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Abstract: Location-based indoor applications with high quality of services require a reliable, accurate,
and low-cost position prediction for target device(s). The widespread availability of WiFi received
signal strength indicator (RSSI) makes it a suitable candidate for indoor localization. However,
traditional WiFi RSSI fingerprinting schemes perform poorly due to dynamic indoor mobile channel
conditions including multipath fading, non-line-of-sight path loss, and so forth. Recently, machine
learning (ML) or deep learning (DL)-based fingerprinting schemes are often used as an alternative,
overcoming such issues. This paper presents an extreme gradient boosting-based ML indoor localiza-
tion scheme, simply termed as XGBLoc, that accurately classifies (or detects) the positions of mobile
devices in multi-floor multi-building indoor environments. XGBLoc not only effectively reduces the
RSSI dataset dimensionality but trains itself using structured synthetic labels (also termed as relational
labels), rather than conventional independent labels, that classify such complex and hierarchical
indoor environments well. We numerically evaluate the proposed scheme on the publicly available
datasets and prove its superiority over existing ML or DL-based schemes in terms of classification
and regression performance.

Keywords: RSSI fingerprints; WiFi; indoor localization; XGBoost; classification; regression;
hyper-parameter tuning; labeling

1. Introduction

Indoor localization (IL) is tremendously popular in recent years due to the growing
availability of the Internet of Things (IoT). As a result, there has been an accelerating de-
mand for highly accurate and low-cost IL [1]. However, GPS signals are almost unreliable
in indoor settings, and therefore, researchers have explored other techniques using wireless
signals, visible light signals, magnetic field signals, and inertial sensors signals [2–8]. A
wireless positioning system (WPS) uses indoor wireless signals to track down the location
of the target objects [4]. The WPS techniques are classified as either geometric-based or
fingerprinting-based approaches. The geometric approaches use the estimated angles and
distances between the wireless access points (WAPs) and the target devices (or mobile
devices or subscribers) for IL classification. However, those approaches still suffer from out-
lier distortion such as non-line-of-sight and indoor multipath faded signals. Furthermore,
the resulting significant communication overhead and the need of good synchronization
circuits between devices (transmitters and receivers) increase the overall cost of geometric-
based WPS [9,10].

Hence, the fingerprinting-based approaches are often used [11] as an alternative. A
fingerprint ( f i) is an array of wireless-received signal strength indicators (RSSI) from in-
range WAPs that indicates the measured radio signal magnitude at a specific reference
point (RP). The fundamental use of f i is to compare (and match) the real-time received
signal patterns with the pre-collected signal patterns [11]. The globally deep penetration
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of WiFi infrastructure makes WiFi RSSI signals one of the most popular (and easy) WPS
fingerprints, especially after the introduction of ML/DL techniques.

Broadly, there are two phases in the fingerprinting-based localization using ML/DL:
offline (or training/testing) phase and online (or real implementation) phase. First, in the
offline phase, f i (WiFi RSSI values) are obtained from n predefined RPs such that a radio
map (database) is constructed. This radio map is used to train and test designed ML/DL
models. During the training/testing phase, the ML/DL models can be viewed as one of
the global approximation algorithms that maps the RSSI observations to the locations of
devices with the help of pattern recognition techniques. Second, in the online phase, this
trained model is used to predict the locations of the devices based on real-time collected
RSSI data [12].

In the literature, we can broadly categorize IL environments into the following three
different types, i.e., single building single floor, single building multi-floor, and multi-
building multi-floor, for which fingerprinting-based localization schemes using ML/DL
have been applied. However, in our previous work [12], existing localization schemes are
mostly focused on single building single floor or single building multi-floor indoor envi-
ronments using custom or private datasets. Hence, those existing schemes have a limited
performance for the classification of multi-building multi-floor indoor environments [13].
One of the main reasons is that existing schemes just use independent or non-relational
labeling (NRL) for the representation of such complex and hierarchical indoor environments,
where relationship between a building and its corresponding floors is neglected—please see
Section 2 for further explanation regarding the shortcomings of existing schemes. Therefore,
in the paper, we propose an ML scheme using relational labeling (RL), where unique syn-
thetic labels (see Section 3.2 for the detail explanation) representing the relationship between
building IDs and floor IDs are defined and used, such that its classification performance
is improved.

From several data-science competitions, it is well-known that extreme gradient boost-
ing algorithm (XGBoost) is superior to existing ML/DL algorithms [14] in terms of speed
and performance. However, during the related literature review, we have noticed a lack of
gradient-boosting-based localization algorithms. Hence, in the paper, we propose an IL
algorithm using XGBoost [14,15] (which is simply termed as XGBLoc). In that algorithm,
a principal component analysis (PCA)-based preprocessing module [16,17] is introduced
that reduces the high number of dimensions of the input RSSI signals, decreases the impact
of outliers, and resolves the overfitting issues. As a result, XGBLoc relatively has a better
localization performance compared to existing ML/DL schemes (see Section 2), while
keeping a lower design complexity.

