆cD

aj
i (9)
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For the present operation of an appliance, if any control parameter of the corre-
sponding power profile is out of the corresponding control interval, this means an
anomalous situation.
For example, CCs for med power mode of Ref, whose classified power profile is given
in Figure 9, is given in Figure 10. As seen in the figure, some points of med power mode
are out of the control interval of this mode. This indicates that there is an anomaly
with one of the active components in this power mode.
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Figure 10. Control limits of a Ref for med power mode.

• ANN Method for Anomaly Detection and Classification (ANN-ADC):
In ANN-ADC, feedforward ANNs with a single hidden layer trained by BPA are used
for every appliance; however, the ANN of each appliance is specifically designed and
has a different configuration. Configured appliance ANNs are trained by historical
power profiles of anomaly-free and anomalous situations. Hence, for training, a suffi-
cient number of historical power profiles of each situation must be available in the
database to apply ANN-ADC.
For each power mode, maximum, minimum, and mean values of active power, as well
as power factor and the operation duration are fixed inputs of appliance ANNs. Thus,
the input layer of ANN of each appliance a ∈ L has |Ma| number of input nodes for
representing the active program mode ĵ ∈ Ma and also has |Pma| × 7 number of input
nodes assigned to the 7 characteristics of the output of the operation for every power

mode i ∈ Pma of the present program mode ĵ. That is, maximum amplitude in P
a ĵ
i

(P
a ĵ
imax

), mean amplitude of P
a ĵ
i (P

a ĵ
imean

), minimum amplitude in P
a ĵ
i (P

a ĵ
imin

), maximum

amplitude in PF
a ĵ
i (PF

a ĵ
imax

), mean amplitude of PF
a ĵ
i , (PF

a ĵ
imean

), minimum amplitude in

PF
a ĵ
i (PF

a ĵ
imin

) and the operation duration d
a ĵ
i . Hence, every ANN has |Pma| × 7 + Ma

number of unchanged input nodes. If the power profile of a is affected by the season
(i.e., Ref, AC, kettle, WM, DW), its ANN model has 1 more input node, such as
|Pma| × 7 + Ma + 1.
The output layer of appliance ANNs presents anomaly types of the corresponding
appliance by 1 and 0 which specify whether the corresponding anomaly has occurred
or not, respectively. The number of output nodes of an ANN depends on the anomaly
types defined for the appliance it belongs to. Hidden layers of appliances are designed
experimentally due to the training performance of designed ANNs.
For example, the lamp is a fixed power appliance (i.e., it has only one power mode)
and its power profile is independent of the season, therefore ANN model of lamp
(lamp-ANN) has seven input nodes (Plamp

max ,Plamp
min ,Plamp

mean ,PFlamp
max ,PFlamp

min ,PFlamp
mean ,dlamp).

On the other hand, the lamp has two anomaly types, such as, led element and long time
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operation anomalies. Consequently, the lamp-ANN configuration consists of three
output nodes representing long-time operation and component anomalous situations
and anomaly-free situation. The hidden layer of this ANN is configured with 6 hidden
neurons due to the training performance.
As another example, the ANN of Ref (Ref-ANN) has 22 input nodes, since Ref has
3 power modes and its power profile is affected by the season, and has 6 output
nodes since 5 types of anomaly are considered for Ref. It is configured with 20 hidden
nodes due to the training performance. When the extracted features of the power
profile given in Figure 1 are applied, the ANN results in a Fresh Food Fan anomaly
as expected.
In Table 1, anomaly types and the corresponding ANN configurations are given for
the most used appliances.

• Result evaluation: If an anomaly is detected by the CC-AD method or detected and
classified by the ANN-ADC method, it is reported to the home user and also technical
service and/or energy provider (depending on the type of anomaly). If no anomaly
is detected at the considered power profile, it is stored in the database as a historical
anomaly-free power profile, and the corresponding control intervals are updated
accordingly; otherwise, it is stored as an anomalous power profile with its anomaly
type if it is known.

