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Abstract: Human physical activity recognition from inertial sensors is shown to be a successful
approach for monitoring elderly individuals and children in indoor and outdoor environments. As a
result, researchers have shown significant interest in developing state-of-the-art machine learning
methods capable of utilizing inertial sensor data and providing key decision support in different
scenarios. This paper analyzes data-driven techniques for recognizing human daily living activities.
Therefore, to improve the recognition and classification of human physical activities (for example,
walking, drinking, and running), we introduced a model that integrates data preprocessing meth-
ods (such as denoising) along with major domain features (such as time, frequency, wavelet, and
time–frequency features). Following that, stochastic gradient descent (SGD) is used to improve the
performance of the extracted features. The selected features are catered to the random forest classifier
to detect and monitor human physical activities. Additionally, the proposed HPAR system was
evaluated on five benchmark datasets, namely the IM-WSHA, PAMAP-2, UCI HAR, MobiAct, and
MOTIONSENSE databases. The experimental results show that the HPAR system outperformed the
present state-of-the-art methods with recognition rates of 90.18%, 91.25%, 91.83%, 90.46%, and 92.16%
from the IM-WSHA, PAMAP-2, UCI HAR, MobiAct, and MOTIONSENSE datasets, respectively.
The proposed HPAR model has potential applications in healthcare, gaming, smart homes, security,
and surveillance.

Keywords: human physical activity recognition (HPAR); Hilbert–Huang transform (HHT); inertial
measurement unit (IMU); stochastic gradient descent (SGD)

1. Introduction

Human physical activity recognition (HPAR) is a subject of research that focuses on
developing and experimenting with novel techniques for automatically recognizing activi-
ties via signals acquired by wearable or ambient sensors [1]. However, for the most part,
ambient sensors require installation in a household environment, and appliances such as
camera systems are seen as obtrusive, specifically by aging people [2]. For such reasons, the
emphasis has turned to the employment of wearable sensors in recent years. Fitness track-
ers, smartphones, and inertial sensors are currently receiving adequate attention [3–6]. This
is mainly due to the widespread use of gadgets by the general public and the incorporation
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of different types of inertial sensors embedded in electronic devices such as accelerometers,
gyroscopes, magnetometers, and GPS.

Human physical activity recognition (HPAR) from wearable body sensor networks
is gaining rapid growth due to its significant potential in various application domains,
including smart healthcare, smart homes, security, biofeedback systems, assistive robots,
and transportation. Each application demands continuous real-time detection and track-
ing [7–11]. Additionally, these applications could provide significant access to the medical
information of unwell seniors. In smart healthcare, critical information about elderly in-
dividuals is acquired. That acquired information is sent in real-time to virtual assistant
services via communication technologies [12]. Furthermore, these wearable sensors can
be exploited to detect and track various elements of human motion. Real-time monitoring
and surveillance of the physical movements of elderly individuals and children can help
them to feel more secure and confident. In the context of smart homes, in the last decade,
smart home technology has shifted its focus towards individuals with limited capabilities
(e.g., due to aging or disabilities). This interest is due to the possibility of smart homes as-
sisting elderly adults and individuals with disabilities in their residences while minimizing
the significant work required of households or professional caretakers. Similarly, biofeed-
back treatment is effective when used in conjunction with virtual reality (VR) systems to
detect changes in biological functions of the body, such as blood pressure, pulse rate, and
heart rate; these systems may also be effective for stress management approaches [13]. By
keeping an eye out for suspicious behavior on the part of individuals and anticipating
aggressive behavior in advance, unpleasant consequences can be mitigated. For decades,
security individuals have been relatively adept at locating suspected individuals. However,
humans are fallible and may make false allegations. This is why automated security and
surveillance systems have exponentially been gaining attention, (i.e., to assist the mon-
itoring process). Substantial increased criminal activity on a global scale demands the
development of more automated state-of-the-art technologies to improve surveillance and
produce more precise results [14]. In general, the primary objectives of body-worn-based
inertial sensors are to bring effective real-time monitoring and correct the detections of
actions, behaviors, and their impacts using sensor data.

Recently, there has been a significant demand for wearable-based inertial sensors for
various applications. These novel developments have impacted numerous facets of human
life, most notably smart healthcare and daily living monitoring. Our research focuses pri-
marily on inertial sensors, such as accelerometers, gyroscopes, and magnetometers, which
allow us to analyze daily human life in various scenarios to track and detect changes in
position, body motion, and three-dimensional (3D) spaces [15]. Furthermore, the healthcare
sector exploits these sensors to measure physical and emotional activities. However, they
can also be utilized to track radical shifts in the user’s position, such as tripping; this data
can be used to assist in preventing falls and providing immediate support, mainly to the
elderly. Considering the practicality of such wearable inertial sensors, significant barriers
remain, such as real-time tracking of the information collected from the sensors on the
network. These types of data are generally hard to manage in real time.