The main contributions of this work are summarized as follows:

• Create a novel and uniquely-combined synthetic label (also called relational label)
directly associating a building ID with a floor ID in a multi-building multi-floor
environment. Using this relational labeling (RL) rather than existing non-relational
labeling (NRL; or independent labeling, where building ID and floor ID are separately
dealt with), the presented ML-based classification model predicts target locations in
such complex hierarchical environments accurately and consistently.

• Propose an XGBoost-based IL method using RL, termed as XGBLoc, that improves
localization accuracy in the multi-building multi-floor environments. XGBLoc is
especially good for the classification and regression over such hierarchical and complex
indoor environments. XGBLoc employs PCA both for dimensionality reduction and
input dataset (i.e, RSSI fingerprints) denoising. After PCA transformation, XGBLoc is
trained and tested to predict target location with an improved accuracy over dynamic
(mobile) indoor channel conditions including multipath fading.

• Evaluate XGBLoc over the following three publicly available datasets: UJIIndoor-
Loc [18], Tampere [19], and Alcala [20]. Simulation results validate that the proposed
scheme has a superior localization performance over existing ML/DL schemes (see



Sensors 2022, 22, 6629 3 of 17

Section 4 for the details) especially at the perspective of localization accuracy as well
as system complexity.

The article is organized as follows. Section 2 surveys recently-published related articles
and discusses the shortcomings of those existing ML or DL schemes. Section 3 presents
details about the methodology of proposed system model XGBLoc, including proposed
system architecture, input and output specification, objective function, and RSSI data and
preprocessing. In Section 4, we discuss the performance analysis of the proposed model.
Finally, we present the conclusion in Section 5.

2. Related Works

Recently, fingerprint-based ML localization approaches such as K-nearest neighbor
(KNN) [21], WKNN [22], and support vector machine (SVM) [23] are introduced. However,
most of them are not well suited to the dynamic nature of multi-building multi-floor
environments such that their positioning performance falls short of actual requirements [24].
Therefore, many researchers have also tried DL-based approaches as an alternative. In [25],
the authors proposed a recurrent neural network (RNN)-based positioning system for
localization of the devices, where the multi-output Gaussian process is applied to establish
the correlation among RSSI values from closely-deployed multiple access points for better
performance. The experiments show that their RNN system can achieve 100% and 94.20%
accuracy in building and floor classification, respectively. Another RNN-based indoor
localization scheme for multi-building multi-floor environments is proposed in [26]. This
scheme produces predictions from building to floor to location in a sequential manner.
The authors in [26] reported that their proposed scheme can achieve 100% and 95.24%
accuracy for building and floor classification, respectively. CNNLoc [13] is a multi-building
and multi-floor IL system that uses WiFi fingerprints. It uses a stacked autoencoder (SAE)
to extract specific features from raw RSSI fingerprints and employs a CNN to achieve
high accuracy during the online phase. As a result, CNNLoc can achieve accuracies of
100% and 96%, respectively, for building and floor classification. In [27], the authors
proposed DeepLocBox (DLB) which predicts the position of the users using a single DNN
model. The experiments show that DLB can achieve 99.64% and 92.62% of accuracy for
building and floor classification, respectively, in multi-building multi-floor environment.
In a CNN-based system [28], the authors constructed a 2-D virtual radio map from 1-D
WiFi RSSI values and then implemented a CNN system to handle 2-D radio map inputs.
Therefore, this system can learn the topology of an RSSI-based radio map such that it
achieves 95.41% accuracy for predicting the building and floor numbers [18]. In [29], the
authors proposed a fingerprinting-based multi-cell encoding learning (m-CEL) technique
for position estimation within large-scale indoor environments. This m-CEL technique
deals with building and floor classification as a solution of multi-task learning problems
within a single forward pass network. Their proposed 2-D CNN model using m-CEL can
achieve 95.3% of accuracy in building and floor classification.

From several data-science competitions, it is well-known that gradient-boosting tech-
niques are superior to existing ML/DL algorithms [14,30] in terms of speed and per-
formance. However, through the literature review, we have noticed a lack of gradient-
boosting-based localization algorithms. Hence, in the paper, we propose an IL algorithm
using XGBoost [14,15], which is simply termed as XGBLoc. A summary of recent related
works is shown in Table 1.
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Table 1. Summary of recent related works. [Note] P Dataset: public dataset used, H tuning: hyperpa-
rameter tuning required, B/F Classification: building and floor classification.