The corresponding algorithm of the AM-ADS procedure is given as the AM-ADS algo-
rithm (Algorithm 1) which calls the CC-AD Algorithm (Algorithm 2) if a limited number
of historical power profiles are available and ANN-ADC Algorithm (Algorithm 3) when
sufficient numbers of historical anomalous and anomaly free power profiles are available.

Algorithm 1: AM-ADS Algorithm
Data: a,Pa,PFa,season
Result: Normal operation or detected anomaly

1 P = Pa, Pa
min = min{Pa}, Pa

mean = mean{Pa}, Pa
max = max{Pa};

2 PF = PFa, PFa
min = min{PFa}, PFa

mean = mean{PFa}, PFa
max = max{PFa};

3 Pa
low = ∅;Pa

med = ∅;Pa
high = ∅; PFa

low = ∅;PFa
med = ∅;PFa

high = ∅;

4 x = size(Pa);Da = x∆t;
5 if a == ”Re f ” OR a == ”AC” OR a == ”WM” OR a == ”DW” then
6 Dataclassi f ication(); Pa

i min = min{Pa
i }; Pa

i mean = mean{Pa
i };

7 Pa
i max = max{Pa

i }; PFa
i min = min{PFa

i };
8 PFa

i mean = mean{PFa
i }; PFa

i max = max{PFa
i };

9 xi = size(Pa
i ); Da

i = xi∆t;
10 i ∈ {low, medium, high}
11 else
12 P← P
13 PF ← PF
14 end
15 if Appliance a has an anomaly detection ANN then
16 Call CC-AD Algorithm
17 else
18 Call ANN-ADC Algorithm
19 end
20 if An appliance anomaly is detected then
21 Inform home user and call center
22 else
23 Store the last power profile to database
24 Update the control chart limits
25 end



Sensors 2022, 22, 6639 15 of 24

Algorithm 2: CC-AD Algorithm
Input: a, Pa, PFa, Pa

i , PFa
i , season,Pmin, Pmean, Pmax, PFmin, PFmean, PFmax, Pa

i min,
Pa

i mean, Pa
i max,PFa

i min, PFa
i mean, PFa

i max, Da, Da
i ,x,

xi,i ∈ {low, medium, high};
Output: Normal operation or detected anomaly

1 Result = ∅ uclimPa
i
← Historical Database i ∈ {low, medium, high}

2 lclimPFa
i
← Historical Database i ∈ {low, medium, high}

3 uclimPFa
i
← Historical Database i ∈ {low, medium, high}

4 lclimDa
i
← Historical Database i ∈ {low, medium, high}

5 uclimDa
i
← Historical Database i ∈ {low, medium, high}

6 anomaly = 0, anomalyi = 0,i ∈ {low, medium, high}
7 if a == ”Re f ” OR a == ”AC” OR a == ”WM” OR a == ”DW” then
8 [∆cPa

i ,∆cPFa
i , ∆cDa

i ]← Historical Database ; i ∈ {low, medium, high}
9 Control Chart method for Anomaly Detection for all power modes

(Equations (7)–(9));
10 else
11 [∆cPa,∆cPFWM, ∆cDa

i ]← Historical Database ;
12 Control Chart method for Anomaly Detection for all power modes

(Equations (7)–(9));
13 end
14 if anomalyi > 0 i ∈ {low, medium, high} then
15 Result =“There is an anomaly on the components related to ith power mode of

appliance a”;
16 else
17 if anomaly > 0 then
18 Result =“There is an anomaly in appliance a”;
19 end
20 Result =“There is no anomaly in appliance a”;
21 end

Algorithm 3: ANN-ADC Algorithm
Input: a, season,Pmin, Pmean, Pmax, PFmin, PFmean, PFmax, Pa

i min, Pa
i mean, Pa

i max,
PFa

i min, PFa
i mean, PFa

i max, Da, Da
i , x, xi, PMa

j , i ∈ {low, medium, high};
Output: Normal operation or detected anomaly

1 Result = ∅ X = [Pa
min . . . PFa

mean . . . Da
max . . . season..PMa

j .];
2 Neta()← Historical Database;
3 Y = Net(X); w = size(Y);
4 for k← 1 to w do
5 if Y(k)==1 then
6 Result =“There is an anomaly on the component or user usage related to

kth output of Appliance a ANN”;
7 end
8 end
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Table 1. Anomaly types and the ANN configurations of some appliances.

