
Citation: Daffara, C.; Mazzocato, S.

Surface Metrology Based on

Scanning Conoscopic Holography for

In Situ and In-Process Monitoring of

Microtexture in Paintings. Sensors

2022, 22, 6637. https://doi.org/

10.3390/s22176637

Academic Editor: Laura Micheli

Received: 9 July 2022

Accepted: 30 August 2022

Published: 2 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Surface Metrology Based on Scanning Conoscopic Holography
for In Situ and In-Process Monitoring of Microtexture
in Paintings
Claudia Daffara * and Sara Mazzocato

Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
* Correspondence: claudia.daffara@univr.it

Abstract: In the field of engineering, surface metrology is a valuable tool codified by international
standards that enables the quantitative study of small-scale surface features. However, it is not
recognized as a resource in the field of cultural heritage. Motivated by this fact, in this work, we
demonstrate the use and the usefulness of surface metrology based on scanning conoscopic hologra-
phy for monitoring treatments on the Venetian masterpiece by Tintoretto St. Martial in Glory with the
Saints Peter and Paul. We carried out in situ and in-process monitoring of the painting microtexture
during an experimental, innovative laser–chemical treatment, and we performed a statistical analysis
based on ISO areal field parameters. A wide and in-band roughness analysis through the comple-
mentary use of amplitude, spatial, and hybrid parameters confirmed the noninvasive nature of the
whole treatment on the painting surface topography, giving us the chance to review and critically
discuss the use of these parameters in a real case in heritage science.

Keywords: surface metrology; surface roughness; 3D optical profilometry; conoscopic holography;
heritage science; painting treatment; laser cleaning

1. Introduction
1.1. Background and Motivation

In this work, we discuss the potentialities of surface metrology based on conoscopic
holography sensors for monitoring treatments in ancient paintings and give a proof-of-
concept on the notable masterpiece by Tintoretto St. Martial in Glory with the Saints Peter
and Paul situated in Venice in the Church of San Marziale.

Surface metrology is applied in the field of engineering to understand the surface
topography, namely the quantitative small-scale features beyond qualitative morphology,
but it is not considered a useful tool in heritage science [1]. The main difficulty is that, while
industrial surface metrology analyzes machined metal pieces with an expected surface
pattern and known materials, each artwork is a unique piece composed by heterogeneous
materials that have undergone aging and restoration processes over centuries. Without
entering the debate regarding the meaning of setting international standards for artworks
(e.g., ISO standards) [2], surface metrology techniques are useful for estimating micrometric
changes in surface texture that help heritage scientists discriminate several characteristics of
a painting or the processes it undergoes [3]. Moreover, optical techniques are available for
noninvasive sampling of the surface microtexture and in-process metrology [4,5]; among
them, conoscopic holography [6] was shown to be able to provide accurate surface datasets
also on heterogeneous (diffusive, highly reflective, or polychrome) artworks [7,8].

To celebrate 500th anniversary of Tintoretto’s birth [9], this large oil painting on
canvas was subjected to a complete restoration, during which an experimental, innovative
laser–chemical treatment was performed by Brunetto et al [10]. The painting presented a
degraded surface with a difficult situation, due to the oxidation of the pigmented varnish
layer applied in old restorations, which was solved by the restorers with a multi-step
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cleaning procedure based on Er:YAG laser. The intervention was monitored by imaging
and spectrometry techniques that provided information about the painting features and
materials. In this context, we were called to perform a surface analysis with a customized
scanning profilometer [7] based on conoscopic holography sensors in order to obtain data
about the structure of the painting texture at microscale, complementary information not
collected by the available, conventional in situ diagnostics.

The use of erbium lasers in cultural heritage has been recently reviewed in the litera-
ture [11], including the discussion of the physicochemical mechanism of the laser–matter
interaction in paintings and the current approaches to monitoring [12,13]. Diagnostics of
paintings cleaning are being carried out by multiple noninvasive techniques for inspecting
materials and laser effects [14–16], e.g., spectral imaging and spectroscopy methods for
probing materials, and interferometric methods such as optical coherence tomography
(OCT) able to probe the layers stratigraphy. Optical profilometry based on conoscopic
holography sensors was shown to be useful as a complementary technique for a qualita-
tive inspection of the surface morphology in ancient paintings [17–19]. Surface data are
rendered as raking light and fused with multispectral images [18], or used for holistic
inspection of surface layers thickness [17,19] that are then measured by OCT.

As a matter of fact, despite the recognized potential of the technique, surface metrology
for painting diagnostics is not being explored and we are motivated to bridge the gap.

The aim of this cross-disciplinary research is to test and validate a surface metrology
workflow, based on conoscopic holography sensors and standard surface descriptors, for
in-process monitoring of the microtexture in ancient paintings, toward a more general use
in artwork diagnostics.

