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Abstract: The rapid development of technology has brought about a revolution in healthcare stimu-
lating a wide range of smart and autonomous applications in homes, clinics, surgeries and hospitals.
Smart healthcare opens the opportunity for a qualitative advance in the relations between healthcare
providers and end-users for the provision of healthcare such as enabling doctors to diagnose remotely
while optimizing the accuracy of the diagnosis and maximizing the benefits of treatment by enabling
close patient monitoring. This paper presents a comprehensive review of non-invasive vital data
acquisition and the Internet of Things in healthcare informatics and thus reports the challenges
in healthcare informatics and suggests future work that would lead to solutions to address the
open challenges in IoT and non-invasive vital data acquisition. In particular, the conducted review
has revealed that there has been a daunting challenge in the development of multi-frequency vital
IoT systems, and addressing this issue will help enable the vital IoT node to be reachable by the
broker in multiple area ranges. Furthermore, the utilization of multi-camera systems has proven
its high potential to increase the accuracy of vital data acquisition, but the implementation of such
systems has not been fully developed with unfilled gaps to be bridged. Moreover, the application
of deep learning to the real-time analysis of vital data on the node/edge side will enable optimal,
instant offline decision making. Finally, the synergistic integration of reliable power management
and energy harvesting systems into non-invasive data acquisition has been omitted so far, and the
successful implementation of such systems will lead to a smart, robust, sustainable and self-powered
healthcare system.

Keywords: healthcare system; vital signs; vital data; non-invasive data acquisition; internet of things
(IoT); machine-to-machine (M2M) communication; wireless sensor network (WSN); digital image
processing; computer vision

1. Introduction

Today, a huge technological revolution in healthcare systems is taking place due to
advances in the Internet of Things (IoT) [1], bio-sensing [2], non-invasive/non-contact
sensing [3,4], artificial intelligence (AI) [5], mobile applications [6] and cloud comput-
ing [7]. Existing healthcare systems are not adequately structured to serve the needs
of a population with a life expectancy that is growing. Thus, human vital data acquisi-
tion/monitoring/sharing still faces a number of challenges that have not yet been ad-
dressed, and there is a huge demand for adaptable, customized and usable healthcare
solutions [8–14].
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Vital data acquisition is considered a key component in any healthcare system, par-
ticularly those that provide care for the elderly, children, and those who are permanent
patients [15]. Here, vital data acquisition is defined as the sensing, acquiring, processing and in-
terpretation of measured bio-signals in order to determine vital information (bio-information)
which can be utilized to help in disease diagnosis [16,17]. Moreover, this information enables
monitoring of those with ongoing and possible life-threatening conditions.

Acquisition of vital data is performed in three stages [18,19]:

1. The sensing stage converts physical features to electrical signals.
2. The processing stage converts the acquired signals into a form that is understandable

for software algorithms/embedded platforms/computers.
3. The analysis stage extracts valuable features for taking decisions.

The Internet of Things (IoT) can be defined as a communication solution which can
be integrated/interfaced with different physical objects and software in order to enable
information exchanges [13,20,21]. IoT technologies are proposed as one possible means of
ameliorating the general shortage of resources for healthcare systems, at a time when life
expectancy is increasing and medical costs are rising, by making the system more responsive
and more cost-effective [21,22]. Indeed, IoT technology is considered to be an outstanding
advance in the provision of healthcare services [23]. The development of sensors for vital
data acquisition based on IoT integration enables data to be collected from patients effectively
and promptly and analyzed for diagnoses and/or taking decisions [24–26]. A schematic
of the development of effective healthcare based on the IoT is shown in Figure 1. The
IoT provides full communication between sub-system/components/devices (things) in
hospitals and real-time communication between patients and doctors to enable healthcare
monitoring, diagnosis and supervision of treatment remotely. Figure 1 shows that the
development of healthcare solutions via IoT algorithm can enable the acquisition of the
full picture of the patient’s health status remotely. In addition, IoT algorithms facilitate
real-time intercommunication between heterogeneous/different objects [22,27,28].
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Figure 1. IoT is used in healthcare for varying purposes by different stakeholders (inspired from [27]).

Vital data acquisition is the process of extracting human vital features/data for health-
care. IoT technologies enable intercommunication between healthcare subsystems (compo-
nents) and/or things (physical world) and cloud computing (virtual world) [29,30]. The IoT
is, at heart, a system that enables physical “things” (often sensors of one kind or another) to
communicate and exchange information using suitable algorithms [31]. These exchanges of
information enable sharing of knowledge between sub-system components in order to take
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the best decisions/actions based on accurate and up-to-date information. The IoT enables
things to interact with cloud computing in order to process its information and receive
decisions from the doctor via cloud’s computing solution [24,29,32]. How a combination of
IoT and data acquisition enables modern and sustainable vital data acquisition is shown in
the proposed hierarchy in Figure 2.
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This paper describes the introduction of the IoT techniques into non-invasive vital data
acquisition as part of health informatics and how such a development opens opportunities
for healthcare systems as well as posing challenges. The changes from tele-healthcare to
IoT, and from invasive to non-invasive data acquisition, are discussed. Recent research is
reviewed to provide a knowledge base of data acquisition and use of the IoT in healthcare.
The literature review of data acquisition concentrates on heart rate and body temperature.
The design, development and use of the IoT in this area is covered and criticized. The
existing challenges are highlighted and future implications in relevant directions, namely
for enhanced IoT based non-invasive data acquisition systems, are suggested.

2. Internet of Things for Vital Data

With the rapid development in smart healthcare systems, it is foreseen that healthcare
services will be transformed into hospitals-at-home in the coming years; see the recent
study of the smart virtual hospital at home [33]. The technological revolution will enable
full health monitoring for a patient’s lifetime, including vital signs monitoring, emergency
situation alarms and medication management and telemedicine [34–37]. “Industry 4.0”,
expects to transform the world of industry and the changes introduced will inevitably
extend to other domains, including healthcare [29,38].