Appliance Component Anomalies User Usage Anomalies ni-nh-no

WM Heater Rotating parts Drain pump Underload Overload 25-22-6

DW Heater Circulation
motor Drain pump Underload Overload 25-22-6

Ref Compressor FRF FFF Open door Overload 22-20-6

AC Compressor Interior fan Outer fan Open
window/door Blocking filter 22-20-6

Kettle Heater/Thermostat Long time
operation 7-6-3

Lamp Led Long time
operation 7-6-3

6. Case Study and Discussion

For analysing the reliability and performance of the proposed AM-ADS system, several
experiments and simulation studies were carried out. In the experiments, the most common
home appliances (i.e., Ref, AC, WM, DW, kettle, lamp, and iron) with their most common
anomaly types are considered (see Table 1).

In order to generate the power profiles of appliances for experiments, various anoma-
lies were created in the laboratory environment. Power profiles of component-based
anomalies were created by intervening in the mechanics or structure of the components,
such that distorting the shaft eccentricity, blocking the fan blades, blocking the drain pipe
and etc. User usage anomalies were created by realizing anomalous user usage, such that
opening the door for a long time, blocking the filter of AC, overloading Ref, WM, DW
and etc.

For appliances with multiple program modes (such as WM and DW), anomalous and
anomaly-free operations were repeated for each program mode. For appliances that are
affected by environmental factors (Ref, AC, WM, DW, and kettle) these operations were
carried out repeatedly in both summer and winter seasons as well.

In order to demonstrate the performance of applied methods, an appropriate diagnos-
tic test is applied to the results of experiments. Although the detection of anomalies in the
appliances has previously stopped a minor issue from becoming overwhelming, the first
goal of an anomaly testing system is to correctly diagnose the anomalous event. Therefore,
the accuracy metrics to be used are important in evaluating the results of anomaly detection.
The metrics to be used in this study are given below.

• accuracy represents the percentage of correctly detecting the values and is calculated
as follows:

accuracy =
tp + tn

tp + f p + tn + f n
(10)

Here, tp describes true positives (number of correct detection of anomalous cycles), f p
explains false positives (number of false detection of a normal cycle as anomalous), tn
defines true negatives (number of true detection of normal cycles), and f n expresses
false negatives (number of false detection of an anomalous cycle as normal).

• speci f icity refers to the probability of a negative test.

speci f icity =
tn

tn + f p
(11)
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• F1-score is specific to anomaly detection methods and varies in the range [0 1].
The higher the score, the better the performance of the algorithm. The per-class
value of F1-score is

F1-score = 2× precision× recall
precision + recall

(12)

where precision = tp
tp+ f p and recall = tp

tp+ f n

In the case of multi-class classification, averaging techniques are applied to F1-score cal-
culation, resulting in different averaged scores as macro, weighted and micro averaged
F1-scores [37–39].

• Macro-Averaging: The macro-averaged F1-score is calculated by Equation (12) while

precision =
∑m

i=1
tpi

tpi+ f pi
m and recall =

∑m
i=1

tpi
tpi+ f ni
m . Here, m is the number of classes; tpi,

f pi and f ni are the number of true positives, false positives and false negatives of
class i respectively. So, the macro-averaged F1-score is the arithmetic mean of all the
per-class F1-score.

• Weighted-Averaging: The weighted-averaged F1-score is calculated by Equation (12)
while precision = ∑m

i=1 κi ×
tpi

tpi+ f pi
and recall = ∑m

i=1 κi ×
tpi

tpi+ f ni
. Here, κi =

ni
n is the

weighting coefficient, where ni is the number of individual samples labeled by ith
class, n is the total number of samples. So, the weighted-averaged F1-score takes the
mean of all per-class F1-score while considering the number of actual occurrences of
the class in the dataset.