1.2. Paper Organization

In the above framework of an interdisciplinary research involving surface metrology
in heritage science, which is not a routine diagnostic technique in the field, we first recall,
in the Materials and Methods, the surface descriptors. We start from the definition and
a review of the functional meaning to approach the possible use for painting analysis
(Section 2.1). Then, we present the design of exemplar experiments, based on a real-world
case study on Tintoretto, and the data acquisition in situ using scanning profilometry based
on conoscopic holography sensors, giving the surface metrology workflow.

The results are discussed to address two aspects: one related to the surface metrology
framework and the other one related to the specific conservation application, the laser
treatment. Attention is paid to peculiar aspects of the heritage applications.

2. Materials and Methods
2.1. Surface Metrology Based on Areal Field Parameters

Surface metrology on paintings was implemented using areal field parameters [20],
which were computed on the entire sampling area and were well-defined. Following the
ISO 25178 standard [21], the general mathematical definitions for the continuous case are
given here; the implementation for the discrete dataset was made using summations in
Matlab environment [22]. Further details on areal surface texture parameters can be found
in the specific literature (see the review [23]). A roadmap on challenges and open questions
in surface topography measurement was given by [24].

The real surface of the painting can be represented as a 2D continuous function of
height, which was sampled by the measurement at discrete points in a selected area. In the
following equations, z(x, y) represents the centered height function with reference to the
mean plane computed in the definition area A. In the experimental dataset, we have an
array of surface heights zij sampled in a spatial grid at intervals given by the scanning step
of the profilometer device.
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2.1.1. Amplitude Parameters

The root mean square (RMS) roughness (Sq), defined as

Sq =

√
1
A

∫ ∫
A

z2(x, y)dxdy (1)

was used as a descriptor of the mean height of the surface asperities. From a statistic point
of view, it is the standard deviation of the probability density distribution of the heights,
the amplitude distribution function (ADF).

The shape of the ADF is described by the skewness (Ssk) and the kurtosis (Sku),
respectively, the third and the fourth statistical moments

Ssk =

√
1
A

1
Sq3

∫ ∫
A

z3(x, y)dxdy (2)

Sku =

√
1
A

1
Sq4

∫ ∫
A

z4(x, y)dxdy . (3)

The Ssk parameter measures the degree of asymmetry of the height distribution, that
is, if the surface exhibits the bulk of materials above (Ssk < 0) or below (Ssk > 0) the mean
plane. The Sku parameter represents the sharpness of the heights distribution, with the
presence (Sku > 3) or a lack (Sku < 3) of inordinately high peaks/deep valleys. A surface
with a symmetric, Gaussian height distribution has zero skewness and a kurtosis value of
three.

The maximum height of the surface (Sz) was computed as the sum of the absolute
values of the maximum peak height (Sp) and the maximum pit height (Sv) from the mean
plane

Sz = Sp + |Sv| . (4)

From surface metrology literature [23], extreme parameters are being considered in
relation to the surface damage, while the averaged parameters are related to functional
aspects of the surface.

However, in cultural heritage applications, attention must be paid to the fact that
an artifact is a complex object with a hand-processed surface, characterized by a non-
homogeneous micro-geometry. Moreover, surface damages and modifications may be
induced by various external factors, not controlled, related to the processed materials and
interactions with the environment (microclimate), as well as to the human intervention
(e.g., conservation treatments).

2.1.2. Spatial Parameters

The power spectrum density (PSD) of a rough surface is defined as

PSD(qx, qy) =
1

(2π)2

∫ ∫
A
〈z(x, y)z(0, 0)〉e−i(qx+qy)dxdy , (5)

where 〈. . . 〉 is the ensemble average and qx, qy are wavevectors in the x and y directions
(qi = 2π/λi, where λi is the spatial wavelength). The PSD is a useful tool that allows for
highlighting the contribution of different spatial wavelengths.

From the literature, the surface roughness power spectrum provides statistical infor-
mation on the surface topography that carries insights about contact mechanics, friction,
and adhesion, as reviewed in [25]. It is particularly effective in comparing surfaces mea-
sured with different instruments and techniques [26], i.e., with different spatial-frequency
bandwidth limits. A review on the quantitative characterization of surface topography
using spectral analysis is given in [27]. A PSD analysis of surface profiles can also be
employed in the detection of and reduction in high-frequency measurement noise [28].
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PSD-based techniques are thus expected to have an impact on the study of surface
treatments in artwork conservation, involving multiscale processes, that are measured by
multimodal techniques. The PSD function is interesting for controlling the performance of
scanning microprofilometry in an out-of-laboratory environment, i.e., a museum, that is
subjected to vibration.