Elkaseer et al. (2018) reviewed practical approaches to the implementation of Industry
4.0 and defined the IoT as the capability to exchange information using smart sensor nodes
(wireless sensor network-WSN) which are capable of adapting and enabling optimization
of the desired application [29]. For healthcare solutions, Salem et al. (2019) defined
IoT as a communication algorithm that enables the exchange of vital data to provide
remote/internal vital data visualization and enable real-time vital data treatment [30],
which agrees with [39]. The IoT could be a promising solution that overcomes the challenges
associated with, for example, monitoring the vital data of disabled patients [40,41]. In
one practical healthcare system, the IoT was developed using sensors as part of a WSN
to detect and recognize relevant vital signs and irregularities [42,43]. In addition, IoT
technologies such as radio-frequency identification (RFID), near-field communication
(NFC), Zigbee, etc. facilitate communication between different healthcare sub-systems
(things) such as visualization monitors, sensors, data acquisition units and servers [44–46].
Such communication sends the vital signs of patients to the doctors, remotely, wherever the
patients’ locations. In the [47,48] studies of healthcare, IoT is proposed for specific goals
such as detection of falls and/or seizures. In this way, IoT enables caregivers to receive a
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message/notification of the state of the patient and enable immediate corrective action to
be taken.

Figure 3 shows a four-layered IoT architecture for human vital signs. Firstly, the
sensing layer is devoted to observing the patients’ vital signs, such as blood pressure [49],
heart rate [49], electrocardiography (ECG) signal [50], electroencephalogram (EEG) sig-
nal [51], etc. This layer collects the vital data from bio-sensors and processes it to find vital
information/insights. However, in [52], the authors also introduced a means of locating
the patient via a global positioning system (GPS) interfaced with an embedded system
in the sensing layer. In the study by Cerlinca et al. (2010), RFID was integrated into the
sensing layer to identify the patient [53]. In addition to healthcare/vital data acquisition
systems, some home automation solutions integrate vital data acquisition [54], such as
ambient assisted living (AAL), developed by Woznowski et al. (2015) [55].

The second layer provides fully secure/stable communication through the network/mesh
and exchanges the information via communication technology such as Zigbee, Bluetooth
Low Energy (BLE), IPv6 low-power wireless personal area network (6LowPAN), long-range
radio technology (LoRa), etc. [56–58]. The third layer is the data processing layer, which
provides effective processing of vital data in order to determine the patients’ status. The
fourth layer, the application layer, can provide intelligent services and applications, such as
those for disease diagnosis, behavior recognition and smart assistance [59,60].
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A number of IoT technologies could be utilized for healthcare systems. These tech-
nologies are integrated with invasive/non-invasive vital data acquisition. Table 1 discusses
the merits and demerits of different IoT techniques and technologies which can be utilized
in e-healthcare systems and the table mentions a number of studies of IoT technologies in
the vital data acquisition and e-healthcare domains.
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Table 1. Different IoT technologies in vital data acquisition systems.

Technology Merits Demerits Used in

LoRa Low energy consumption, long-range operable standard Low data size and volume [30,39]

SigFox
Low energy consumption,

long range,
higher spectral efficiency, low noise

Supports one-way communication without
acknowledgment, low data rate [61]

Zwave Low Interferences, power efficiency
Implementation cost of network, difficulty in
configuration, performance issues with the
number in nodes, limited number of nodes

[62]

RFID No wave emission
No need for energy Low range [63]

Bluetooth Message size and volume debit Low range [64]
Wi-Fi High data rate, secure communication High power consumption, need for gateway [30,39]

ZigBee Secure connection, low power
low cost, high range

Low data rate
Short range [65]

2.1. Vital-IoT in Smart Homes

The monitoring of human vital data and human activity are very important both at
home and in the working environment (including, schools, offices and manufacturing).
Ambient assisted living (AAL) is promoted as a solution to the provision of health monitor-
ing and care at home for elderly people who suffer from some form of disability [66]. AAL
architecture has been developed by integrating sensor technologies, including body-worn
sensors, cameras for activity recognition and environmental sensors to sense the local envi-
ronmental conditions. Furthermore, AAL visualizes the sensed data and human activity
on a user interface (UI). Then, the sensing data is treated and sent via a gateway to the
cloud/doctors [67]. One of the AAL solutions is developed by Woznowski et al. (2015) [55]
and was designed to enable patients to communicate with doctors and then, on advice
from the doctors, where possible and appropriate, self-medicate.

AAL-SPHERE is a multi-model that could be developed with advances in sensor and
communications technologies to monitor the activities associated with daily living (ADL).
In Figure 4, a message queue telemetry transport (MQTT) protocol enables communication
between body, video, and environment sensor networks and with the broker (gateway).
After that, the SPHERE data hub performs an analysis of the acquired data and, based on
that analysis, the patient’s activities can be visualized using the cloud. Nevertheless, this
solution was restricted to monitoring one patient and was not fully non-invasive. Some
vital data was obtained using an invasive method which could increase the risk of infection.
At this stage of development, the solution is restricted to home monitoring only. This
architecture agrees with what is reviewed in [19] for remote sensing in COVID-19 situations.

Mainette et al. (2016) developed a solution, that can aggregate the bio-medical in-
formation from different sensors and send it to a remote server and from there send
notifications/messages to caregivers or doctors [68]. In particular, the data is aggregated
by the WoX sensors and analyzed during an integration middleware stage in order to
determine vital information. The development was implemented on two levels. Firstly, the
data was collected through different sensors via a communication technique based on BLE.
Secondly, the data was analyzed to extract the necessary information and send it via the
gateway using Wi-Fi technology.

In [68], the solution design was effective, but the prototype was physically large and
no study was carried out on either the power consumed or on the effect on the wearer of
wearing the device which can be self-powered wearable IoT node as mentioned in [69–71]
or be consumed low power as developed in [72]. However, using an embedded Linux
platform meant it was capable of undertaking many tasks due to it being high.