Ref. P Dataset Labels Techniques Used H Tuning B/F Classification

[25] X NRL RNN Extensive X

[26] X NRL RNN Extensive X

[13] X NRL SAE, CNN Extensive X

[27] X NRL DNN Extensive X

[28] X NRL 2D Radio map,
CNN Extensive X

[29] X NRL m-CELL, 2D CNN Extensive X

XGBLoc X RL PCA, XGBoost Less X

Shortcomings of Existing Schemes

In the literature review, we have found that most of existing ML/DL schemes have
the following two shortcomings [13,25–29].

First, those existing ML/DL schemes (to our best knowledge) use NRL in multi-
building multi-floor IL environments, where targeting objects, i.e., buildings and floors,
are predicted (or classified) independently. That is, they do not take direct relationships
between buildings and their floors into account during the ML/DL training & testing
process. For example, in Figure 1 [top], building 1 has floor IDs 1, 2, and 3 and building
2 has floor IDs 1, 2, 3, and 4. During the floor classification process, when the existing
model deals with floor ID 2, it creates confusion regarding from which building this floor
ID belongs to since floor ID 2 is present in both buildings. As a result, those existing
schemes using NRL do not easily distinguish between different floors (with the same floor
label) of different buildings such that classification performance is degraded, especially
in multi-building multi-floor environments. Furthermore, those existing schemes using
NRL request two distinct models for the ML/DL-based localization process, i.e., one for
building classification and the other for floor classification, such that system complexity
may increase almost twofold.

Second, from the literature review, it is evident that most of existing ML/DL-based
methods still have the overfitting or underfitting problems [31] and suffer from selection
bias. Hence, those existing schemes request extensive hyper-parameter tuning for the
training over multi-building multi-floor environments in order to mitigate such overfitting
& underfitting, and selection bias issues. As a result, this extensive tuning process may
increase the system complexity of existing schemes further.

Therefore, in the paper, we introduce relational labeling (RL) rather than NRL for
the improved classification over such hierarchical IL environments and present a novel
XGBoost-based ML method using RL, simply termed as XGBLoc, such that all above-
mentioned shortcomings are well dealt with. The details of the proposed system model
XGBLoc are given in the following sections.
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Figure 1. Conventional Conventional non-relational labeling (NRL) [top] and proposed relational
labeling (RL) [bottom] for a multi-building multi-floor environment example.

3. Proposed Methodology

In this section, we first present the system architecture of the proposed IL model
XGBLoc, and then introduce the input & output specification, objective function of the
proposed model, and finally address RSSI data and preprocessing.

3.1. Proposed System Architecture

The system architecture of the proposed IL model, termed as XGBLoc, is shown
in Figure 2. It consists of two phases: an offline phase and an online phase. In both
phases, we preprocess the input data by removing missing data, normalizing the RSSI
values between 0 and 1, and applying PCA transformation to these normalized values
for the dimensionality reduction. In the proposed model XGBLoc, XGBoost is used both
for classification predicting target location labels and for regression estimating the 2-D
coordinate target positions. First, in the offline phase, the presented model is trained using
the preprocessed data. For the classification process, we create synthetic relational labels by
concatenating building ID with their respective floor IDs and train XGBLoc using those
labels. Moreover, for the 2-D regression process, we use latitude and longitude values
of RPs. Consequently, during the online phase (as seen in Figure 2), the trained model
first receives the RSSI values, and then preprocesses those values accordingly, and finally
predicts the required localization output using the preprocessed data.
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Figure 2. Architecture of proposed system model XGBLoc.

3.2. Input and Output Specification

In order to devise our model architecture, we first need to acquire a general IL
dataset. In any given indoor localization dataset, fingerprints are usually defined as
follows: f i = {R, long, lat, f l, bi}. Depending on the dataset, the input and output can vary
(such as absence of multiple buildings, etc). Therefore, we try to generalize the proposed
model as much as possible.

Throughout the paper, we mainly consider the UJIIndoorloc dataset [18], whose
fingerprint elements are listed in Table 2. In the training phase (i.e., offline phase), the RSSI
value R is combined with labels (long, lat, f l, bi) to form a sample (R, long, lat, f l, bi), where
(long, lat) is coordinates of landmarks (RPs) that are situated in building ID bi on floor ID
f l. In the trained phase (i.e., online phase), the estimated output of the presented model,
i.e., either ( f̂ l, b̂i) for classification tasks or ( ˆlong, ˆlat) for 2-D regression tasks, is obtained.
For that estimation, real-time measured RSSI data R are used.

Table 2. Elements of fingerprints in UJIIndoorLoc.