In this paper, we propose a human physical activity recognition (HPAR) framework
that is intended to lessen the challenges associated with recognizing the daily physical
activities of humans by exploiting wearable IMU sensors. Our HPAR framework in-
volves five major steps: data acquisition, a signal filtering process, augmented feature
descriptors, feature selection, and recognition. First, we acquired IMU data from five main
datasets—IM-WSHA, PAMAP-2, UCI HAR, MobiAct, and MOTIONSENSE. The required
input data were passed through numerous denoising methods in which we utilized a
median filter for inertial sensor-based benchmark datasets to reduce noise from the original
signal. After denoising the inertial signal data, discriminative feature descriptors were
extracted from four main domains: time, wavelet, frequency, and time–frequency domain.
Additionally, we analyzed and evaluated the feature selection method in conjunction with
a state-of-the-art random forest model in order to create a precise model with a compact
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and discriminative feature vector space. To assess the performance of our HPAR model,
we applied our proposed framework to five benchmark datasets: IM-WSHA, PAMAP-2,
UCI HAR, MobiAct, and MOTIONSENSE. The results revealed that the proposed HPAR
model outperformed other existing state-of-the-art systems. The following are the main
contributions and highlights of this paper:

• The augmentation of discriminative features from various domains makes the pro-
posed human physical activity recognition model robust in the presence of noisy
data. It maintains locally dependent characteristics of the random forest algorithm,
providing a novel approach for improving recognition performances across all five
benchmark datasets.

• A hybrid feature descriptor model with random forest is proposed to cope with the
convoluted patterns of human physical motion activities with improved classification
accuracies in all datasets.

• The complex behavior transition, especially in our self-annotated dataset IM-WSHA,
requires more time to recognize activities. Therefore, we utilized a higher window
size so that our model could work with a minimal number of changes. We also created
a self-annotated dataset named Intelligent Media Wearable Smart Home Activities
(IM-WSHA), comprising 11 (static and dynamic) daily life log activities, along with
divergences in gender, weight, height, and age.

• Additionally, a comprehensive analysis was performed for human physical activities
on five public benchmark datasets: IM-WSHA, PAMAP-2, UCI HAR, MobiAct, and
MOTIONSENSE. Experimental results reveal an improved recognition rate, which
also outperforms other state-of-the-art systems.

The remainder of this study is structured as follows: Section 2 provides a detailed
overview of the literature concerning human physical activity analyses. Section 3 addresses
the proposed framework of our HPAR model. Section 4 analyzes the five benchmark
datasets along with the detailed experimental results. Finally, Section 5 presents the paper’s
conclusion and future research perspectives.

2. Related Work

There are two standard ways to analyze HPAR: vision sensor-based HPAR and wear-
able sensor-based HPAR. Various characteristics and insights may be drawn from this
analysis, including the acquired image and signals, extracted feature descriptors, and meth-
ods utilized for dimensionality reduction and human activity classification. This section
summarizes previous research on human physical activity recognition (HPAR) analyses via
vision sensors and wearable sensors.

2.1. HPAR via Vision Sensors

Vision-based HPAR relies entirely on visual sensing technologies, including surveil-
lance and video cameras, image sequences, video sequences, modeling, segmentation,
detection, and tracking. Liu et al. [16] presented a human activity recognition system
incorporating a non-linear support vector machine (SVM) to recognize twenty distinct
human activities via an accelerometer and RGBD camera sensor data. Their experimental
results indicate that their proposed method is significantly more robust and effective than
the baseline method at recognizing activities. However, the main constraint of this study
involved the performance of unusual classes, particularly transition activity classes. Addi-
tionally, they intended to improve the performance by incorporating this class imbalance
issue into their classification model. Yang et al. [17] developed a novel model for identifying
human activities from a video series recorded by depth-based cameras. Additionally, they
discussed the low-level polynomial designed from a nearby local hyperspace. Further-
more, their proposed system is adaptable, i.e., it could be used in cooperation with the
joint trajectory-matched depth sequence. Their proposed model was comprehensively
analyzed and tested on five benchmark datasets. The experimental outcomes reveal that
their proposed strategy outperformed existing methods on these datasets by a significant
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margin. However, their proposed system lacked the utilization of complementary informa-
tion along with the integration of various features from both color and depth channels in
order to create more state-of-the-art representations. Sharif et al. [18] proposed a hybrid
technique for efficiently classifying daily human activities from an acquired video frame.
In addition, their proposed system involves two significant steps. Initially, various subjects
were detected in the acquired video frame via a combination of a new uniform and EM seg-
mentation. Then, utilizing vector dimensions, they extracted local properties from specified
sequences and combined them. Additionally, a new Euclidean distance along with joint
entropy was exploited to pick the optimal features from the augmented vector. The optimal
feature descriptors were catered to the classifiers for human activity recognition. However,
occlusions were not addressed in this work. Another possibility is to incorporate saliency
to maximize segmentation accuracy. In [19], Patel et al. proposed a method for detecting
and recognizing the daily living activities of humans. Additionally, they explored various
human visual databases to detect and monitor multiple human subjects. The background
subtraction method was utilized to monitor the different persons in motion. In compar-
ison, human daily living activities via the HOG feature extraction and an SVM classifier
generate better recognition results with fewer false detections. Ji et al. [20] introduced a
unique approach for interactive behavior recognition based on different stage probability
fusions. Additionally, they dealt with the present issues in the interaction classification
algorithms, including inadequate feature descriptors resulting from improper human body
segmentation. Therefore, a multi-stage-based fusion strategy was presented to deal with
this issue. However, this technique is ineffective at addressing the intrinsic characteristics
of human behavior; instead, it is useful for categorizing abnormal behaviors, such as violent
acts and unusual events. In [21], Wang et al. presented a probabilistic-based graphical
framework for human physical activity recognition. Additionally, they addressed the issue
of segmenting and recognizing continuous action. However, these methods operate only
in offline mode. Ince et al. [22] developed a biometric system framework for detecting
human physical activities in a three-dimensional space using skeletal joint angle patterns.
Additionally, this framework exploits the RGB-depth camera, which appears suitable for
video surveillance and elderly care facilities. However, there are a few drawbacks linked
with the model. Initially, improper skeletal detection results in wrong angle estimations,
and imprecise classifications.