In order to obtain full reports on patients and send alerts to the caregivers, Coelho
et al. (2015) developed a smart home architecture that was based on an iTech tool for
sensing and a MySQL database. The developed solution was devoted to monitoring people
with special needs [73]. The system used sensors and cameras to monitor human activity.
These authors also developed an advanced algorithm to analyze the acquired data. This
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algorithm needed certain features to be included in the platform such as quick data transfer
and high computational performance. The system combined two subsystems. Firstly the
smart home module that used the iTech tool to collect data on human activities. Secondly,
the cloud computing used a MySQL database that was part of Google Cloud to store and
analyze the acquired data [73]. Nevertheless, the system was limited to sensing human
behavior, i.e., the activities of people with special needs, rather than vital data.
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Ray (2014) developed a framework known as the Home Health Hub Internet of Things
(H3 IoT) for home health monitoring that sensed vital data [74]. The H3 IoT framework
included five layers. Firstly, the physiological sensing layer included bio-sensors to monitor
bio-functions such as heart rate, body temperature, blood glucose, EEG, respiratory rate, etc.
Secondly, the local communication layer used a low range communication technique, i.e.,
radio frequency (RF), to transfer data among subsystems. Thirdly, the information process-
ing layer performed the processing and analysis of vital data using computing platforms
such as digital signal processing, embedded system platforms, or a field programmable
gate array. These platforms interface with a high-level communication technique such as
long-term evolution to transfer vital information for cloud computing [75–77]. Fourthly,
the internet application layer that enabled the application to work through a mobile app
or desktop app in order to manage solution parameters [78]. Fifth and last was the user
application layer that interfaced with the healthcare providers and enabled them to perform
diagnostic investigations and recommend possible solutions. This framework had certain
advantages; the layers were clearly structured and its interface was user-friendly. However,
the framework was difficult to upgrade and was not fully non-invasive when sensing
vital data. Importantly it was restricted to home use and not applicable to more crowded
environments. Furthermore, the authors did not apply their framework to a real system.

Jara et al. (2011) developed an IoT solution for diabetic therapy management in
ambient assisted living (AAL) [79]. The solution aimed to provide the diabetic patient with
guided advice to keep his/her blood glucose level within a safe range. The developed
solution utilized the IoT to provide communication between a blood glucose sensor and
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the internet in order to monitor blood glucose ratios on which to base the advice given to
the patient. The system was developed using various communication techniques such as
6LoWPAN and RFID.

2.2. Vital IoT in M-Health and E-Health

The IoT is not restricted only to smart home and AAL but has also enabled devel-
opment of mobile healthcare (M-health) and electronic healthcare (E-health); in fact, the
IoT opens the door to the universal provision of healthcare. The IoT means that solutions
to health problems will not be restricted to patient–physician communication, but new,
personally-tailored curative methods will be available to all patients. The IoT will enable
full access and real-time analysis of medical data that could increase the quality of medical
services and provision [80]. Additionally, IoT enables telesurgery and surgical telemonitor-
ing [81]. The system developed in [80], termed smart space by the authors, allows doctor
and patient to communicate whenever and wherever the patient wants it, whether at home,
at school, at work. or at play. The design is as follows. First, there is the body area network
that includes temperature sensors and other smart devices as worn by the patient. Secondly,
the personal area network distributes environmental sensors in the smart space. Thirdly,
the portable medical terminal is wearable by patients to detect an emergency state, which
is agreed with [82]. The developed smart gateway allows an exchange of data throughout
the whole sub-system components via the cloud server, which collects data from different
resources and synchronizes them in the exchange processes.

For e-healthcare, the IoT enables medical devices to communicate/share data with
each other via the internet in order to provide telehealth services. These enable direct
communication between doctor and patient via the internet using smart devices that
could be as advanced as robotically-assisted surgery. Additionally, it could provide full
health monitoring for old and disabled people [83,84]. The telemedicine solution includes
non-interactive consultation, where there is no real-time communication between patients
and doctors, and instead communication is through the patient sending a report and
receiving the doctor’s response, possibly as text messages. Interactive consultation might
also use Skype, or Telegram, or a video link.

In [83], the authors reviewed a number of medical system applications using IoT. For
example, Clinical Care, was developed using RFID technology to detect and define patients,
to help with the monitoring of taking samples and doing tests. This solution monitors a
patient’s location and facilities doctors/nurses to identify samples in an easy way.

Moreover, in another solution, which is called “Sickroom”, the solution provides vital
data acquisition for patients in the sickroom. This vital data was acquired via sensors and
sent to doctors and the care team via the internet.

M-health has applied tracking and monitoring of diseases over the long term, includ-
ing diabetes and blood pressure [85,86]. In a recent study [87], a solution was provided
for the monitoring of blood, temperature, oxygen saturation, heart rate and breathing
via M-health concepts. The solution developed was based on four components. Firstly,
physiological data acquisition. Secondly, an interface that included different types of com-
munication techniques to enable communication from the system’s components. Thirdly,
cloud computing that received data through the interface and gave its responses on a
display that showed the vital data and responses.

Prouski et al. [88] developed a solution, where “smart glasses” measured eye pressure.
The solution was developed using sensors which were in the frames of a pair of wearable
glasses in order to detect eye pressure through the rate of blood flow in the human eyes.
This solution sends notifications to the patient’s smart phone and makes an emergency
contact in critical cases. The heart rate, blood pressure and eye presser have a correlation to
each other [89–91].

Salem et al. [30,39] developed a dual-frequencies IoT network for non-invasive data
accusation. A new design for a vital data acquisition using non-invasive algorithms
was introduced (see Figure 5). The two vital signs monitored were heart rate, which
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was received via a non-invasive camera and body temperature that was extracted using
infrared IR sensor. The proposed data acquisition algorithms were integrated into a new
design of heterogeneous IoT architecture composed of four IoT nodes connected using two
frequencies, 2.4 GHz and 433 MHz. This multi-frequency algorithm was introduced via
embedded software for ESP32 and LoRa modules. Where the node for measuring heart rate
propagated its data at 433 MHz, and the node for measuring body temperature propagated
its data on 2.4 GHz. The broker node transmitted/received data over both 2.4 GHz and
433 MHz, as shown in Figure 5. The setup could be easily afforded by workplaces, hospitals,
schools and domestic dwellings. Moreover, the solution is capable of being extended due
to the capability of the broker node processing chip.
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2.3. Integration of Vital Data Acquisition into IoT Nodes

The integration of vital data acquisition into IoT nodes/devices could be carried out
via different communication protocols which can be categorized as follows.

Both universal synchronous asynchronous receiver/transmitter (USART) and univer-
sal synchronous asynchronous receiver/transmitter (UART) work under full-duplex com-
munication mode, which enables them to transmit and receive data at the same time [30,92],
with the ability of the USART to adding synchronization feature. The synchronization
feature enables the sender to produce a clock signal that can be received by the receiver.
However, In the UART the clock signal is not required because the data stream is sent
with defined baud rate ahead, and thus it is considered more cost-effective. In addition,
both protocols (USART/UART) use a parity bit for error detection that increases the accu-
racy of sending data. The main limitation of these protocols is to restrict work with only
one sensor because there is no communication facility with different sensors in the same
communication bus. Additionally, these protocols have a limited baud rate for sending
the data.