In cultural heritage applications, the multiscale approach based on PSD has been
recently demonstrated by the authors to compare the surfaces of an archaeological object
and its 3D printed replica [29] and to validate the haptic fruition of artworks [30].

2.1.3. Hybrid Parameters

The ISO standard provides two hybrid parameters, which combine amplitude and
spatial information and are interrelated. The RMS gradient or slope (Sdq) is defined as

Sdq =

√√√√ 1
A

∫ ∫
A

[(
∂z(x, y)

∂x

)2

+

(
∂z(x, y)

∂y

)2
]

dxdy , (6)

and it can be used for inspecting surface anisotropy and cosmetic appearance [20]. Among
the optical techniques, the conoscopic holography adopted in this study was shown to be
effective for measuring steep slope surfaces [31].

The developed interfacial area ratio Sdr was calculated by summing the local area
when following the surface curvature

Sdr =
1
A

∫ ∫
A

√1 +
(

∂z(x, y)
∂x

)2

+

(
∂z(x, y)

∂y

)2

− 1

dxdy

 . (7)

It can be used as a measure of the surface complexity when analyzing the steps of
surface processing. A flat and smooth surface has an Sdr value of zero.

From the literature [3], hybrid parameters characterize the shapes of the structures of
the painting, which influence the specular and diffuse rendering of the light on the artwork.

2.2. Design of the Validation Experiments: The Treatment of the Tintoretto Masterpiece

The experiments were performed on the altarpiece by Tintoretto St. Martial in Glory,
situated in the Venetian Church of San Marziale. Beside the importance of the Tintoretto
canvas as a historical masterpiece, it is an exemplary case study for our aims. Specifically,
due to the oxidation of the old pigmented varnish layer and the presence of degraded
products, the painting surface was subjected to an experimental multi-step cleaning treat-
ment performed with Er:YAG laser (λ = 2400 nm) in combination with different solvent
mixtures [10].

In order to demonstrate the role of surface metrology for in situ and in-process paint-
ing monitoring, test areas were prepared ad hoc by the restorers for exemplary experiments
with the microprofilometer. Different measurement sessions were carried out to analyze
the condition of the microtexture of the painting during the laser and the chemical clean-
ing procedures.

1. Multi-step treatment laser–chemical
The experiment analyzes the surface processed with the two-phase laser–chemical
cleaning treatment. The different steps of the procedure are studied in a single region
of interest (ROI) or in multiple ROIs, thus testing an “in-process” or an “off-line”
diagnostics. Multiple ROI testing is necessary when performing the optimization of
parameters (e.g., the laser pulse) for a single step.

Multiple ROIs Profilometry is performed on different test areas of a red lake
painted surface, in which the main steps are reproduced: a ROI is not treated,
two ROIs are treated with the laser set at different pulse modes, and a ROI is
treated with the laser combined with a specific chemical treatment.
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The typical practice, in which the restorer prepares various test areas of the
treatment, for a performance analysis is carried out off-line (see Figure 1a).

Single ROI Profilometry is performed on a region painted with azurite and lead
white, which was pre-treated with solvents to remove most of the degraded
upper layer (old varnish and candle soot), leaving residues [10]. The ROI is
subjected to the whole laser–chemical cleaning treatment and the temporal
evolution of the surface is monitored at different steps of the procedure.
It is a controlled situation, in which an in-process diagnostics is performed in
synergy with the restorer (see Figure 1b).

2. Chemical treatment steps
The experiment analyzes the effects of the chemical treatments on the microsurface.
In this case, different ROIs treated with different solvent mixtures are acquired.
A typical situation is the quality control being performed off-line on the final surface
subjected to different processing (see Figure 1c).

Table 1 summarizes the surface treatment samples for the experiments (further de-
tails in [10]).

(a)

(b) (c)

Figure 1. Pictures of the surface samples with the cleaning test detailed in Table 1. Experiment 1: (a)
Multiple ROIs of red lake on St. Peter’s cloak with the treatment steps, original non-treated (ROI 1),
laser (ROIs 2 and 3), laser–chemical (ROI 4). (b) Single ROI of azurite mixed with calcium carbonate,
lead white, red ocher, and carbon black. Experiment 2: (c) ROIs labeled with stars treated with
different solvent mixture at different concentrations.
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Table 1. Description of the surface treatment samples.