Elements of Fingerprints
( f i) Description

R (r1, r2, r3, r4, . . . , ri, . . . , r520), and ri is RSSI value of ith access point.

long Longitudinal values of location in meters.

lat Latitudinal values of location in meters.

f l Floor ID.

bi Building ID.

Currently, during data collection in the offline phase in a hierarchical smart environ-
ment, raw WiFi RSSI measurements are taken from a particular landmark or a RP, which is
present in floor a of building b. In the offline phase, most of the conventional classification
schemes use NRL, as shown in Figure 1 [top], where floor ID f l = a and building ID
bi = b are treated as distinct independent variables [18]. In contrast, the proposed scheme
employs RL, as shown in Figure 1 [bottom], where a relational label relating those two IDs,
i.e., f l & bi, is defined and used for the localization over the multi-building multi-floor
environment. In the RL, we exploit one-to-many relationship cardinality [32] that maps
each of every building with its corresponding floors, where each relationship is represented
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by a uniquely assigned relational label (or relational identification number), as shown in
Figure 1 [bottom].

For example, if building 1 has four floors, we can obtain a uniquely-assigned 4-digit
relational label for each floor by applying one to many mapping, such as 1001, 1002, 1003,
and 1004, where the first digit represents building numbers and last three digits represent
floor numbers. By doing so, we establish a dependency of floor IDs on building IDs, which
enables to classify building and floor together using only a single classification model.
Then this classification model easily extracts floor IDs and their corresponding building
IDs from those relational labels. Resultant output eliminates the chances of obtaining
wrong combinations between floor IDs and building IDs. Thereby the proposed model
reduces the false mismatch of floor IDs and building IDs during the prediction, as shown
in Figure 1 [bottom]. This implies that for a classification problem the resultant output
of the proposed scheme (using that single classification model) correctly estimates the
relationship of a building number and its corresponding floor numbers. Furthermore, for a
2-D regression problem, the output of the proposed scheme ( ˆlong, ˆlat) represents the user’s
estimated location in the multi-building multi-floor IL environments.

Conventional ML/DL schemes that mostly use NRL labels classify building IDs well
since there is a distance of at least a few meters away between buildings, which means
that WiFi signals of a building suffer less interference from the other nearby buildings. In
addition, in a multi-building multi-floor environment, each building has a unique building
ID; for example, if there are four buildings, the building IDs could be given as 1, 2, 3,
and 4, respectively. As a result, those existing classifiers easily learn using NRL labels and
associate a WAP with its corresponding building, resulting in improved performance at
the perspective of building classification. However, when it comes to floor classification,
it is a different story. The WiFi signal interference between adjacent floors in the same
building is relatively high, and the floor ID might not even be unique across the entire
multi-building complex. Hence, those existing classifiers may result in a degraded floor
classification performance.

Differing from NRL, RL allows the classifier model to easily associate a building with its
floors because each floor has its unique floor ID. Moreover, XGBoost that easily deals with such
tabular data learning is a good candidate for classifying RL labels. Therefore, the proposed
ML algorithm XGBLoc distinguishes between the floors of different buildings well over such
complex hierarchical environments, resulting in increased classification performance.

3.3. Objective Function of Proposed XGBoost-Based ML Model

In the proposed model, XGBoost leveraging a gradient boosting framework is used as
the foundation of our IL algorithm. It is well-known that XGBoost, a decision tree-based
ML algorithm, is good for the learning of structured data. Some of the key reasons we
choose XGBoost over other ML and Dl algorithms such as random forest (RF), DT, GBDT,
and CNN are summarized as follows [30,33]:

• With a similarity score, XGBoost prunes the tree. It calculates the node’s gain as the
difference between the node’s similarity and the children’s similarity score. When
the node’s gain is found to be nominal, it simply stops constructing the tree to a
greater extent.

• In real-world applications, classification performance, computational cost, and hyper-
parameter optimization are critical factors of choosing a good classifier. In the paper,
we choose XGBoost as such a good candidate for the IL applications where a target
object is localized over a multi-building multi-floor environment. Moreover, when
compared to traditional ML/DL classifiers, XGBoost is capable of handling real-time
data with many variations.

• Especially, we use relational labels representing that hierarchical environment in a
given dataset and train XGBoost using such translated tabular data. The proposed
algorithm, simply termed as XGBLoc, performs better on those tabular data even with
fewer data samples, when compared to other ML/DL algorithms.
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• Furthermore, to deal with over- and under-fitting, those existing ML/DL algorithms
require extensive hyperparameter tuning. For instance, ML algorithms such as RF,
KNN, and so forth require longer computational time. Furthermore, DL algorithms
require a large number of data samples to perform well. However, XGBLoc requests a
relatively simple hyperparameter tuning.