Inter-integrated circuit (I2C) is a serial communication protocol that facilitates con-
necting different sensors with a microcontroller. I2C requires two bidirectional active wires
which are termed serial data line (SDA) and serial clock line (SCL) to exchanges the infor-
mation between devices. I2C is a master to slave communication protocol, where each slave
(sensor) has been defined with a unique address. In order to establish communication, the
master device initially sends the target sensor address along with read/write (R/W) flag.
The matching device/sensor (slave) will move into active mode, and other devices/sensors
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(slaves) will switch to offline state. Once the sensor is ready, communication starts between
master (IoT node) and slave (sensor) [92,93]. This protocol provides good communication
between onboard devices/sensors/nodes which are accessed infrequently. Additionally,
its addressing mechanism ensures the correction of sending/receiving the information.
Moreover, its cost and circuit complexity does not change with the increase in the number
of sensors added. However, the I2C protocol has a limited sending speed [92,93].

Serial peripheral interface (SPI) is a serial communication protocol consists of a 4-wire
protocol which are termed as master out slave in (MOSI), master in slave out (MISO),
slave select (SS), and serial clock (SCLK). Similar to I2C protocol, SPI is also a master to
slave communication protocol. In SPI, the master device first sets the clock at a particular
frequency. Next, the SS line is used to select a slave by pulling the SS line low (zero pulse)
where it is normally held high (one pulse). Then, the communication is established between
the selected slave (sensor) and the master (IoT node) [94]. The SPI is faster than the serial
communication protocol, and it supports multiple slave connectivity. Additionally, it is
a low-cost communication protocol, and it is considered a universally accepted protocol.
However, setting up a communication mesh for this protocol requires more wires than
other communication protocols. Increasing the number of slave sensors could lead to circuit
complexity [92].

3. Non-Invasive Vital Signs Acquisition

Human vital data has multiple physiological dimensions which can be measured via
invasive methods, i.e., sensors which touch the human body, or via non-invasive methods,
such as cameras, magnetic resonance imaging (MRI), and computerized tomography (CT).
These signals can be processed to clarify/identify features contained in the vital data to
help doctors reach a correct diagnosis for a given patient [95]. In Figure 6, the vital data
acquisition can be applied remotely or inside a hospital, either offline or online (real-time).
Furthermore, it can be applied as a non-medical application, such as when monitoring
fitness. The vital data acquired should contain sufficient useful information for anomaly
detection, diagnosis and visualization of health records [96–99].

The acquisition of vital data is a technology that is ongoing and that should be appli-
cable in all aspects of daily life: the home (especially when sleeping), at school, in clinics, in
surgeries and hospitals and during leisure activities, particularly sporting activities.

The transformation of healthcare by taking it out of a clinical environment began in
the late 1990s with development of the new concept, enabled by technological advances of
providing vital data acquisition via wearable devices [99]. The objective was to introduce
continuous health monitoring for patients. Improvements to the systems were introduced
with multiple new technologies particularly information and communication technologies,
bio-medical technologies and micro- and nano-material engineering [97,99]. Today, vital
data acquisition can be achieved by a new generation of wearable heath devices in common
use that can track heart and respiratory rates and monitor activity and sleep patterns, with
real-time monitoring by healthcare professionals for patients and those with special needs.
Such widespread and ongoing monitoring ensures better support for medical diagnosis
and faster recovery from bodily injuries.

The solution for acquiring vital data through wearable devices should meet the fol-
lowing requirements [31,95,96,99–102]:

1. Be sustainable and consume low power [30,39,103];
2. Be reliable [104–106];
3. Be secure from cyber-attack [107–109];
4. Be comfortable for the user [110];
5. Be upgradable [20,29];
6. Be safe [111];
7. Provide a safe and sustainable environment [39,111].
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3.1. Heart Rate Vital Sign

The heart rate is measured as a series of pulses collected by a vital data acqui-
sition system which can contain sensors/cameras, interface circuits and a processing
unit/microcontroller. The human heart rate can be sensed by electrocardiography or photo-
plethysmography (PPG) algorithms. Additionally, the heart rate sensor of the Apple watch
uses infrared, visible-light LEDs and photodiodes to detect heart rate [112].

Poh et al. (2010) developed an algorithm to sense heart rate. The algorithm integrated
the outputs of a photo transistor and LED which were setup and embedded inside the
earphone. In particular, the algorithm calculated the heart beats according to the infrared
reflection which changes because of the blood flow rate [113]. The infrared output voltage
was converted to discrete values (digital values) via a 12-bit analog–digital converter. A
0.8–4.0 Hz bandpass filter was used to pass heartbeats frequencies only and reject other
frequencies. The values of the heart rate are visualized on the mobile phone and can be seen
as beats per minute (BPM), which can be presented in graphical form for numerous human
activities, such as standing and walking. This device required a wearable device, and the
patients have to insert an earphone which could increase the chances of an infection which
would make the device unusable. Additionally, the performance of the developed solution
could change with change of use of the earphone, i.e., listening to music of different types.
Based on the same theory of [113], a recent study [114] developed a solution to measure the
blood pressure of patients.

Mohammed et al. (2014) proposed data acquisition of heartbeats, sensed via electro-
cardiography and processed using a IOIO-OTG. The IOIO was connected to the mobile
phone to upload the sensed data to the cloud. This operation was performed via developed
mobile software. The cloud software performs pattern matching/analysis for the uploaded
data in order to recognize dangerous health situations [115,116]. The solution shows the
ECG signal in real-time on the mobile phone as well as sending it to the cloud. However,
the solution was restricted to use with the mobile phone, which makes the developed
approach unusable because the user has to connect the IOIO board to the mobile phone.
Again, the authors did not mention the way to sense ECG signal in a non-invasive way.
For diagnosing arrhythmias, the work was not restricted to utilizing mobile phones, and a
non-contact, non-invasive monitoring system to measure and estimate the heart and breath-
ing rate of humans using a frequency-modulated continuous wave was developed by [117].
Additionally, the results of Mohammed et al. (2014) agrees with the study of [118–120],
which utilized radar to monitor vital signs such as the heart rate and breathing rate.
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In addition to ECG and PPG, there are other methods to sense heart rate, such as the
ballistocardiogram (BCG), which senses the hemodynamic forces imparted by the pulsating
flow of blood around the body to measure hemodynamic and heart functions [121,122].
A set-up was developed by Giovangrandi et al. (2012) to study and compare ECG and
BCG measurements. The study confirmed that BCG was capable of sensing heart rate, but
not as distinctly as ECG. However, the setup was restricted to be invasive in the ECG and
BCG sensing.