2.2. HPAR via Wearable Sensors

Wearable-based inertial sensors have revolutionized every characteristic of our daily
lives, from healthcare to ease and comfort. Therefore, due to the substantial demands for
improved processing capacities and reduced size requirements, we analyzed IMU-based
systems in this research. Irvine et al. [23] introduced a homogenous ensemble neural net-
work method for identifying daily living activities in an indoor environment. Additionally,
four standard models were developed and combined using support function fusion. Fur-
thermore, they tested their proposed framework, the ensemble neural network method, by
evaluating the attained HPAR performance with two non-parametric standard classifiers.
The ensemble neural network technique outperformed both standard models, revealing the
robustness of the proposed ensemble method. However, the work was restricted with no
method for determining a relevant subset of input features. In [24], Feng et al. introduced
an ensemble technique for recognizing HPAR, utilizing several wearable inertial sensors by
integrating an independent random forest algorithm. The improved forecasting capabili-
ties of the random forest resulted in a better option for wearable sensor-based healthcare
tracking systems. Gupta et al. [25] presented an effective physical activity recognition
system based on a portable wearable accelerometer that can be employed in a real-life
application of elderly monitoring. Additionally, they incorporated effective capabilities for
recognizing transitional behaviors. The proposed statistical features extracted additional
information about the inertial signals in the time-frame window. Furthermore, additional
cues are assessed to extract signal correlation. However, the fundamental challenge of
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this work is that only two individuals were used to acquire information, which limits
the database’s applicability in various environments. In [26], Abidine et al. developed a
weighted support vector machine (SVM) for tracking human life log activities in an indoor
environment. Additionally, they addressed various implementation issues with the HAR
methods, including redundant sequence characteristics and group variances in the learning
set. To address these problems, they presented a novel technique for recognizing life log
activities in an indoor environment. Furthermore, the entire model was based on the fu-
sions of different algorithms, including PCA, SVM, and LDA. To begin, the learning set was
lessened via the PCA and LDA features. Then, an SVM classifier was used for each class to
handle the unbalanced life log activity database to maximize the detection rate. In another
study, Cillis et al. [27] proposed a ubiquitous novel solution for locomotion patterns via a
wearable-based inertial accelerometer sensor. Additionally, their proposed model utilized
a finite feature set along with a decision tree classifier to recognize four distinct human
locomotion patterns. Firstly, they acquired features from both individual and dynamic
sets of windows. The experimental outcomes indicated that accuracy was better when
performing static tasks but much lower when performing dynamic tasks. The model’s
low processing overhead may make it well-suited for real-time applications in medical
care. In [28], Tian et al. presented an ensemble learning approach for recognizing human
physical activities. Three state-of-the-art classifiers and multiple SVMs were trained by
numerous features, resulting in an ensemble learning-based system. Additionally, an adap-
tive hybrid model extracted various features from human physical activities to improve
their recognition rate. Jing et al. [29] developed a HAR-based system for tracking life log
daily activities along with fall detection by using various wearable inertial sensors. Javed
et al. [30] presented a state-of-the-art technique to recognize human physical activities via
sensory data acquired from a two-axis smartphone accelerometer. In addition, this study
also determined the efficacy and impact of the individual accelerometer axis in classifying
human physical activities. Furthermore, this technique incorporates multi-modal sensory
data acquired from three body-worn sensors. This study demonstrates that the augmenta-
tion of inertial sensor data improves the HAR accuracy. The entire system was compared
to a complete activity set comprising cyclic, static, and random actions. Furthermore, time
and frequency domain features were extracted to gain optimal results.

3. Material and Methods

The proposed HPAR system acquired raw signals from five benchmark datasets com-
prising MEMS inertial sensors. To begin, a preprocessing step was employed to eliminate
saw-tooth wave noise caused by abrupt displacement using a third-order median filter.
Next, the filtered signal values were organized into time blocks of comparable duration.
Secondly, in feature extraction, we proposed an augmented features pool comprising five
different features in four domains: time, frequency, wavelet, and time–frequency domain.
Additionally, the acquired features were normalized using extreme values to eliminate
the possibility of complex values appearing during the final phases of feature selection.
Thirdly, a feature selection strategy was adopted for optimizing feature vectors in such a
way that the relevant optimal features were retained for further phases of data processing.
Finally, the denoised optimal selected features were served to the random forest classifier
algorithm, which analyzed the signal stream and trained and tested the model via the
optimal feature descriptor set. The proposed architecture of HPAR is presented in Figure 1.