• Micro-Averaging: The micro-averaged F1-score is calculated by Equation (12) while

precision = ∑m
i=1(tpi)

∑m
i=1(tpi+ f pi)

, recall = ∑m
i=1(tpi)

∑m
i=1(tpi+ f ni)

. So, the micro-averaged F1-score com-
putes a global average F1-score by counting the sums of the true positives, false
negatives, and false positives.

Note that, in the case of an imbalanced dataset where all classes are equally important,
it is wise to use macro-averaged F1-score. Hence, in the proposed AM-ADS that treats all
classes equally, macro-averaged F1-score is considered for performance evaluation.

Let we consider WM experiments in detail. A 7 kg front-load WM with 3 basic program
modes; such as, MWM = {regular(1), long(2), express(3)}, are used in these experiments.
The power profile of the anomaly-free WM operating at program mode 2 is given in
Figure 11a and its CC is given in Figure 11b.
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Figure 11. Power profile and CC of an anomaly-free WM.

For the CC-AD method, CC parameters of program mode 2 of WM for winter are given
in Table 2. In winter, parameters of normally operating WM at program mode 2, PWM2

i ,
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PFWM2
i , DWM2

i vary within the control intervals ∆cPWM2
i ∆cPFWM2

i ∆cDWM2
i ∀i ∈ Pma

during its operation.
The power profile of an anomalous WM operating at the long program mode is

represented in Figure 12a and its CC is given in Figure 12b. As seen in the figure, some
power values measured in the med power mode are out of the control interval which
indicates anomalous operation.

Table 2. Control intervals of CC-AD method for program mode 2 of WM

Low power mode control intervals for program mode 2

∆cPWM2
low = [lclimPWM2

low
uclimPWM2

low
] [0.69 10.16]

∆cPFWM2
low = [lclimPFWM2

low
uclimPFWM2

low
] [0.4646 0.5851]

∆cdWM2
low = [lclimdWM2

low
uclimdWM2

low
] [36.88 39.54]

Medium power mode control intervals for program mode 2

∆cPWM2
med = [lclimPWM2

med
uclimPWM2

med
] [95.86 235.24]

∆cPFWM2
med = [lclimPFWM2

med
uclimPFWM2

med
] [0.6446 0.7525]

∆cdWM2
med = [lclimdWM2

med
uclimdWM2

med
] [71.93 74.57]

High power mode control intervals for program mode 2

∆cPWM2
high = [lclimPWM2

high
uclimPWM2

high
] [1661.80 2029.00]

∆cPFWM2
high = [lclimPFWM2

high
uclimPFWM2

high
] [0.9701 0.9999]

∆cdWM2
high = [lclimdWM2

high
uclimdWM2

high
] [30.85 33.73]
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Abnormal points

Figure 12. Power profiles and CC of an overloaded WM.

The confusion matrix of the CC-AD method obtained by 80 WM experiments is given
in Figure 13a. According to this matrix, accuracy is 95.00%, speci f icity is 1.00, precision is
0.94, and recall is 0.96 and F1-score is 94.79% in WM experiments using CC-AD method.
speci f icity = 1 means that WM would not be erroneously classified as anomalous.

When it comes to the ANN-ADC method, the input layer of WM-ANN (Figure 14)
has MWM = 3 number of input nodes for representing the active program mode and has
|PmWM| × 7 = 21 number of input nodes assigned to the 7 characteristics of the power
profile for every power mode PmWM, and 1 input node representing the season (0 or 1
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representing winter or summer). The output layer of WM-ANN has 6 nodes representing
anomaly-free situations and Heater (Anomaly 1), Rotating part (Anomaly 2), Drain pump
(Anomaly 3), Underloading (Anomaly 4), and Overloading (Anomaly 5) anomalies.

For the experiments of the ANN-ADC method, about 75% of the created power
profiles in a laboratory environment are used for training while about 25% of them are used
for testing.