In addition to ECG and BCG, an accelerometer has been used as a sensor to sense
the heart rate. Aarts et al. (2017) developed vital data acquisition using an accelerometer,
and the data was sent to a computer and suitable software visualized it [123]. For a
healthy subject, the authors found accelerometer-based pulse detection of heart beats had
excellent sensitivity. Additionally, the authors found that accelerometer performance was
not influenced by changes in position, and placement of the accelerometer was easy in
the given conditions. However, the solution is unusable outside of a hospital due to the
complexity of the setup such as the need for an accelerometer of sufficient sensitivity and
the necessary pre-amplifiers, though most people now have a personal computer (PC). For
the placing of the sensor, the patients had to attach the sensor to his/her neck which might
not be easy at home.

In 2012, Wu et al. developed a new paradigm for non-invasive data acquisition.
The authors developed an image processing algorithm for motion magnification [124].
The algorithm was developed using MATLAB [125]. The algorithm was run on 32 GB
RAM and an Intel Core i7 microprocessor which facilitated a magnification algorithm that
considerably enhanced, for example, the vital changes in human skin [124]. The colors
changes refer to the changes in skin color brought about by blood flow and revealed the
subject’s heartbeats. The algorithm was termed Eulerian video magnification (EVM) with
a claimed accuracy comparable to hospital in-house measurements. The algorithm was
extended to cover heart rate and respiratory rate in study [126]. Additionally, Wu et al.
results is agreed with [127] in there developing of heart rate variability (HRV) as a risk
assessment solution for diagnosing illnesses, and the results agreed with [128] for their
developing of HR and eye-blinking monitoring using the vision system. Additionally,
the methodology of extract (HR) from video is agreed with [129] which was utilized 3D
central difference convolution with attention mechanism. The algorithm developed by
Wu et al. combined both temporal and spatial filtering of the input from a video camera.
At its simplest, to discern the effects of blood flow thorough, for example, the facial veins,
a temporal band pass filter corresponding to the pulse rate (0.4 Hz to 3.0 Hz) might be
used. A similar process is applied to the pixels. The solution used amplification factors
of as much as 500, so effective noise filtering was essential for good results. The color of
the face shown in Figure 7 can be seen to pulse between pallid and very flushed at a rate
corresponding to the pulse rate. While very accurate, the algorithm requires a high level of
processing resources, which is expensive. At the time, it was not capable of being integrated
with the IoT.

Recent studies in [30,39] extended the work of [124] to be integrated with Internet of
Things and to be run on low processing power platform, as shown in Figure 7.

In addition to implementing EVM on a high power machine, Chambino (2013) devel-
oped a non-invasive approach to extract the heart rate via a mobile phone based on the
algorithm developed by Wu et al. Chambino developed the application using the Android
Software Development Kit (SDK) and open computer vision library (OpenCV) to develop
the phone as a low cost platform for the EVM application [130]. The value of the heart rate
in BPM is printed in the mobile phone GUI. The application is capable of extracting the
BPM in real-time, though the author did not say what methodology could be used to solve
this issue in the mobile phone platform. Additionally, the author did not study the possible
use of a mobile phone as an IoT node for M-health functions. The author of [131] extended
this work with a nice GUI for desktop application based on Yolo4 for extract vital signs.
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The sensing of heart rate is not restricted to using RGB video frames, it can also be
sensed via thermal imaging. Garbey et al. (2007) developed a computer vision algorithm
based on a thermal camera detecting cardiac pulses via thermal changes in the carotid artery
by which it accurately determined the cardiac pulse rate [132]. However, a thermal camera
is expensive and difficult to setup outside a hospital. The utilization of health monitoring
for humans via computer vision can be extended to apply for animals as well [133]. These
implementation of was extended to be implemented by 3D camera by [134]. It carried
out good results but the setup was very expensive, and the author did not formalize the
colorations between different vital signs affecting each other. Additionally, the utilization
of convolutional neural network (CNN) and long short-term memory (LTSM) enhance the
process of heart rate estimation using camera, as mentioned in [135].

3.2. Body Temperature Vital Signs

Body temperature (BT) is an important vital sign, and in this sub-section, the author
covers recent solutions for BT determination. In [136–138], the body temperature was
shown to be affected by the blood circulation and heart rate. In the developed solution
in [138], the body temperature was estimated using a series of heart rate readings and a
statistical model developed using a Kalman filter.

In a recent study [139], the authors developed a non-invasive vital data acquisition for
human body temperate using microwave radiometry. The probe was a thin film attached to
the skin to sense the body temperature and propagate the sensed value to a digital record.
To make the data acquisition non-invasive the researchers made a number of important
assumptions, the various layers of the body, skin, sub-cutaneous fat and muscle were
uniform, and that the temperatures could be based on black-body power density curves.

In [139–141], wearable devices as data acquisition systems for human body temper-
ature measurement were developed. The solution was developed based on arrays of
precise temperature sensors and provided real-time data of considerable accuracy (claimed
as better than 0.1 ◦C). However, the solution was invasive and not user friendly. Fur-
thermore, these solutions were not integrated into the IoT. In a recent example, in [63],
the authors developed an epidermal temperature sensor for patients using a re-usable
wireless temperature sensor to provide real-time vital data to the cloud. This approach
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calculated/estimated the temperate of the human body to an accuracy of between 0.6 and
2 ◦C, depending on where on the body the sensor was placed. The integration of RFID
with the temperature sensor was designed in order to develop a remote batteryless RFID
thermometer [63]. These measurements were performed with military personnel in a work
situation. The author used a method which, while similar to a non-invasive technique, was
not itself fully non-invasive. The implementation of non-invasive measurement of human
body temperature retains many challenges. We note that in these studies the integration
with a heterogeneous IoT network was not developed, as all the studies were restricted
to the development of only one IoT node or homogenous IoT nodes. In [39], the authors
developed heterogeneous IoT network for fully non-invasive data acquisition, which agrees
with this approach of acquire the body temperature. The [39] results was agreed with a
recent work of [142], which is graphed for further information in Figure 8. The limitation
on this work is the health effect of RF on human body temperature because a recent studies
found an effect for RF on human body temperature [143].
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However, body temperature can be measured in an indirect way. Looney et al. devel-
oped a real-time method of measuring resting core temperature based on heart rate [144].
However, the solution was not easy to use.