3.1. Data Acquisition and Signal Denoising

Feature extraction was highly dependent on the denoising stage, so it was critical to
remove all noise from the acquired raw data [31]. The data collected from the sensors com-
prising the inertial measurement unit and MEMS were seriously vulnerable to interference
and noise, resulting in raw signal variances and, consequently, feature loss. As a result, we
utilized a median filter for inertial sensor-based benchmark datasets to reduce the related
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noise. The denoised and unprocessed signal components of the third-order median filter of
the inertial sensor are illustrated in Figure 2.
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3.2. Feature Extraction

In this phase, we proposed an augmented features model to obtain important feature
descriptors to assist the analysis of inertial-based signals. Additionally, it was composed of
four different major domains—time, frequency, wavelet, and frequency domain descriptors.
The filtered signals were streamed and used to abstract features from the sensor data stream.
Furthermore, signal features were retrieved from within the confined region with adequate
contextual information.

3.2.1. Statistical Features

The statistical descriptors (Sd) depict the average mean, mode, median, and min/max
signal features of the IMU signal. Additionally, these descriptors are important in assessing
the aggregate differences that come from each n physical activity.

Sd = ∑n
c=1

ar

n
,

∑n
c=1 (I− I)2

n− 1
, mi(signal)(Mi), mx(signal)(Xi) (1)

where n is the framed vector data size, a is the whole number of coefficients in the vector,
V depicts the initial vector value, and I represents the average mean of the vector data.
Figure 3 showed a three-axis plot augmented with different time domain features of walking
activities extracted from the MOTIONSENSE dataset.
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3.2.2. Hilbert–Huang Transform (HHT)

The HHT is believed to be highly effective for dealing with non-linear and stochastic
signal data [32]. For instance, data from five benchmark datasets involved different inertial
time series data. Additionally, the IMU data from different sensors were generally non-
linear. Thus, the Hilbert–Huang transform (HHT) divided the resultant time series of
non-linear IMU data into distinctive repeated components called intrinsic mode functions
(IMFs) (see Figure 4). The whole method is known as the intrinsic mode decomposition.
Additionally, these elements generated distinct frequency bands capable of computing
shifts in instantaneous frequencies. Therefore, we could make valid comparisons between
the attributes of diverse activities. The acquired processed data can be expressed as:

P(s) =
n

∑
a=1

ca + rn (2)

where P(s) represents the processed inertial signal, ca indicates the ath IMF, and rn depicts
the whole remainder.

3.2.3. Haar Wavelet Transform

The Haar wavelet transform (HWT) has evolved as a sophisticated technology in the
domain of image and signal analysis. In general, wavelets are mathematical techniques uti-
lized for hierarchically splitting functions [33]. In our HPAR model, the Haar wavelet-based
features were used to recognize patterns at specific intervals in order to examine signal
variations. In addition, the Haar wavelet transform involves a wavelet-based structure
(see Figure 5). Therefore, it is a robust and reliable signal processing technique. HWTs are
denoted by their coefficients (a, d), with ‘a’ depicting approximation coefficients and ‘d’
representing the approximation coefficients. Moreover, these coefficients facilitate estimat-
ing the IMU signal’s total power and serve inappropriate restoration and segmentation.
The HWT can be expressed as:

ψ( f ) =


1 0 ≤ a ≤ 1

2
−1 1

2 ≤ a ≤ 1
0 else

(3)

where the scaling function is expressed as ψ( f ).
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Figure 5. The 1D-HWT feature of the inertial signal feature plot from daily activity (walking) from
the USC-HAD dataset.

3.2.4. Spectral Entropy

Spectral entropy quantifies the randomness in a model, which contributes to the
system’s complexity [34]. The system’s complexity provides significant information, such
as random variations in body activity. These data are utilized to distinguish between
various life log activities (see Figure 6). Additionally, they assist in estimating the IMU
signal spectral range, which generates a power spectrum involving important information
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about a particular activity. The following steps were used to acquire the features presented
by spectral entropy.

• Firstly, the acquired IMU signal’s power spectrum was normalized and denoted as Psp(f).

Qsp( f ) =
Psp( f )

∑ f Psp( f )
(4)

• To extract modified elements, we utilized the Shannon function to change the normal-
ized power spectrum.

Tsp( f ) = Qsp( f )log
1

Qsp( f )
(5)

• In the end, the acquired Qsp( f ) elements were enveloped.

SE sp =
∑ f Qsp( fi)

log
(

Nsp( f1, f2)
) (6)

where SEsp is equivalent to the number of elements in total.
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Figure 6. Spectral entropy for the upstairs walking activity signal plot from the MOTIONSENSE
dataset. The black signal denotes inertial data and the blue signal represents the spectral entropy of
an inertial signal from the MOTIONSENSE dataset.