XGBoost, which is an ensemble tree approach, employs the gradient descent architec-
ture boosting weak learners. Compared to typical gradient boosting schemes, XGBoost
enhances the underlying gradient boosting framework further with system optimization
and algorithmic improvements, which includes hardware optimization, parallel tree build-
ing, efficient handling of missing data, tree pruning using the depth-first approach, and
regularization through both LASSO (L1) and Ridge (L2) for avoiding overfitting. A regular-
ized (L1 and L2) objective function that has a convex loss term and a model complexity
penalty term is minimized by XGBoost [14]. The training proceeds iteratively until the
final prediction results are obtained, while new trees that may reduce the residual errors of
previous trees are continually inserted. Table 3 shows the symbols used for defining the
objective function of proposed ML model.

Table 3. Symbols used for defining objective function of proposed ML model.

Symbols Description

D Fingerprint dataset.

N Total number of samples in dataset.

M Total number of dimmensions/WAPs.

Ri RSSI vector at ith RP.

li Position of ith RP.

[xi, yi] Coordinates of the li.

K Total number of trees.

l̂i Predicted position of ith RP.

[x̂i, ŷi] Predicted coordinates of the l̂i.

L(·, ·) Loss function.

ω(·) Regularization term of the kth tree.

Consider a fingerprint dataset that consists of N numbers of samples D = (R1, l1), (R2, l2),
(R3, l3), . . . , (RN, lN), where Ri = [ri

1, ri
2, ri

3, . . . , ri
M] is the vector of received M-dimensional

RSSI values of the ith RP and li = [xi, yi] is the position of the ith RP. The dataset D can be
decomposed into two subsets SD1 = (Ri, xi) and SD2 = (Ri, yi) for the modeling. For SD1
and SD2, XGBoost is used to predict x̂i and ŷi, respectively. Putting them together can be
termed as an estimated position coordinate l̂i = [x̂i, ŷi]. Considering the subset SD1 as an
example, where K trees are assumed to have been trained, the predicted output for the ith
sample is

x̂i =
K

∑
k=1

fk(Ri), (1)

where fk(Ri) is the predicted output of the kth tree for the sample Ri. The objective function
can be modeled as

Obj =
N

∑
i=1

L(xi, x̂i) +
K

∑
k=1

ω( fk), (2)

where L(·i, ·i) represents the ith loss function and ω( fk) is the complexity/regularization
term of the kth tree. For more mathematical details, please refer to [14].

XGBoost supports hyperparameter tuning in order to tackle underfitting or overfitting
problems. That is, the proposed scheme XGBLoc is tuned with hyperparameter tuning
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such that system performance is improved. Table 4 lists hyperparameters of XGBLoc
and its corresponding default values. Note that the value of “loss function” needs to be
set “multi:softprob” for a multi-class classification problem or “reg:squarederror” for a
regression problem, respectively.

Table 4. XGBLoc hyperparameters.

Hyperparameter Value Description

learning_rate or eta 0.3 Weighting factor for learning
in gradient boosting.

gamma 1
Minimum loss reduction

needed to render partition
on a tree leaf node.

max_depth 6 Maximum depth of tree.

colsample_bytree 1
Subsample ratio of columns

when constructing each
tree.

lambda 1 L2 regularization term on
weights.

loss function multi:softprob
reg:squarederror

Multiclass classification
problem.

Regression with squared loss.

n_estimators 100 Number of trees to be
generated.

scale_pos_weight 1 Control the balance of positive
and negative weights.

booster gbtree Use tree based model.

tree_method gpu_hist

GPU implementation of faster
histogram optimized
approximate greedy

algorithm.

Subsample 1 Subsample ratio of the
training samples.

3.4. RSSI Data and Preprocessing

According to the log-normal propagation model, the WiFi RSSI values measured
degrade exponentially as the distance between a transmitter and a receiver increases [34].
Moreover, in real-world scenarios, WiFi RSSI not only suffers from the interference by other
radio signals but from the multipath caused by complex and dynamic indoor environments.
All of these issues increase non-linearity and uncertainty of the WiFi RSSI signals. Another
important aspect is the sparsity of raw WiFi RSSI data. Many WAPs including commercial
APs and private Internet-connected smart IoT APs are installed in multi-floor buildings. In
reality, at any particular reference point (RP), not all the APs can be scanned because an AP
cannot cover the entire indoor environment. For instance, in the UJIIndoorLoc dataset [18],
only about 190 APs among a total of 520 APs were scanned in a floor. That is, a user (or a
device) cannot sense RSSI from some distant APs such that RSSI values of those APs are
recorded as empty (’NA’), as shown in Figure 3.
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Figure 3. Sparsity in RSSI values.