Experiments ROI Laser Er:YAG Solvent

1. Multi-step treatment:

a. Multiple ROIs, red lake

A1 / /
A2 Very Short pulse 1 /
A3 Short pulse 2 /

A4 Short pulse isooctane 80% ethyl alcohol
20%

b. Single ROI, azurite T0,T1,T2 Short pulse isooctane 80% ethyl alcohol
20%

2. Chemical treatment steps 1, . . . , 10 / 10%, . . . , 100% ethyl alcohol
1, . . . , 10 / 10%, . . . , 100% acetone

1 In very short pulse mode (150 µs), with 150 mJ nominal energy and a spot diameter of 4.5 mm, 5 mm and 6 mm
at 10 Hz and 15 Hz, the fluence was from 0.32 J/cm2 to 0.65 J/cm2. 2 In short pulse mode (250 µs–300 µs), with
150 mJ to 200 mJ nominal energy and a spot diameter of 5.5 mm, 6 mm and 7 mm at 10 Hz, 15 Hz and 20 Hz, the
fluence was from 0.38 J/cm2 to 0.55 J/cm2.

2.3. Microprofilometry Based on Conoscopic Holography Sensors for In Situ Measurements
of Paintings

In order to effectively acquire the surface texture of polychrome paintings in situ,
we optimized the setup of a portable microprofilometer based on interchangeable single-
point, conoscopic holography depth sensors, which was implemented by our group and
first described in [7]. A comprehensive description of the project developed for surface
microprofilometry on artworks based on scanning conoscopic holography can be found
in [2].

The measurements were carried out in situ, in the Venetian church, during the restora-
tion of the painting (see Figure 2).

Figure 2. Scanning profilometry on the Tintoretto masterpiece Saint Martial in Glory, altarpiece from
the church of San Marziale in Venice (Italy). The conoscopic holography sensor is mounted on
micrometric stages to scan the painting in the vertical plane at safe working distance.
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The system provides a high resolution in both the vertical (down to the order of sub-
micrometers) and lateral (down to the order of micrometers) directions. Two orthogonally
mounted linear stages move the optical probe to scan the painting plane vertically, at fixed
working distance, allowing for micrometric measurement of the surface heights, as depicted
in the setup in Figure 2. The painting surface is sampled as a set of horizontal profiles. The
motion system covers a scan area of 30 cm × 30 cm with a minimum incremental step of
0.1 µm. The scanning measurement is non-contact and noninvasive for the pictorial matter,
the single-point conoscopic holography depth sensor uses a class 2 laser source (<1 mW)
of 655 nm operating wavelength.

Performing micrometer measurements in an out-of-lab environment is challenging,
specifically in Venice, where ground vibrations are an unavoidable factor. Before carrying
out the in situ measurements, we carried out optimization tests for the best trade-off
between parameters, e.g., scanning velocity and probe-lens coupling. The optimized setup
involved the use of the 100 mm lens with the device mounted on a sorbothane damping base
and a scan velocity set at 5 mm/s. The scanning of the Tintoretto canvas was performed in
continuous mode with the probe in pulse-triggering and a sampling spatial step of 50 µm
in both the scan (horizontal) and subscan (vertical) directions.

The depth sensor parameters are summarized in Table 2. A depth repeatability
of 1.5 µm was estimated on the ancient painting. Spectrometry testing allowed us to
investigate the laser response on the polychrome paint layer, assisting in finding the finest
settings [7]. The laser performance was then tweaked before starting each measurement
session, finding the best options in terms of power and frequency. Then, the quality was
evaluated using the signal-to-noise ratio, the total signal collected, and the correct working
distance based on lens-probe coupling [32].

Table 2. Characteristic parameters of the conoscopic sensor ConoPoint-3 coupled to the 100 mm lens.

Stand-Off Distance Working Range Accuracy 1 Laser Spot Repeatability 2

95 mm 35 mm 15 µm 63 µm 1.5 µm
1 Depth accuracy, defined as difference between two flat surfaces measured compared with the nominal value.
2 Depth repeatability, estimated as the standard deviation of 10,000 static measurements performed on a represen-
tative painting sample.

2.4. The Surface Metrology Workflow

Figure 3 describes the workflow of this work within the general framework of involv-
ing surface metrology in heritage science.

The real surface was digitized in the instrument bandwidth, obtaining the so-called
primary surface. The form of each surface acquired was then removed by a least-squares fit
of second-order polynomial. In this specific case, the support of the painting was a canvas,
and a surface analysis was performed on a near planar patch [33]. Thus, removing a second-
order polynomial as a general form is, in our experience, the preferable approach in this
case study. It is also worth noting that topography filtering that employs the measurement
length as a cut-off can be used, e.g., robust Gaussian or Legendre polynomials [34]. The
metrology parameters are then calculated in the scale-limited surface S-F in the bandwidth
set by the x/y resolution of the scanning profilometer and the measurement x/y length.
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Figure 3. Workflow diagram in the general framework of metrology in cultural heritage. Algorithms
are implemented in MatLab environment, starting from the open-source SCOUT toolbox [35]. Scale-
limited roughness components separation is not carried out in the present work, but an example of
multiscale analysis performed by the authors can be found in [8].