3.2.5. Wavelet Packet Entropy (WPE)

Wavelet packet entropy is a time–frequency representation technique that is both effec-
tive and reliable for inertial signals. Initially, WPE decomposes an inertial signal into many
frequency resolutions, each with its own set of information and approximation factors [35].
The two-level decomposition of walking data is presented in Figure 7. Additionally, WPE
can be represented as:

dpe =


d0,0(a) = p(a)
di,2j−1(r) =

√
2 ∑

c
h(c)di−1,j(2r− c)

dl,2j(r) =
√

2 ∑
c

g(c)di−1,j(2r− c)
(7)
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where h(c) along with g(c) denotes two different filters for the extraction of ACs and DCs,
and di,j indicates the restoration of IMU signals at the ith and jth node.
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Figure 7. Wavelet packet entropy (two-level) decomposition for the inertial data (for walking data
from the USC-HAD dataset).

3.3. Feature Selection via Stochastic Gradient Descent (SGD)

In the proposed HPAR model, features from the different domains were optimized
using a state-of-the-art gradient algorithm, referred to as a stochastic gradient algorithm.
Gradient descent is an important method for discovering the optimal solution with the
lowest cost function via a linear function. Initially, gradient descent was utilized to adapt
network gradients in neural networks [36]. Additionally, the gradient descent approach
may work slower if all the training data are evaluated at each epoch. Furthermore, in some
cases, SGD outperforms the other gradient optimizers, such as Adam, in terms of adaptabil-
ity to new data [37]. The training phase ends when the loss on the validation set exceeds
the threshold level. Due to the fact that SGD generates more oscillations throughout the
training phase, it requires a more significant number of epochs to converge. Considering the
extended training period, SGD has two significant advantages. To begin with, the stochas-
tic technique improves the probability of outperforming local minima solutions [38,39].
Then this lowers the risk of abruptly interrupting the training process by ensuring that
the model has been through a sufficient number of epochs [40,41]. Therefore, we present
the SGD approach with the minibatch as a non-consumptive optimizer. However, when
incorporated with sparse data selection, the minibatch SGD significantly lowers the cost
and inconsistency associated with the traditional SGD. Thus, the minibatch involves a
comprehensive analysis combined with adaptive learning rates and initial settings to attain
the minimum loss function. As a result, the learning settings are adjusted, and the result is
attained reliant on the learning rate. Thus, the first learning rate was set to default 0.01, and
the average batch size was set to 1000, which may be tuned via regularization parameters.
The SGD model for the entire training sets for i(k)and j(k) is as follows:

θ = θ − η·∇θ J
(

θ; i(r); j(r)
)

(8)

where θ shows the main angle, ∇θ J
(

θ; i(r); j(r)
)

are the main functions, and η signifies the
size of the minibatch, and the lowest loss function is denoted by:

θ = θ− η·∇θJ
(
θ; i(r:r+nbs); j(r:r+nbs)) (9)

where θ shows the angle and ∇θ J
(

θ; i(r:r+nbs); j(r:r+nbs)
)

the updated main function.
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3.4. Classification

After the feature selection step, we tested our proposed HPAR model from five bench-
mark datasets, IM-WSHA, PAMAP-2, UCI HAR, MobiAct, and MOTIONSENSE, which
were composed of diverse classes of human daily living activities. The optimal feature de-
scriptors of SGD were recognized by a state-of-the-art classifier, random forest (RF), which
followed ensemble learning techniques for classification and regression. Additionally, the
random forest classifier included a novel variant of bagged trees, which is an optimal
method for creating a training test. In our case, bagging acquired samples from all five
daily living activities datasets. A model was built for each sample and was utilized to make
decision trees. Finally, all decision trees were augmented based on the highest number of
votes to deliver the best results. Figure 8 illustrates the overall architecture of the random
forest classifier. The classified vectors for the IM-WSHA dataset are shown in Figure 9.
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where y′ indicates the predictions for the random samples. It was calculated by averaging
the prediction of all decision trees on y′. The total number of samples is represented as R,
which is a free parameter.

4. Discussion

All experiments and testing were performed using an HP laptop configured with an
Intel Core i5-8300H CPU operating at a base frequency of 2.30 GHz, 8GB RAM, and Nvidia
GTX 1050Ti dedicated graphics card running Windows 10 Pro 64-bit with Google Colab and
MATLAB. Additionally, a model for evaluating the performance of our HPAR system from
five benchmark datasets was constructed. Furthermore, we used the leave-one-subject-out
(LOSO) cross-validation scheme to assess the recognition performance of our HPAR model
in different indoor and outdoor settings.

4.1. Benchmark Datasets

The first benchmark dataset—the IM-Wearable Smart Home Activities (IM-WSHA) [42]
database—contains signal data from five IMU sensors, including three-axis accelerometers,
gyroscopes, and magnetometers. Additionally, these IMU sensors were incorporated into
three separate bodily regions, the chest, thigh, and wrist, to extract real-time human motion
features of daily living activities. Ten individuals (five males and five females) attempted
eleven different physical activities in the indoor setting, including walking, exercising,
cooking, drinking, phone conversation, ironing, watching TV, reading a book, brushing
hair, using the computer, and vacuum-cleaning.