Generally, these empty values are replaced with the minimum present RSSI value.
For instance, in our evaluation of the UJIIndoorloc dataset, we replace those empty values
with −98 dBm. However, sparsity remains a cause of concern because a large portion
of that data is replaced with −98 dBm. Therefore, we need to reduce the dimensional
sparsity. This dimensionality reduction will also help to reduce computational load and
mitigate noise effects. Before reducing the dimensional sparsity of the data, we also need
to bring RSSI values to a common scale because every vendor of WiFi may have different
scales representing the RSSI values. To remove this heterogeneity from the data, we use a
ZeroToOneNormalized technique [35], that gives the scaled RSSI values x as follows:

x =

{
0, RSSIm = 100
RSSIm−min
−min , −98 ≤ RSSIm ≤ 0

(3)

where RSSIm is the mth WAP’s RSSI value, min is the minimum value of RSSI in the offline
fingerprint database, and the value of 100 is used to indicate that no AP was detected. Other
than removing the effect of heterogeneity of devices, the primary purpose of normalization
is to modify numeric column values in the dataset such that the standard scale is utilized
without distorting or losing the information distribution. Each iteration of the XGBoost
algorithm optimizes the samples according to the residual error such that the algorithm’s
bias will decrease, forcing it to be less sensitive to the outliers and noise. Then, the presented
scheme employs PCA [36] to extract some important features from sparse and raw WiFi
RSSI values, while reducing the data dimensionality and decreasing impact of outliers.

PCA is a popular tool in current ML because it is a simple, non-parametric method for
extracting meaningful information from complex datasets [36]. In addition, PCA provides
a pathway for reducing a complex high-dimensional dataset to a lower dimensional one
with minimal effort [37]. The fundamental advantage of PCA is that it quantifies the
value of principal components in representing the variability of a dataset. The analysis of
variance along with a small number of principal components (i.e., less than the number
of measurement types) offers a meaningful representation of the entire dataset [36]. For
instance, for the UJIIndoorLoc dataset [18], Figure 4 shows that the first 100 eigenvectors
(i.e., principal components) could explain roughly 90% of the explained variance ratio
(EVR). Algorithm 1 shows the pseudo code of the proposed XGBLoc scheme reflecting
system methodology above mentioned in this section.
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Figure 4. Explained variance ratio (EVR) vs number of principal components for the UJIIndoor-
Loc dataset.

Algorithm 1 Pseudo code of proposed XGBLoc scheme

Input: Dataset D = (Ri, li), f l, bi, long, and lat.
Output: Predicted Location l̂

1: while l ← (bi, f l) do
2: RL← OneToMany(bi, f l)
3: Set RL as labels.
4: end while
5: if l ← (long, lat) then
6: Skip Step 1 to 4.
7: Set (long, lat) as labels.
8: end if
9: if (RSSI ← 100) then

10: Ri.replace(RSSI,−98)
11: end if
12: Normalized(Ri)← ZeroToOneNormalized(Ri).
13: R‘ ← PCA(Normalized(R))
14: Set Dataset D(Ri, li)← Dataset D‘(R‘

i, li)
15: training set, testing set, validation set← Split(DatasetD)
16: if RL← labels then
17: Train classification XGBLoc model.
18: Tune Hyperparameters
19: return Predicted location l̂ : Symbolic location.
20: else {(long, lat)← labels}
21: Train regression XGBLoc model.
22: Tune Hyperparameters
23: return Predicted location l̂ : Physical location.
24: end if

4. Performance Analysis

In this section, we numerically evaluate the proposed PCA-XGBoost scheme for indoor
localization, termed as XGBLoc, and compare it with state-of-the-art approaches in terms
of the classification and regression performance. Herein, we first and mainly use the
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UJIIndoorLoc dataset (multi-building multi-floor) for both classification and regression
analysis over such hierarchical IL environments. In that localization analysis, XGBLoc that
uses RL instead of NRL is compared to existing ML/DL schemes and is proved to be good
for classification. For further evaluation of XGBLoc, we also use the Tampere (multi-floor)
and Alcala (corridor) datasets. We implement the presented scheme using Python-3.8.5 on
a laptop with AMD Ryzen 5900HS and RTX 3060 GPU.

4.1. Results on Benchmark UJIIndoor Dataset

In this subsection, we summarize the experimental results of XGBLoc on the UJIIn-
doorLoc dataset [18]. This dataset contains 21,048 fingerprint samples from three buildings,
each one having different number of floors. For performing our experiments, we split the
dataset into three subsets with the ratio of 80/15/5%: training, validation, and testing. As
a result, the training, validation, and testing subsets contain 16946, 2991, and 1111 samples,
respectively.