In 2019, Wei et al. developed a cheap skin temperature sensing technique, accurate
to ±0.3 ◦C but using an invasive method; for a diagram of the algorithm, see Figure 9.
The temperature reading was sent via the IoT. The node was developed based on an
ARM microcontroller to optimize the processing and power usage [145]. The structure
of the sensing node contains temperature sensor, microcontroller unit (MCU) and RF
transmitter. The diagram also shows the structure of the receiver which visualizes the
received temperature using the software program LabView [146]. The printed circuit board
(PCB) for the sensing node was made as small as possible and developed as a four-layer
structure with surface mount devices located on both sides of the PCB.

Figure 10 shows the PCB developed for the temperature sensing node. On the left of
Figure 10 is the interface with the wireless module, on the right is the MCU attached in the
PCB. The size of the node was small, with dimensions of 38 mm × 38 mm.

Li et al. (2018) developed a user-friendly body temperature measuring technique
called the “smart pillow” (see Figure 11). The solution provides real-time body temperature
sensing for via embedded sensors in the pillow. The sensors were connected to the broker
node via BLE and a TMP112S Texas temperature sensor. The author utilized a mobile
application that acted as a broker in order to access the gateway via Wi-Fi or 4G network.
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The mobile linked the vital data from different temperature sensors and calculates the
vital features using a fuzzy logic control algorithm. The solution is very comfortable in
use and consumes little power [64]. However, the technique was restricted to be used
during sleeping. The authors did not mention the capabilities of integration with other
IoT networks.
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The thermal camera has a high impact in enhancing non-invasive data acquisition [147].
Yoshikawa et al. developed a non-invasive thermal data acquisition system for the human
body. The methodology was developed using a mobile phone with thermal camera attached.
The image processing algorithm calculated the temperature of the person from the thermal
camera frames and corrected the temperature using a wristband sensor (see Figure 12) [148].
The authors may have claimed the application was low cost but a mobile phone and thermal
camera is relatively expensive. The system could not be considered fully non-invasive due
to the use of a wristband sensor.

Deep learning has a high impact in healthcare system for estimating vital sign and
in estimation of human activity [149–154]. In [155], an algorithm was developed using
deep learning in order to sense the vital sign such as human body temperature using a
thermal camera. The algorithm was developed based on the object detectors YOLOv4 and
YOLOv4-Tiny, and the algorithm was trained using a dataset of 26 patients documented in
an ICU.
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3.3. Sensing Techniques for Vital Data Acquisition

There are several sensing techniques/technologies could be utilized for extracting the
human vital signs, such as sensors, RGB cameras, 3D cameras, IR cameras, etc. Some com-
mercial and fabricated/developed sensor techniques are discussed in Table 2. Additionally,
embedded interfacing methodologies are mentioned with their features.

Table 2. Different sensing techniques and technologies for human vital signs.

Sensors Interfacing Features Vital Signs Measuring Methodology

MySignals
(Commercial sensor)

[156]

WiFi and BLE
Integrated with Arduino

and Raspberry Pi
Unwearable

Body Position, Body
Temperature,

Electromyography,
Electrocardiography,

Airflow, Galvanic Skin
Response, Blood

Pressure, Pulse Oximeter
Glucometer, Spirometer,

Snore Scale,
Electroencephalography

Invasive

e-Health V2.0
(Commercial sensor)

[156]

WiFi and BLE
Integrated with

Arduino and
Raspberry Pi

Wearable as T-shirt

Patient Position Sensor
(Accelerometer)

Glucometer Sensor, Body
Temperature Sensor,

Blood Pressure Sensor
(Sphygmomanometer)

V2.0, Pulse and Oxygen
in Blood Sensor (SPO2),

Airflow Sensor
(Breathing), Galvanic
Skin Response Sensor

(GSR-Sweating),
Electrocardiogram

Sensor (ECG),
Electromyography

Sensor (EMG)

Invasive

WEALTHY
(Developed sensor)

[157]

Analog-to-digital
Converter (ADC)

Can be interfacing with
microcontroller

Wearable Electrocardiogram, Respiration, Activity Invasive

Wearable sweat sensors
(Developed sensor)

[158]

Analog-to-digital
Converter (ADC)

Can be interfacing with
microcontroller

Wearable on hand above
skin Diabetes Partially non-invasive
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Table 2. Cont.

Sensors Interfacing Features Vital Signs Measuring Methodology

Thermal Camera
(Developed algorithm)

[147,148]

Computer
Embedded Linux kit Utilizing thermal camera Body Temperature Partially non-invasive

RGB Camera and IR Sensor
(Developed algorithm)

[30,39]

Computer
Embedded Linux kit

Microcontroller

Utilized thermal camera
and Infrared sensor Heart rate and Body Temperature Non-invasive

3D Camera
(Developed algorithm)

[134]
Computer 3D imaging Heart Rate and Oxygen Saturation Non-invasive

4. Review Summary, Perspective for the Future Work, and Open Challenges
4.1. Review Summary of IoT and Vital Data Aqcusition for e-Healthcare Systems

Table 3 discusses different recent studies of IoT for vital data acquisition and telemedicine
which provide smart e-healthcare systems. The table discusses the sensing technologies
and the IoT technologies. Additionally, the advantages and limitations of every study
are reported.

Table 3. Different smart e-healthcare applications based on IoT and invasive/non-invasive data acquisition.