The second benchmark dataset—physical activity monitoring for aging people, also re-
ferred to as the PAMAP-2 [43] dataset—is openly accessible via the UCI learning repository.
The PAMAP-2 database involved data from three wireless inertial sensors incorporated
with three-axis accelerometers, gyros, and magnetometers that were worn on the individ-
ual’s wrist, chest, and ankle positions during 18 daily physical static and dynamic activities.
However, this dataset evaluated twelve living activities, including walking, cycling, lying
down, sitting, standing, Nordic walking, running, rope jumping, ironing, house cleaning,
and ascending and descending stairs. Furthermore, this database involved recurring daily
activities unique to the HPAR model to analyze the sophisticated motion patterns.

The third benchmark dataset—the MOTIONSENSE [44] dataset—is a publicly avail-
able open-access database that involves smartphone tri-axial accelerometers and tri-axial
gyroscope sensor data. The human subject placed his smartphone in his front pocket. A
total of 24 individuals (14 males and 10 females) performed six life log activities in both
indoor and outdoor settings (such as walking, sitting, running, standing, ascending, and
descending activities).

The fourth benchmark dataset was the Human Activity Recognition database (UCI
HAR) [45]. Researchers acquired triaxial linear acceleration and rotational motion data
using the cellphone accelerometer sensor at a data rate of 50 Hz. Such data were normalized
for denoising with a median filter and a low Butterworth filter with a 20 Hz sample rate.
This frequency is appropriate for detecting human body movements since 99% of its
potential is confined to 15 Hz. The speed information, which comprises gravitational and
body motion characteristics, was split using each Butterworth low-pass filtration system as
body acceleration and gravity.

The fifth benchmark dataset, the MobiAct dataset [46], consists of tri-axial data for
15 activities of daily living (ADLs) and falls from 67 individuals, captured using a Samsung
Galaxy S3. Designers examined a frame size of 5 s with a sampling frequency of 87 Hz.
Moreover, the individual’s sex, age, body weight, and size were mentioned. The device
was randomly oriented within a flexible area selected by the individual. The sampling
frequency was originally 87 Hz. Table 1 presents a comprehensive comparison of the five
benchmark datasets.
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Table 1. A detailed comparison of our self-annotated IM-WSHA dataset and other benchmark
datasets with sample sizes, other similarities, and differences.

Dataset Sensors Sample Rate Activities Subjects

IM-WSHA
(Self-annotated) 3-IMUs 100 Hz Cooking, drinking, reading

a book, walking, etc. 10

PAMAP-2 3-IMUs 9 Hz Sitting, standing, walking, ironing,
cycling, etc. 9

MobiAct Smartphone 20 Hz Standing, walking, jogging, lying 19

UCI-HAR Accelerometer
and gyroscope 50 Hz Walking, walking upstairs,

walking downstairs 30

MOTIONSENSE Smartphone 50 Hz walking
Jogging, downstairs, upstairs, etc. 24

4.2. Experimental Result and Evaluation

We evaluated the performance of a state-of-the-art random forest classifier by catering
to the optimal selected features of different domains, including statistical, HHT, HWT, spec-
tral entropy, and wavelet packet entropy descriptors via the PAMAP-2, MOTIONSENSE,
UC HAR, MobiAct, and IM-WASHA benchmark databases. The experimental evaluation
was conducted three-fold to assess the performance of the HPAR framework from three
benchmark datasets. Figure 10a presents the confusion matrix for the IM-WSHA dataset
for eleven daily living activities, where 90.18% of total accuracy was achieved. In the
PAMAP-2 dataset, Figure 10b indicates a recognition rate of 91.25% from twelve physical
activities. Regarding the MOTIONSENSE dataset, Figure 10c depicts an average accuracy of
92.16% from six static and dynamic activities, including walking, sitting, standing, jogging,
upstairs, and downstairs. On the other hand, smartphone-based inertial sensor datasets,
namely UCI-HAR and MobiAct, achieved significant results. Figure 10d shows that the
confusion matrix UCI HAR of the dataset attained a significant mean accuracy of 91.83%.
Figure 10e presents the confusion matrix of the MobiAct dataset, which achieved a 90.46%
recognition rate.
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Figure 10. Confusion matrices of (a) the 11 daily living activities on the IM-WSHA dataset via
random forest, (b) 12 physical activities on the PAMAP-2 dataset via random forest, (c) 6 locomotion
activities on the MOTIONSENSE dataset via random forest, (d) 6 locomotion activities on the UCI
HAR dataset via random forest, (e) 6 locomotion activities on the MobiAct dataset via random
forest. WA = walking, ST = standing, SSC = stand to sit on chair, SU = stairs up. SD = stairs down,
SL = sideward-laying, JP = jumping, JG = jogging, FKL = front-knees-laying, FL = forward-laying,
CSO = car-step-out, CSI = car-step in, BSC = back-sitting-chair.
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Figure 11a–e shows the receiver operating characteristic (ROC) curve of six locomotion
activities on the UCI HAR, MOTIONSENSE, MobiAct, PAMAP-2, and IMWSHA datasets.
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In Tables 2–6, we present the HPAR system performance with two state-of-the-art
techniques, the support vector machine (SVM) [47] and AdaBoost [48] classifiers, using
accuracy and other performance metrics, such as accuracy, recall, precision, and F measures
for all activity classes in five databases.