4.1.1. Effect of Explained Variance Ratio on Performance

We have tested the proposed scheme XGBLoc with respect to different values of
EVR and evaluated its optimal performance on the following two tasks, i.e., classification
accuracy analysis and 2-D (long, lat) position error analysis, whose results are summarized
in Table 5. From Figure 4, we can see that the top 100 principal components explain
90% of EVR. It indicates that through the PCA-based preprocessing, we may reduce the
dimensionality of the input dataset up to 100 from 520. From Table 5, we can see that the
classification performance converges to above 99% for EVR = 0.9 and the 2-D regression
performance to its best value for EVR = 0.8.

Table 5. Effect of explained variance ratio (EVR) on localization performance with different input
and output specification.

Explained Variance
Ratio (EVR) 0.7 0.8 0.9

Classification
Accuracy 98% 98.6% 99.2%

2-D Mean position
error (long, lat) 5.2 m 4.93 m 5.01 m

4.1.2. Effect of Hyperparameter Tuning on Performance

XGBoost supports hyperparameter tuning that helps in mitigating overfitting and un-
derfitting problems. It implies that the performance of the proposed XGBoost-based system
model, termed as XGBLoc, could be improved with an adequate hyperparameter tuning.
Figure 5 shows the effect of different learning rates and n_estimators (which indicates the
number of trees to be generated) on the classification accuracy of the proposed model. The
overall trend shows that classification accuracy increases with the increase of n_estimators
with different learning rates. From Figure 5, we can confirm that the classification accuracy
of XGBLoc using the UJIIndoorLoc dataset is improved as n_estimators increase and con-
verged to its maximum (99.2%), especially when n_estimators ≥ 500 and the learning rate
is kept at 0.1. Table 6 also shows hyperparameter settings yielding an optimal performance
of XGBLoc. It ensures that two different localization tasks, i.e., classification or regression,
may need different hyperparameter tuning.
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Figure 5. Classification accuracy vs. learning rate vs. n_estimators.

Table 6. Effect of hyperparameter tuning on localization performance. [Note] lr: learning_rate, md:
max_depth, cb: colsample_bytree, lf: loss function, ne: n_estimators.

Task
Hyperparameter

Output
lr gamma md cb lambda lf ne Subsample

Classification 0.1 1 6 0.9 0.8 multi:softprob 500 0.8 99.2%

Regression 0.1 0 10 0.8 0.9 reg:squarederror 1000 0.8 4.93 m

4.1.3. Localization Performance Comparison

We have compared localization performance of the proposed scheme and the existing
benchmark schemes over the same multi-building multi-floor IL environment, which in-
clude MOSAIC [38], 1-KNN [18], 13-KNN [39], DNN [40], 2D-CNN [28], scalable DNN [41],
and CNNLoc [13]. Most of those benchmark schemes use non-relational labeling (NRL),
where building IDs and floor IDs are independently labeled (see Figure 1 [top]). Hence, for
the NRL classification over such complex IL environments, those existing schemes utilize
the two separate classification models: one for building and the other one for floor. Those
two classification models require the following separate processes per model: training,
hyperparameter tuning, and testing. Hence, some additional complexity including more
computational resources is not avoidable. Table 7 shows that existing schemes perform well
for building classification with accuracy of 98% to 100% [13] but have some performance
variation for floor classification. Specifically, whereas CNNLoc achieves the highest 96.03%,
1-KNN achieves the lowest 89.95% in terms of floor classification accuracy.

We have tested the proposed scheme XGBLoc, where a uniquely-combined synthetic
label (also called a relational label) is assigned to each floor of different buildings (see
Figure 1 [bottom]). Results in Table 7 show that XGBLoc achieves 99.2% of accuracy in
terms of floor classification over the same multi-building multi-floor IL environment. Note
that, unlike existing ML/DL-based schemes, XGBLoc requires only a single classification
model that classifies buildings & floors together at the same time; thus its overall complexity
could be reduced, even if the given dataset UJIINdoorLoc is obtained over a modest
environment conditions.
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Table 7. Classification results of existing and proposed schemes on the UJIIndoorLoc dataset.

WiFi Fingerprint-Based Schemes
Classification Accuracy

Building Floor

MOSAIC 98.5% 93.83%

1-KNN 100% 89.95%

13-KNN 100% 95.17%

DNN 100% 91.97%

2D-DNN 100% 95.64%

Scalable DNN 99.5% 91.26%

CNNLoc 100% 96.03%

XGBLoc 100% 99.20%

We have also compared 2-D (long, lat) mean positioning error of XGBLoc with other
WiFi fingerprint-based schemes such as KNN, WKNN, RF, CNNLoc, HybLoc [42], and
CCpos [35], whose results are shown in Table 8. It verifies that XGBLoc with 4.93 m of
positioning error outperforms existing schemes.

Table 8. Regression results of existing and proposed schemes on the UJIIndoorLoc dataset.