(a) (b)

Figure 13. Confusion matrix of WM experiments (a) via CC-AD/(b) via ANN-ADC.
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Figure 14. WM-ANN model.

The confusion matrix of the ANN-ADC method obtained by 240 experiments is given
in Figure 13b. By using this confusion matrix, accuracy, precision, recall and F1-score values
of each anomaly class are calculated and given in Table 3. The overall accuracy of detecting
the anomalies of WM by using the ANN-ADC method is 98.89%. The proposed method
can detect component-related anomalies without error. F1-scores of anomaly classes vary
in 89.50%–100%. The averaged F1-scores are between 96.67% and 96.93%, while the macro-
avg. F1-score, which we took into account, is found to be 96.93%. As seen in the table,
Anomaly 4 of WM has the lowest F1-score (89.50%). Because some power profiles with
Anomaly 4 are very similar to those of an anomaly-free WM, AM-ADS is more likely to
classify them as anomaly free.

In order to evaluate the performance of AM-ADS, CC-AD and ANN-ADC methods
are performed both separately and as a hybrid. In the hybrid case, only anomaly detection
is performed, such that both ANN-ADC and CC-ADC methods are examined for each



Sensors 2022, 22, 6639 20 of 24

power profile, and the results are labeled as anomaly and anomaly-free regardless of the
anomaly class determined by the ANN-ADC method.

Table 3. Performance metrics of WM-ANN.

Class Accuracy Precision Recall F1-Score

Anomaly free 96.67% 0.88 1.00 93.75%

Anomaly 1 100.00% 1.00 1.00 100.00%

Anomaly 2 100.00% 1.00 1.00 100.00%

Anomaly 3 99.58% 1.00 0.97 98.59%

Anomaly 4 97.08% 1.00 0.81 89.50%

Anomaly 5 100.00% 1.00 1.00 100.00%

Micro-avg. 98.89% 0.9667 0.9667 96.67%

Macro-avg. 98.89% 0.9804 0.9630 96.93%

Weighted-avg. 98.89% 0.9706 0.9667 96.86%

In Table 4, accuracy and F1-score values of CC-AD, ANN-ADC, and hybrid methods
are given for all appliances. As seen from the table, the CC-AD method, which is examined
with a limited number (40 to 70) of power profiles, provides F1-scores between 93.45% and
98.79% for anomaly detection of appliances; the ANN-ADC method, which is examined
with a numerous number of power profiles (200 to 280) provides F1-scores in between
95.65% and 99.15% for anomaly detection and classification; while the hybrid approach
provides F1-scores between 94.22% and 98.92% for anomaly detection when the same
power profiles as in ANN-ADC experiments are used. According to these results, as it is
expected, anomaly detection performance of the hybrid method is better than the anomaly
detection performance of CC-AD and worse than the anomaly classification performance
of ANN-ADC.

Table 4. Performance metrics of all appliances.

Appliance Accuracy Accuracy F1-Score F1-Score F1-Score
CC-AD ANN-ADC CC-AD ANN-ADC Hybrid

Washing
machine 95.00% 98.89% 94.79% 96.93% 95.53%

Dishwasher 97.12% 98.97% 95.65% 97.10% 96.04%

Refrigerator 96.25% 99.09% 96.78% 98.14% 97.29%

Air
conditioner 94.56% 96.34% 93.45% 95.65% 94.22%

Kettle 97.98% 98.14% 97.30% 97.45% 97.42%

Lamp 99.03% 99.45% 98.79% 99.15% 98.92%

Overall 97.14% 98.34% 96.21% 97.40% 96.74%

7. Conclusions

Contemporary advancements in IoT technology increased the number of works on
many new technologies that facilitate daily human life. One of these technologies still
being studied is the early detection of appliance anomalies. In this work, a novel and
realistic Appliance Monitoring and Anomaly Detection System, namely AM-ADS, based
on appliance level power monitoring for anomaly detection and classification is presented.