Similarly, in Table 7, we provide the Cohen’s kappa and Matthews correlation coef-
ficient from all datasets. Finally, in Table 8, we summarize the results of the comparison
between the HPAR model and different state-of-the-art systems.
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Table 2. Comparison of the evaluation metrics (precision, recall, and F1 score) of the HPAR model
from the IM-WSHA dataset.

Methods Random Forest SVM-RBF AdaBoost

Activities Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

W1 0.912 0.940 0.926 0.883 0.885 0.879 0.831 0.824 0.827
W2 0.898 0.890 0.894 0.875 0.868 0.864 0.827 0.815 0.820
W3 0.880 0.880 0.880 0.868 0.865 0.882 0.839 0.828 0.833
W4 0.902 0.930 0.916 0.841 0.854 0.857 0.815 0.812 0.813
W5 0.918 0.900 0.909 0.909 0.903 0.911 0.846 0.831 0.838
W6 0.881 0.880 0.885 0.872 0.870 0.880 0.844 0.837 0.840
W7 0.900 0.900 0.900 0.881 0.871 0.868 0.831 0.825 0.827

Activities Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

W8 0.888 0.910 0.884 0.870 0.869 0.867 0.824 0.816 0.819
W9 0.909 0.900 0.904 0.881 0.877 0.881 0.853 0.845 0.848
W10 0.900 0.910 0.905 0.882 0.879 0.877 0.829 0.819 0.823
W11 0.927 0.900 0.913 0.895 0.892 0.900 0.846 0.837 0.841

Mean 0.901 0.903 0.901 0.878 0.875 0.878 0.835 0.826 0.829

W1 = walking; W2 = exercising; W3 = cooking; W4 = drinking; W5 = phone conversation; W6 = ironing;
W7 = watching tv; W8 = reading book; W9 = brushing hair; W10 = using computer; W11 = vacuum cleaning.

Table 3. Comparison of the evaluation metrics (precision, recall, and F1 score) of the HPAR model
from the PAMAP-2 dataset.

Methods Random Forest SVM-RBF AdaBoost

Activities Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

A1 0.887 0.950 0.917 0.884 0.875 0.884 0.837 0.824 0.830
A2 0.920 0.920 0.920 0.861 0.864 0.861 0.833 0.826 0.829
A3 0.927 0.940 0.933 0.894 0.873 0.894 0.841 0.883 0.861
A4 0.861 0.900 0.880 0.849 0.871 0.849 0.815 0.820 0.817
A5 0.938 0.920 0.928 0.914 0.917 0.914 0.841 0.830 0.835
A6 0.908 0.910 0.909 0.897 0.884 0.897 0.838 0.829 0.833
A7 0.923 0.930 0.926 0.875 0.861 0.875 0.829 0.834 0.831
A8 0.910 0.880 0.894 0.867 0.863 0.867 0.821 0.817 0.818
A9 0.946 0.920 0.933 0.877 0.881 0.877 0.831 0.827 0.828

A10 0.880 0.910 0.894 0.836 0.832 0.836 0.836 0.827 0.831
A11 0.919 0.890 0.904 0.896 0.909 0.896 0.842 0.831 0.836
A12 0.937 0.930 0.933 0.892 0.903 0.892 0.846 0.838 0.841

Mean 0.913 0.916 0.914 0.878 0.877 0.878 0.834 0.832 0.833

A1 = walking; A2 = cycling; A3 = lying down; A4 = sitting; A5 = standing; A6 = nordic walking; A7 = running;
A8 = rope jumping; A9 = ironing; A10 = house cleaning; A11 = ascending stair; A12 = descending stair.

Table 4. Comparison of the evaluation metrics (precision, recall, and F1 score) of the HPAR model
from the MOTIONSENSE dataset.

Methods Random Forest SVM-RBF AdaBoost

Activities Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

M1 0.941 0.960 0.950 0.885 0.888 0.886 0.788 0.796 0.791
M2 0.928 0.910 0.919 0.901 0.882 0.891 0.825 0.795 0.809
M3 0.918 0.900 0.909 0.791 0.810 0.800 0.768 0.790 0.778
M4 0.911 0.920 0.915 0.769 0.750 0.759 0.745 0.702 0.722
M5 0.910 0.910 0.910 0.759 0.766 0.762 0.736 0.737 0.736
M6 0.920 0.930 0.925 0.785 0.783 0.783 0.751 0.712 0.730

Mean 0.921 0.922 0.921 0.815 0.813 0.814 0.768 0.755 0.761

M1 = sitting; M2 = standing; M3 = downstairs; M4 = upstairs; M5 = walking; M6 = jogging.
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Table 5. Comparison of the evaluation metrics (precision, recall, and F1 score) of the HPAR model
from the UCI-HAR dataset.

Methods Random Forest AdaBoost SVM-RBF

Activities Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

U1 0.979 0.979 0.979 0.978 0.957 0.968 0.976 0.976 0.976
U2 0.968 0.978 0.973 0.967 0.978 0.973 0.976 0.964 0.970
U3 0.978 0.968 0.973 0.977 0.977 0.977 0.963 1.000 0.981
U4 0.947 0.968 0.957 0.943 0.965 0.954 0.974 0.974 0.974
U5 0.979 0.959 0.969 0.988 0.977 0.983 0.975 0.963 0.969
U6 0.968 0.968 0.968 0.967 0.967 0.967 0.976 0.964 0.970

Mean 0.970 0.970 0.970 0.970 0.970 0.970 0.973 0.974 0.973

U1 = walking; U2 = walking upstairs; U3 = walking downstairs; U4 = sitting; U5 = standing; U6 = laying.