WiFi Fingerprint-Based Schemes 2-D Average Positioning Error (m)

KNN 7.9

WKNN 6.2

HybLoc 6.46

RF 10.2

CNNLoc 11.78

CCpos 12.4

XGBLoc 4.93

4.2. Results on Additional Datasets

To evaluate the scalability, adaptability, and robustness of XGBLoc further, we have
tested its performance over the other two public datasets: Tampere [19] and Alcala [20].
Note that the Tampere dataset contains data from single building multi-floor environment
and the Alcala dataset contains data from a corridor of the building.

4.2.1. Results on Tampere Dataset

The Tampere dataset contains 4648 fingerprint samples collected from 992 WAPs in
a Tampere university’s building with multiple floors. In the preprocessing, the default
value of missed RSSI is set to be 100. Floor classification results of XGBLoc and various
benchmark schemes including CNNLoc [13] are compared each other in Table 9. In that
comparison, XGBLoc outperforms those benchmark schemes by 3% up to 15%. In such
performance evaluation, we find out that value changes of a few hyper-parameters is
enough for the proposed scheme. In the 2-D (long, lat) regression analysis, the proposed
scheme is also dominant over those existing schemes (whose results are omitted in Table 9
for simplicity). Note that XGBLoc is able to achieve a 2-D mean positioning error of 7.02 m,
which is much less than CNNLoc (whose result 10.88 m [13] is the best among existing
schemes listed in Table 9).
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Table 9. Classification results of existing and proposed schemes on the Tampere dataset.

WiFi Fingerprint-Based Schemes Classification Results

Weighted Centroid 83.18%

Log-Gaussian Probability 85.30%

RSS Clustering 90.79%

UJI KNN 92.97%

RTLS@UM 90.03%

Rank-based 86.48%

Coverage Area-based 86.56%

CNNLoc 94.12%

XGBLoc 97.03%

4.2.2. Results on Alcala Dataset

To further evaluate the regression performance of XGBLoc, we have also considered
Alcala tutorial 2017 dataset [20]. This database could be used as an alternate of the UJI-
IndoorLoc dataset [18] for regression analysis. It is a relatively small dataset covering
a corridor of the School of Engineering of the University of Alcala. It contains a total
of 1075 fingerprint samples collected from 152 WAPs, whose values have a range from
−99 dBm (extremely poor signal) to 0dBm (strongest signal), and the value 100 indicates
undetectable WAP signals. Experimental results show that XGBLoc outperforms most
of other WiFi fingerprint-based schemes such as KNN, WKNN, SVM, RF, CCpos and
CNNLoc [13,35]; the results of 2-D mean positioning error of respective schemes are com-
pared in Table 10. Although CCpos [35] could achieve higher accuracy than the proposed
scheme, the difference is about 45 cm.

Table 10. Regression results of existing and proposed schemes on the Alcala dataset.

WiFi Fingerprint-Based Schemes 2-D Average Positioning Error (m)

KNN 2.62

WKNN 2.27

SVM 6.71

RF 2.53

CNNLoc 4.62

CCpos 1.05

XGBLoc 1.5

5. Conclusions

We have proposed a XGBoost-based ML model using WiFi fingerprinting, termed
as XGBLoc, that localizes target device(s) over multi-building multi-floor environments.
By employing the PCA-based preprocessing, XGBLoc extracts core important features
from a WiFi fingerprint dataset while handling sparsity, reducing dimensionality, and
removing noise. For the representation of multi-building multi-floor environments, we
have defined relational labeling (RL) instead of existing non-relational labeling (NRL)
and applied it to XGBLoc. As a result, while XGBLoc has a smaller system complexity, it
gives a better classification and regression performance over existing ML/DL schemes.
We have evaluated XGBLoc on three different publicly available datasets: UJIIndoor,
Tampere, and Alcala. The performance results show that XGBLoc can achieve classification
accuracy of 99.2% and 97.03% on the UJIIndoorLoc and Tampere datasets, respectively.
Moreover, XGBLoc can locate target devices with an average positioning error of 4.93 m,
7.02 m, and 1.5 m on UJIIndoor, Tampere, and Alcala, respectively. Those results also
show that the proposed XGBoost-based scheme provides a higher degree of scalability



Sensors 2022, 22, 6629 16 of 17

and robustness, and keeps a better balanced trade-off between model complexity and
classification performance, when compared to existing ML/DL schemes.

In the future, we will expand our study further by collecting measured data from
relatively large-scale multi-building multi-floor environments and then testing the behavior
of the proposed scheme on it. Additionally, the proposed scheme will be expanded for
achieving low-latency user localization, while preserving the user privacy and security,
which could help develop the location-based access control and resource management
system for smart factories.
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