3. Results
3.1. Multi-Step Treatment Laser–Chemical

The evolution of the microsurface during the two-step process (laser + chemical) is
analyzed in a single and in separate ROIs. In addition, the multiple ROI experiment allowed
for testing the surface processed with the Er:YAG laser set in different modes.

Following the workflow (Figure 3), the two- and the three-dimensional topography
maps shown in Figures 4 and 5 were obtained from the surface heights data acquired by the
microprofilometer after the form removal (least-squares fit of second-order polynomial) and
represent the leveled surface texture. The threshold for the outlier was set to three-sigma;
the settings of the conoscopic holography sensor and scanning parameters were effective in
sampling the diffusive, polychrome painting surface. Surface metrology was thus carried
out on this dataset.

From a preliminary, qualitative inspection of the heights map, the surface before and
after the laser–chemical treatment is similar in its appearance and micro-geometry. The
surface topography appears random in its micro-structure. No defects, deformations, or
pattern left by the laser processing and the chemical removal were visually observable in
the final surface. This is clearly evident in Figure 5 (same ROI), while in Figure 4 (separate
ROIs), the different local features, like the painting strokes, are visible. The smoothing of
the surface texture in the intermediate laser processing step, visible in the red lake region
(Figure 4), is the effect of the laser on the layer of pigmented varnish, not present in the
pre-treated azurite region (Figure 5).
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(a) non-treated

(b) Er:Yag laser (Very Short pulse)

(c) Er:Yag laser (Short pulse)

(d) Er:Yag laser + chemical

Figure 4. Experiment 1-dataset (a). Different red lake ROIs with different surface processing: surface
data plotted as intensity maps and 3D visualization.

Quantitative analysis was then performed using the areal field parameters given in
Section 2.1. The amplitude parameters Sz, Sq, Ssk, and Sku were computed for each sample
and compared vs. the treatment state in Figure 6.
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(a) pre-treated

(b) Er:Yag laser treated

(c) Er:Yag laser + chemical treated

Figure 5. Experiment 1-dataset (b). Evolution of a single azurite ROI at different surface processing
steps: surface data plotted as intensity maps and 3D visualization.

First, the maximum height Sz was analyzed as an indicator of possible surface damage.
As mentioned before, the values of some roughness parameters may clearly depend on
the position of the ROI across the non-homogeneous painted surface; here, the observed
variations are also in relation to different painting features such as the brushstrokes. The
non-treated surfaces were characterized by Sz values of the same order, and the values
in the final treated areas showed that the surface at microscale is preserved at this level,
thus suggesting that the laser–chemical cleaning procedure can be considered noninvasive.
Indeed, no formation of anomalous peaks or pits is observable in the surface topography
(Figure 4). The smoothing of the red lake surface in the laser steps, observed above in the
surface morphology, corresponds to a ∆Sz ∼ 30 µm, for the two laser settings.

As further confirmation of noninvasive surface processing, the RMS roughness Sq
was observed to have a similar value in the non-treated surface and in the one subjected
to the entire two-step treatment. It is interesting that the same result was observed when
monitoring the single ROI of azurite, ∆Sq = (1.5± 1) µm, and when monitoring the surface
in separate ROIs of red lake, ∆Sq = (2.5± 0.8) µm. Again, a lower Sq roughness was
observed in the red lake due to the softening effect of the laser on the varnish layer, which
was removed by the chemical process. As expected, the effect of the cleaning treatment was
a sharper final texture.

We do not observe differences in the samples treated with different laser settings
analyzing the amplitude parameters.

The averaged parameters Sq, Ssk, and Sku may be further analyzed concerning the
surface functioning. A conservation of the Sq micro-roughness is important in relation to
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the glossiness of the painting surface. Sq was found to have similar values on different
areas of different pigments. Regarding the higher moments, we observed, in general, that
the painting surface has a symmetrical ADF (Figure 7) with a nearly null skewness and
a kurtosis around the normal value, before and after the treatments. The surface was not
characterized by pores or cracks, and the distribution of peak and valleys was almost
symmetric with respect to the mean plane. We did not observe strong variations in the Ssk
and Sku parameters that would have indicated a response of the surface to an invasive
cleaning treatment.

Figure 6. Amplitude roughness parameters of the painting surface at the different processing steps:
before the treatment, intermediate (laser), and final (laser+chemical). The plot combines the results of
the experiments in the azurite (blue markers) and red lake (red markers), with the cleaning treatments
applied in multiple and single ROI (see Table 1).