Work Non-Invasive IoT Wireless
Technology

Sensing
Technology

Measured
Vital Data Advantages Limitations

[49] No No N/A Piezoresistive BP, Heart rate High accuracy, short
measurement time, portable Very sensitive

[52] No Yes GPS, GSM Analog, optical Heart rate, BT Direct tracking of patients,
SMS iseasier to access

Bulky circuitry,
movement artifacts
may affect accuracy
of heart rate sensor

[113] No Yes 2.4 GHzradio Infrared LED with
phototransistor Heart rate Comfortable Looseness leads to

movement artifacts,

[118] Yes No No CW Doppler
radar

Respiration rate,
Heartrate

Non-contact
measurement

Easy interference by
noise

[120] Yes No N/A CW Doppler
radar Heart rate

High accuracy,
non-contact

measurement

Must be readjusted in
different

environments

[121] No No No Strain gauges, dry
electrodes BCG, ECG Convenient, safe Not portable, PC is

required

[132] Yes No N/A

Piezoelectric pulse
transducer,

middle-wavelength
IRcamera

Cardiovascular
pulse

Non-contact measurement,
high accuracy

Environment may
seriously affect the

performance

[133] No No N/A IR thermal
camera

Respiration rate,
heart rate (in

sheep)

Non-contact
measurement Animal use only

[134] Yes No N/A 3D camera
Temperature,

respiration rate,
heart rate, SpO2

Non-contact
measurement,

real-time
Low accuracy

[63] No No RFID Digital sensor Temperature Battery-free,
compact

Requires a reading
device

[142] No Yes Wi-Fi Non-contact
IR sensor Temperature Non-contact measurement,

Robust Wi-Fi Low reliability

[145] No No 2.4 GHz
radio Digital sensor Temperature High accuracy, low power,

low cost

The difference in
temperature is
approximated

[64] No Yes Bluetooth Digital sensors Temperature,
humidity

Critical data are extracted from
simple data

Indirect connection to
internet

[148] Partially No N/A Thermal camera,
wristband Temperature High accuracy

Low reliability with
sweat requires uses of

a reference device

[151] No No N/A Magnetic
induction

Human activity
recognition

Lightweight, portable, cheap,
high accuracy

Cross-coupling may
be destructive

[30,39] Yes Yes LoRa and WiFi RGB Camera Heart Rate
Low Processing power,

portable, safe, easy to use, high
range of sending data

Very sensitive for
environment light

[39] Yes Yes LoRa and WiFi IR Sensor Body temperature Portable, easy to use, high
range of sending data, low cost

Needs short distance
to be used

[159] No Yes
Bluetooth

and mobile
phone

Photoplethysmography

Body Temperature,
oxygen saturation,

heart rate, and
respiratory

Enable remote monitoring
Easy to be integrated with

mobile phone
Needs to be worn

[160] No Yes BT/BLE Pulse oximetry sensor oxygen saturation Secured connection Needs to be worn
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4.2. Limitations, Open Challenges and Future Procpects in Non-Invasive Vital Data Acquisition

Looking at the previously reviewed literature, one can conclude that RGB cameras,
radar, and radio frequency have been utilized to estimate heart rate (HR), body temperature
(BT) and other vital signs. For the utilization of RGB cameras, the head rotation and hand
position over the face, the illumination level of the environment, camera resolution and the
number of frames negatively affect the accuracy of the algorithms such as the HR estimation
algorithm [30,39,124,126,128–130,132,133]. For the future work, it is recommended to utilize
multiple RGB cameras to obtain high accuracy with face orientation, and it is recommended
to test many illumination levels with RGB color space to avoid the negative effect of
high-low illumination. Additionally, the impact of emotions such as the psychological
states of the patient can disrupt the estimation algorithm. So, it is recommended to develop
a machine learning algorithm to analyze the HR video and study the effect of emotion
on the estimated HR results to obtain more accurate results [161]. For a low number of
frames per second (low temporary information), it is still an open challenge to perform
Earlean video magnification for estimating vital data with low temporary information.
Solving this challenge will optimize the algorithms for the low processing platform, so
it will minimize the cost. For software development optimization, according to [30,128],
the authors optimized the EVM algorithm to make the software of data acquisition able to
run in low-spec machines. The optimization in software to make it able to be ported on
embedded system kits is still an open challenge and its results will have a high positive
impact in the market.

The utilization of DNN, such as CNN, for estimating heart rate has a good approach
to perform HR estimation without complex analysis and feature extractors for the EVM
problem. However, this may limit further development because DNN is a black box
model [133].

For FIR imaging (thermal imaging), authors developed algorithms to estimate the
body temperature [147,148], but there are some limitations that have to be addressed. One
of these limitations is the estimation of the BT without reference point in order to increase
the usability. Additionally, the study of the effect of room temperature on the thermal frame
is still an open challenge and deep learning may help address it, but firstly an experimental
dataset has to be collected in different conditions.

The chip design for data acquisition with its IoT module will affect a high impact
in production. For example, a portable fabricated module which has its IoT layer, data
acquisition layer and its self-powered system will be integrated as well. The fabrication of
these three technologies in one chip as SoC will affect a positive impact in health informatics.

4.3. Limitations, Open Challenges and Future Procpects in IoT for Healthcare

From the reviewed literature, it is possible to emphasize that the enabling of IoT
system to be more scalable to cover many areas and multiple nodes is limited. Salem et al.
showed how to work with different frequencies as a step to be scalable, but there is no clue
about how can it be scalable for millions of patients where every patient has 3–5 vital signs
which have to be analyzed and sent to cloud computer in a short time. This is still an open
challenge and needs appropriate addressing.

The second challenge is how to make the network of IoT have a mobility feature.
Salem et al. [39] proposed a dual frequency approach, but the acceding of the gateway
was only restricted by Wi-Fi frequency. The open question of how can the network cover
the missing of accessing the broker remains. The system has to be flexible to switch to
another backup frequency and check the facility to access the cloud through it [20] and
design a backup for the loss connection with the could computer, but, unfortunately, there
are limited studies to facility this approach on vital IoT systems.

The third challenge is the effect of wireless signals on the sensor reading if the sensor
depends on the RF. There is a need to study the effect of different IoT frequencies on the
RF-based sensors reading vital data.
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The fourth challenge is the lack of standardization which mean there are no slandered
SDN for healthcare, and if there is no standardization, the facility of tracking abnormal
signal/data features will be difficult, and the system will be easily attached.

Power control is based on the design of data sending and the execution of SW, as
developed and mentioned in [72].