Table 6. Comparison of the evaluation metrics (precision, recall, and F1 score) of the HPAR model
from the MobiAct dataset.

Methods Random Forest AdaBoost SVM-RBF

Activities Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

B1 0.920 0.979 0.948 0.919 0.978 0.948 0.917 0.978 0.946
B2 0.901 0.910 0.905 0.943 0.892 0.917 0.935 0.946 0.941
B3 0.959 0.939 0.949 0.933 0.944 0.939 0.955 0.955 0.955
B4 0.956 0.926 0.941 0.956 0.916 0.935 0.955 0.944 0.949
B5 0.948 0.920 0.934 0.969 0.949 0.959 0.965 0.912 0.938
B6 0.919 0.910 0.915 0.936 0.957 0.946 0.976 0.922 0.949
B7 0.918 0.937 0.927 0.934 0.934 0.934 0.976 0.953 0.964
B8 0.892 0.958 0.924 0.887 0.956 0.920 0.920 0.988 0.952
B9 0.918 0.928 0.923 0.957 0.967 0.962 0.908 0.963 0.935
B10 0.938 0.938 0.938 0.977 0.945 0.961 0.952 0.952 0.952
B11 0.957 0.947 0.952 0.976 0.953 0.964 0.964 0.942 0.953
B12 0.968 0.968 0.968 0.964 0.964 0.964 0.964 0.964 0.964
B13 1.000 0.928 0.963 0.953 0.943 0.948 1.000 0.965 0.982

Mean 0.938 0.937 0.937 0.947 0.946 0.946 0.953 0.953 0.952

B1 = walking; B2 = standing; B3 = stand to sit on chair; B4 = stairs up; B5 = stairs down; B6 = sideward-laying;
B7 = jumping; B8 = jogging; B9 = front-knees-laying; B10 = forward-laying; B11 = car-step-out; B12 = car-step-out;
B13 = back-sitting-chair.

Table 7. Cohen’s kappa and Matthews correlation coefficient from all datasets.

Activities MOTIONSENSEIM-WSHA PAMAP-2 MobiAct UCI-HR

Mean MCC value 0.90 0.89 0.90 0.93 0.96

Table 8. Comparison of the recognition rate of the proposed HPAR model with other state-of-the-art
methods from the IM-WSHA, PAMAP-2, UCI-HR, MobiAct, and MOTIONSENSE datasets.

Methods MOTIONSENSE (%) PAMAP-2 (%) IM-WSHA (%) UCI-HR (%) MobiAct (%)

Bidirectional LSTM [49] - 64.10 - - -
AdaBoost [50] - 77.78 81.30 - -

BERT model [51] 79.86 - - - -
Deep convolutional network [52] - 87.50 - - -
Kinematics features and kernel

sliding perceptron [53] - 90.49 84.50 - -

Ensemble learning [54] - 90.11 - - -
Multi-fused features [55] 88.25 - - - -
KNN classification [56] - - 75.30 - -
Optimized method [57] 87.50 - - - -
Actionlet ensemble [58] - - - 88.20 -

COV-JH-SVM [59] - - - 80.40 -
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Table 8. Cont.

Methods MOTIONSENSE (%) PAMAP-2 (%) IM-WSHA (%) UCI-HR (%) MobiAct (%)

FTP-SVM [60] - - - 90.01 -
Threshold technique [61] - - - - 81.30

SVM [62] - - - - 77.93
CNN [63] - - - - 80.71

Coupled GRU [64] - - - 88.50 -
SSMN [65] - - - 81.00 87.90

Proposed HPAR System 92.16 91.25 90.18 91.83 90.46

Bold letters for proposed HPAR system recognition of all datasets.

5. Conclusions

In this study, we presented an HPAR system based on augmented feature descriptors,
comprising four major domain features. These domains analyzed statistical descriptors,
the Hilbert–Huang transform, the Haar wavelet transform, spectral entropy, and wavelet
packet entropy descriptors. Additionally, these augmented-based descriptors optimized
the performance of the proposed HPAR systems by assessing spatiotemporal moments and
continuous motion patterns of human daily living activities. Furthermore, these descriptors
were optimized via stochastic gradient descent (SGD) and were then catered to the random
forest (RF) classifier for further classification. This work also compares the performance
of the SGD-based random forest classifier with other state-of-the-art classifiers, such as
support vector machine (SVM) and AdaBoost. Our system incorporates data processing
methods, robust feature extraction methods, and classification algorithms that have the
potential to outperform the other state-of-the-art recognition rates.

In future studies, we will employ more sophisticated activities and behaviors from
various contexts, including healthcare units, sports centers, and smart home environments,
via different inertial sensors. Additionally, we intend to develop self-annotated datasets for
smart healthcare using multi-modal sensors.
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