(a) (b)

Figure 7. Probability density function of the heights: (a) multiple ROIs of red lake. (b) Single ROI of
azurite.
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It is interesting to compute the power spectrum of the surface heights, from which
the contribution to the overall roughness at different frequency bands can be inspected.
Figure 8 represents the averaged one-dimensional PSD in the horizontal (scan) direction.
The effect of the laser cleaning is particularly evident in the red lake (Figure 8a): the PSDs
computed for the surfaces not treated (A1) and treated (A2, A3) showed a decrease in the
mid-low frequencies (from a spatial wavelength around 3 mm) due to the softening effect
of the laser on the varnish layer. Then, the chemical treatment restored a surface (A4)
similar to the initial one. In the case of the azurite (Figure 8b), most of the varnish layer was
removed before the treatment, and hence, the PSDs were similar for the surfaces T0, T1, and
T2. The in-band texture component analysis based on PSD thus supports and completes
the results obtained above, where the global roughness parameters were computed, further
confirming the noninvasive nature of the overall treatment.

Again, we did not observe a clear difference in the samples treated with a different
laser settings using spatial parameters. In the face of the same Sq value, it is interesting
to observe a weak modification of the roughness signal around a spatial wavelength of
500 µm, increasing for the A3 sample (short pulse) with respect to A2 (very short pulse).

(a) (b)

Figure 8. Average PSD along the scan direction: (a) multiple ROIs of red lake. (b) Single ROI
of azurite.

3.2. Chemical Treatment Steps

This experiment explored the effects of the chemical solvent cleaning on the painting
surface. As reported in the recent review [36], this is a challenging topic that requires a
strong collaboration between scientists and conservators. Figure 9 shows the experimental
area with the ROIs treated with two binary mixtures of isooctane–acetone and of isooctane–
ethanol at different concentrations. Technical photography in the UV range, both in
luminescence and reflectance mode, was performed and jointly analyzed with surface
microprofilometry, in order to allow for the monitoring of the cleaning action of the solvents.

As in the previous case, the form (least-squares fit of second-order polynomial) was
removed from the surface height data acquired by the microprofilometer, with the outlier
threshold set to three-sigma.

The solvent mixture became stronger with increasing concentrations of ethanol or
acetone, but the first analysis concerning the variation in the RMS roughness parameter
with the solvent action did not suggest a dependence. Thus, in order to investigate if
there is a combined effect of texture spacing and texture amplitudes that differentiates
the surfaces with similar average roughness, we computed the hybrid parameters RMS
gradient Sdq and the developed interfacial area ratio Sdr. These parameters allowed us to
characterize the structure of the surface, which influences the reflection of the light and,
hence, the final visible aspect of the painting. As can be seen in Figure 10, when surface
variations become evident in the UV response (see Figure 9b), there are changes in both
the Sdq and Sdr parameters. The UV rays interact with the outermost surface layer, and
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hence, they are sensitive to what is or is not removed. At 40% of concentration of ethyl
alcohol and 60% of acetone, there is a clear change in both the imaging results and the
calculated parameters.

(a) (b)

Figure 9. Technical photography: (a) VIS. (b) UV reflected. The ROIs were treated with solvent
mixtures isooctane-acetone (left column) and isooctane-ethanol (right column), with the concentration
of acetone and of ethanol increased at a step of 10% (top to bottom). ROIs labeled with stars represent
two particular mixtures chosen by the restorer.

(a) (b)

Figure 10. Variation in the hybrid parameters with solvent concentration: (a) RMS gradient Sdq.
(b) Developed interfacial area ratio Sdr. Lighter colors represent the solvent concentrations before
they become effective (based on UV imaging).

As expected [37], the Sdq and Sdr parameters are interrelated (see Figure 11). Interest-
ingly, there is a well-defined correlation of the overall cleaning process (both acetone- and
ethanol-based) with the two different treatments, having their own range of specific values
in the Sdq-Sdr space.

In the case of acetone-based cleaning, there is a clustering of values into two different
groups before and after the effect of the solvent becomes evident, whereas this is less
evident in the case of ethanol-based cleaning. As reported in the literature [23], the Sdr and
Sdq parameters are related to the micro-geometry of the surface: greater Sdr means more
complex micro-geometrical features while greater Sdq means that micro-asperities or peaks
have a steeper or sharper slope. In this case, as both solvents become effective, the surfaces
tend to show closer values in the Sdq-Sdr space.
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Figure 11. Interrelation between RMS gradient and developed interfacial area ratio for the different
chemical cleanings. The different symbols represent the different concentrations of acetone (red-
orange) and ethyl alcohol (blue-light blue).