4.4. Next Generation of e-Healthcare Systems with the Aid of Metaverse Technology

The explosive growth of digital technologies such as IoT, non-invasive vital data
acquisition, artificial intelligence, virtual reality and augmented reality has led to the
advent of a new level of e-healthcare systems based on metaverse technology [162]. In
metaverse-based healthcare a non-invasive data acquisition system acquires the vital signs
of patients and sends these signs to the doctor in emulated form using IoT. The doctor
interfaces with this emulator using augmented reality and utilizes IoT to send the real-time
actions/prescriptions to the patient without the need for in-person interactions. The in-
tegration of AI in metaverse applications provides decision-support systems which help
doctors in diagnosis and treatment processes. This decision-support-based AI system uses
the collected medical data which is collected during virtual medical investigation [163,164].
According to this working scenario, the metaverse-based healthcare helps monitor patients,
analyze vital data, facilitate graded diagnosis, monitor treatment, prescribe personalized
and precision medicine and follow up patient status remotely and seamlessly [165]. This ap-
proach can virtually interconnect doctors and patients around the clock and thus overcome
the distance obstacle, especially for patents living in rural areas. In addition, the virtual
training and education of junior doctors and medical students is another application where
the metaverse can significantly contribute to by offering virtual training session similar to
those in physical clinical practice, and thus better results can be obtained with less effort
and almost zero risk [163].

The transition from research and development into industrial and commercial e-healthcare
solutions plays an important role in enhancing medical services and reducing their costs.
Specifically, IoT and non-invasive data acquisition are able to provide accurate, user-friendly,
safe, remote and low-cost medical service. There is a need to build a business model for
e-healthcare systems based on IoT and non-invasive data acquisition to move from research
to industry. The following are the five questions to be answered to develop a proper
business model [166], and the answers to these five questions are listed in Table 4.

Table 4. Business model for e-healthcare system based on IoT and non-invasive data acquisition.

Business Model Components Description

Product Description
Sense and recognize vital sign of human using surveillance camera/mobile phone camera and visualize and

analyze the acquired vital signs in cloud-based applications. Moreover, the facility provides medical
consultation and investigating for remote patients using metaverse.

Customer needs Real-time visualization and analysis of their vital signs on their mobile phone application without need to
wear/touch sensors as well as the ability to meet doctors in metaverse and perform investigation.

Technologies IoT, non-invasive data acquisition, cloud computing, combined AI and metaverse application

Human resources embedded systems engineers, computer vision engineers, augmented reality engineers, pre-sales engineers,
marketing employers, sales employers, technical support employers and customer services employers.

Financial Looking for funding agency and partnership with health insurance companies.

5. Conclusions

This paper has reported recent advances in vital data acquisition and use of the
IoT in healthcare informatics. A comprehensive review has shown that the non-invasive
acquisition of vital data still faces many challenges before it can be practically implemented
on a large scale. Non-invasive data acquisition is still limited both in terms of on-line,
real-time sensing applications and in integration with the IoT. In addition, the use of the
IoT in health informatics is still limited, and needs to be developed to cope with different
transmission differences by using different frequencies, to use multiple bandwidths for
transmission/receiving, and integration with non-invasive data acquisition.
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What is required is a non-invasive means of acquiring vital data in real time, which is
based on an accessible and easy-to use algorithms. Moreover, it has to be integrated with the
IoT to enable real-time communication between patient and doctor. This could be achieved
by using a suitable high-speed digital signal processing unit that can perform non-invasive
data acquisition in real-time. This solution of the challenges will optimize the usage of
vital data acquisition in real-time and minimize infection and accelerate reaction times.
Moreover, it will provide a continuous report of a full picture of the patient’s condition.

A multi-frequency structure for IoT sensor nodes and an IoT broker can enable com-
munication over long distances using different frequencies. The design of the broker is not
likely to be simple and needs to be developed. Such a development will need well-designed
software architecture. Such a development should introduce stable, secure and flexible
communication between nodes in order to enable increasing of node numbers. Commu-
nication with different frequencies will enable data to be communicated over different
distances via specific bandwidths.

The following points summarize the state of the art based on the reviewed literature.

(a) Computer vision algorithms can be utilized to extract the heart rate vital signs in
real-time without requiring high processing power. On the other hand, the user is
limited to using the computer vision application in a stable environment with not
too bright, nor too dull, nor too noisy illumination in the captured frame because
it increases the error of the heart rate estimation algorithm. Moreover, the subject
has to place his/her face towards the camera without any orientation of the head,
and care must be taken not to touch or obscure the face with a hand. Additionally,
the algorithm for heart rate was also sensitive to the subject taking deep breaths or
exhaling strongly. This suggests the computer vision solution may not be convenient
for use in, for example, the intensive care units in hospitals but could be used generally
in most internal environments.

(b) The body temperature can be sensed via IR without incurring any high costs of
thermal cameras. The review shows that measuring the body temperature using a
finger is not sufficiently accurate to be useful, and the sensing process has to target
the middle of the forehead. The IR body temperature sensing can be affected by the
environmental temperature if it is extra low/high, such as 15 ◦C or 35 ◦C, so it is
recommended to use the IR sensing at “room temperature”, around 23 ◦C. The error of
the developed algorithm at room temperature is ±0.5–3.5 ◦C. The error was calculated
from 18 different readings with an average error of ±0.15 ◦C.

(c) The IoT network can be developed to be heterogeneous in the physical layer. However,
with the IoT, the term heterogeneous also refers to the ability of the platform to be
able to communicate with widely different devices. Here a heterogeneous IoT broker
was developed via an embedded system without any needs to develop a mixed signal
chip. The study shows that, the IoT broker can communicate with complex IoT nodes
with different frequencies and with the cloud computing in real-time without latency.
This communication algorithm was developed using sequential programming based
on “interrupt”, without any need to use a real-time operating systems (RTOS).

(d) The design of software has a high impact on enhancing the data acquisition algorithm
and minimizing the usage of the processing power of the hardware platform as
well. The effective development of software makes the system able to deploy on low
specification platforms such as embedded Linux kits and microcontrollers.

(e) The next generation e-healthcare systems is foreseen, especially in the light of recent
development of metaverse, AI, VR, AR and smart non-invasive sensing techniques.
The transition from the R&D mode into a commercial business model is envisioned
and expected to pave the way for reliable, cost efficient, and rapid smart health-
care systems.
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