In AM-ADS, active power, power factor, and operation duration features are extracted
from power profiles of appliances and they are considered as decisive control parameters
for anomaly detection and/or classification and analyzed by using two newly developed
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methods, thus CC-AD method and ANN-ADC method, according to the rule-based AM-
ADS procedure.

CC-AD method is used for the cases that a limited number of historical power profile
data is available and defines upper-lower control limits and the corresponding control
intervals of these parameters to detect an anomaly. To the best of the author’s knowl-
edge, a CC-based method is used for anomaly detection of appliances for the first time in
the literature.

ANN-based anomaly detection and classification method is used for the cases that
a sufficient number of historical power profiles of each anomaly-free and anomalous
situations are available. In this method, the ANN model of each appliance is specifically
designed, and the maximum, minimum and mean values of decisive control parameters
are defined as the inputs of the ANN models to detect and also classify anomalies. ANN-
ADC method provides a much more diverse and comprehensive anomaly classification
compared to similar works in the literature as it can detect not only user usage anomalies
but also component anomalies.

The major advantage of AM-ADS is detecting anomalies regardless of the number of
historical power profile data since both supervised and unsupervised methods are used
according to the circumstances. AM-ADS provides very high accurate results; such that,
the CC-AD method used when a limited number of historical data is available detects
anomaly with 94.56%–99.03% accuracy; while the ANN-ADC method used when a suffi-
cient number of historical power profiles is available detects and classifies anomaly with
96.34%–99.45% accuracy. On the other hand, since AM-ADS uses decisive parameters of
power profiles of appliances for detecting and/or classifying anomalies, every appliance,
whose power profile can be monitored, can be included in AM-ADS. By foreseeing faults
in appliances before they occur, AM-ADS can help to avoid increased power consumption,
decreased durability, and serious safety problems. AM-ADS can also act as a useful tool
for manufacturers and service organizations for the assessment of the durability of home
appliances. Moreover, integrating AM-ADS in manufacturers’ R&D activities can support
the potential implementations contributing to the prevention of premature obsolescence of
home appliances.

As future directions of this work, different learning methods (i.e., k-means, density-
based spatial clustering ) and devices other than home appliances will be integrated into
AM-ADS. Furthermore, it is planned to design a rule-based control system that interferes
(via interrupting or stopping) with the operation of appliances according to some specific
criteria depending on the nature of the detected anomaly and the safety problems it
may cause.
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Abbreviations
The following abbreviations are used in this manuscript:

a appliance
AC Air conditioner
AM-ADS Appliance Monitoring and Anomaly Detection System
ANN Artificial Neural Networks
ANN-ADC ANN Method for Anomaly Detection and Classification
BPA BackPropagation Algorithm
CC Control Chart
CC-AD Control Chart method for Anomaly Detection
d

aj
max maximum operation duration of the program mode j of appliance a

d
aj

min minimum operation duration of the program mode j of appliance a
Daj operation duration of program mode j of the appliance a
DW Dishwasher
IoT Internet of Things
L set of appliances
L f set of fixed power appliances
Lv set of variable power appliances
lclimP

aj
i

lower control limit of Paj

lclimPF
aj
i

lower control limit of PFaj

lclimd
aj
i

lower control limit of d
aj

i

Ma set of program modes of the appliance a
MC Main Controller
Paj (t̂) power consumption of jth program mode of the appliance a at t̂
P

aj

i set of power profiles of power mode i of jth program mode of the appliance a
pa

std maximum stand-by power of the appliance a
PF

aj

i set of power factors of power mode i of jth program mode of the appliance a
Pma set of power modes of the appliance a
Ref Refrigerator
SPC Statistical Process Control
uclimP

aj
i

upper power control limit for CC of P
aj

i

uclimPF
aj
i

upper power factor control limit for CC of PF
aj

i

uclimd
aj
i

upper control limit of duration for CC of d
aj

i

WM Washing machine
t̂ internal time slot
∆cD

aj

i duration control interval of Daj

∆cP
aj

i power control interval of P
aj

i
∆cPF

aj

i power factor control interval of PF
aj

i
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