4. Discussion

In addition to discussing the surface metrology workflow, the results obtained in
the Tintoretto case study open up further consideration of various aspects. Within the
main goal of demonstrating the possible role of surface metrology in heritage science, it is
interesting to point out the position of the technique with respect to the routine diagnostics.
Furthermore, it is discussed which painting surface features are analyzed in the proposed
workflow.

4.1. Surface Metrology in Heritage Science

Above, we computed a quantitative analysis of the painting surface structure following
a surface metrology workflow, from surface sampling to roughness analysis. In particular,
we specifically explored the meaning of the ISO areal field parameters in the context of
cultural heritage that represents a novel application field. In the face of this analysis, there
are important heritage applications in which the analysis of surface topography in artworks
is desirable: monitoring the cleaning treatments is an exemplary case.

The scanning profilometer based on conoscopic holography sensors [7] has proven
effective in collecting meaningful data also in out-of-lab, real environments, thus enabling in
situ and in-process painting monitoring. The triggered acquisition in continuous scanning
at a resolution of 50 µm with a depth repeatability of 1.5 µm allowed us to sample the
painting surface features and the calculation of the roughness parameters.

Scanning conoscopic holography is a recognized tool in painting diagnostics; however,
as reviewed in the Introduction, it is mainly used for inspecting surface morphology or for
single-parameter roughness estimations (usually Sq) but not within a surface metrology
framework. The technique was specifically applied to layer thickness estimation in erbium
laser ablation, mainly by height map subtraction [17], however recognizing the impossibility
of aligning the range map before/after the treatment and preferring the OCT technique [19].

To innovate the field, the results in this study have demonstrated the combined use of
the roughness parameters (amplitude, spatial, and hybrid) for characterizing the surface
topography of the Tintoretto painting subjected to laser and chemical treatments, which
is consistent and goes beyond the visual inspection of the surface map. The proof-of-
concept experiment was given both in separate ROIs than in a single ROI, following its time
evolution by spatially registering the regions down to single pixel (50 µm), as described in
our previous work [30].

It is suggested that the maximum height Sz be used as a first indicator of possible
damaged regions where anomalous peaks or holes are present. Higher moments are also
useful to this purpose: in general, we have observed that, in the sampled bandwidth, the
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painting surfaces have a symmetrical ADF with a nearly null skewness Ssk and a kurtosis
Sku around the normal value, implying a surface not characterized by pores or cracks with
a distribution of peaks and valleys almost symmetrical. The RMS roughness Sq is used as
descriptor of the mean height of the surface asperities when comparing the surfaces. In this
case, the non-treated surface and the one subjected to the laser and chemical treatments
have similar Sq values, supporting the noninvasive nature of the overall treatment.

The results have shown that, in heritage applications, the power spectrum PSD is an
interesting tool as it allows us to investigate the roughness at different spatial frequency
bands, thus enabling us to investigate the effects of multi-step treatments. The softening
effect of the laser and the return of a surface very similar to the non-treated one after
chemical removal were evident. Such an observation was deemed crucial for the conserva-
tors, confirming that their experimental cleaning treatment based on Er:Yag laser [10] was
not invasive.

Hybrid parameters such as Sdr and Sdq that combine amplitude and spatial informa-
tion can be useful when the other parameters are not very informative. Sdq gives an idea of
how micro-asperities tilt sharper, while Sdr deals with overall complexity of the surface.
Here, as a proof-of-concept experiment, we used these two parameters and their interrela-
tion to monitor the effects of the different solvent concentrations on the painting surface
during the chemical cleaning tests. Here, for example, the use of the single roughness
parameter Sq did not provide results.

The surface metrology workflow (Figure 3) included the step of multiscale roughness
analysis, which was not performed in this work as it would have required different hy-
potheses, namely, the sampling of surfaces in a larger spatial bandwidth. The limit of the
50 µm spatial step was imposed by the device setup in extreme conditions, while the x/y
lengths (order of centimeters) were the size of the treatment tests made by the restorers.
Multiscale analyses were previously demonstrated by the authors in the study of metal
artworks treatments [8], using the scanning profilometer on optical table down to a spatial
resolution of 5 µm and prepared mock ups. The application to paintings will be explored
in our next work. However, an interpretation of waviness surface features in genuine
artworks is difficult.

4.2. Average Roughness or Brushstrokes?

The main difficulty in cultural heritage applications is that ancient artworks are very
complex objects, with the materials subjected to unknown processes across centuries. In
this work, the surface samples are treated as cloud of points and a statistical analysis is
performed using the areal field parameters. The surface of the Tintoretto painting, before or
after the laser–chemical cleaning, is considered (locally) a stochastic-dominated surface and
it is analyzed in term of average surface descriptors in small ROIs (order of centimeter). At
the larger scale, an ancient painting, which is a hand-made artistic object with its complex
and unique conservation history, can be likely treated as a stochastic-deterministic surface,
on which advanced feature-based analysis [38] of topography could be tested, e.g., to
study brushstroke pattern as an artist fingerprint [3]. To this regard, we point out that the
possible pattern left by the manual cleaning treatment (i.e., by hand-held laser probe or
solvent swabbing) across the painting was out of the aim of the present study and that the
experimental test areas were prepared and supposed to be representative of the average
painting surface.

4.3. Microprofilometry as Complementary Diagnostic Technique

Finally, it is interesting to discuss the position of surface profilometry and roughness
analysis with respect to the conventional techniques that are currently being used for
in situ monitoring the cleaning treatment in paintings. In particular, among the routine
diagnostics carried out by the conservators, an important role is played by the optical
imaging techniques that allow for a full-field analysis with accessible equipment [10].
Figure 12 refers to the exemplary Tintoretto case study.
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(a) (b) (c) (d)

Figure 12. Technical photography on Tintoretto detail (experiment 1): (a) VIS. (b) UV-induced VIS
fluorescence. (c) UV reflected. (d) RTI.

Concerning the painting surface morphology, raking light imaging or the more ad-
vanced reflectance transformation imaging (RTI) can be applied for an overall inspection
of the surface micro-geometry, i.e., surface asperities and local features, after which a
quantitative measurement with profilometry on selected areas is desirable. RTI is estimated
to detect morphological changes and damage (e.g., holes and abrasion) in paintings down
to 0.3 mm [39]; the microprofilometry validated here on Tintoretto provides topography
maps at microscale and an average roughness estimation of ∼20 µm.

It is important to point out that, concerning the painting surface materials, the effi-
ciency of the cleaning treatment with respect to the removal of the outermost layers is
supervised in the VIS and UV images, while the profilometry provides the complementary
analysis of the surface structure. The joint use of imaging and profilometry is being ap-
plied in painting diagnostics, showing that superimposition of 2D and 3D data can assist
conservators [18]. A recent paper by Borg et al. [40] explored the joint use of pointwise
spectroscopy and profilometry on a canvas mockup. The results obtained in our work show
that profilometry supported by quantitave analysis within a surface metrology workflow
(ISO standard) is consistent and effective in monitoring the laser and chemical treatment on
ancient canvas in situ. This specific and difficult application emphasizes a general potential
for artwork diagnostics.

5. Conclusions

In this research, the micro-geometrical features and related 3D surface texture pa-
rameters, measured with scanning conoscopic holography, were analyzed for in situ and
in-process monitoring the cleaning treatment on a genuine canvas painting by Tintoretto,
thus discussing a workflow for surface metrology in heritage science.

Microprofilometry of the painting was performed by non-contact optical method in
an out-of-lab environment, specifically inside a Venetian Church, where external influences
were unavoidable and were combined with intrinsic internal vibrations of the instrument,
mainly due to the motorized stages. In this work, we have shown that the scanning
conoscopic holography method is robust with respect to internal and external vibrations
thanks to an optimized setup that required the use of a sorbothane damping support,
the conoscopic depth sensor coupled to a 100 mm lens, and a 50 µm spatial step with a
slow scanning using a high-precision stage system. A depth repeatability of 1.5 µm was
estimated on the ancient painting.

We worked in synergy with the restorer who prepared ad hoc test areas for proof-of-
concept experiments on surface metrology for painting diagnostics. The surfaces acquired
in the measurement bandwidth were shown to be suitable in order to perform wide and
in-band roughness analysis that allowed for a twofold discussion: on the one hand, the
possible correlation with the performance of the laser and chemical surface processing,
and on the other hand, practical use of the ISO areal field parameters in the heritage
field, starting from the meaning and commonly accepted uses reviewed in engineering
applications. As a result, a complementary use of amplitude, spatial, and hybrid parameters
allowed us to assess the noninvasive character of the restoration treatment, a multi-phase
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procedure based on erbium laser and chemical steps, to the extent of which the average
microscale surface amplitudes are preserved.

The study has demonstrated that the use of surface metrology techniques with
conoscopy holography datasets enables the quantitative analysis of the surface topog-
raphy in ancient paintings, i.e., beyond the widespread practice of a qualitative inspection
of surface morphology or based on a single roughness parameter (usually Sq). Even if
the definition of standard guidelines is generally not possible for ancient artworks, being
unique and complex manufacts, the proof-of-concept carried out on Tintoretto clearly
show the potential of the approach, thus calling scientists toward further cross-disciplinary
research in order to bridge the gap between consolidated engineering metrology and
unexplored heritage science applications.
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