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Abstract: Technologies for pattern recognition are used in various fields. One of the most relevant
and important directions is the use of pattern recognition technology, such as gesture recognition, in
socially significant tasks, to develop automatic sign language interpretation systems in real time. More
than 5% of the world’s population—about 430 million people, including 34 million children—are
deaf-mute and not always able to use the services of a living sign language interpreter. Almost 80% of
people with a disabling hearing loss live in low- and middle-income countries. The development of
low-cost systems of automatic sign language interpretation, without the use of expensive sensors and
unique cameras, would improve the lives of people with disabilities, contributing to their unhindered
integration into society. To this end, in order to find an optimal solution to the problem, this article
analyzes suitable methods of gesture recognition in the context of their use in automatic gesture
recognition systems, to further determine the most optimal methods. From the analysis, an algorithm
based on the palm definition model and linear models for recognizing the shapes of numbers and
letters of the Kazakh sign language are proposed. The advantage of the proposed algorithm is that it
fully recognizes 41 letters of the 42 in the Kazakh sign alphabet. Until this time, only Russian letters
in the Kazakh alphabet have been recognized. In addition, a unified function has been integrated into
our system to configure the frame depth map mode, which has improved recognition performance
and can be used to create a multimodal database of video data of gesture words for the gesture
recognition system.

Keywords: sign language; hand shape; palm definition model; MediaPipe Face; MediaPipe Hands;
SVM; pattern; recognition; multiple classification

1. Introduction

Globally, 432 million adults and 34 million children need rehabilitation for “disabling”
hearing loss. It is estimated that by 2050, more than 700 million people—or 1 in 10 people—will
have a disabling hearing loss. The prevalence of hearing loss increases with age, with over 25%
of people over 60 years of age suffering from a disabling hearing loss [1].

Recently, more attention has been paid in the world to improving the quality of life
of people with disabilities. Necessary conditions for movement, training, and interaction
with the public for people with disabilities are being created; special hardware, software,
scientific and technical products are being developed, and various social state programs
and programs of inclusive education are being implemented. For scientists in countries
around the world, creating a barrier-free society for people with disabilities is one of the
most important tasks.
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In modern Kazakhstan, one of the most important directions of state policy concerns
the equal right to education for all citizens. The prerequisite for ensuring accessibility of
education is an inclusive environment. The modern task of inclusive education provides
intellectual development, ensuring equal access to education for all levels of the population,
taking into account their psycho-physiological and individual characteristics. The process
of inclusive education is conditioned by normative legal documents, such as the Law
of the Republic of Kazakhstan on Education [2] and “the concept of development of
inclusive education in the Republic of Kazakhstan” [3], which strengthen the requirements
for professional activities of teachers, the process of barrier-free training of people with
disabilities, and access to software products.

Object recognition technologies are a key factor that can provide solutions to improve
the quality of life for people with disabilities. The ability of a machine to understand human
gestures, interpret deaf-mute people’s intentions, and react accordingly is one of the most
important aspects of human–machine interaction. At the same time, gesture recognition
is quite a challenge, not only because of the variety of contexts, multiple interpretations,
spatial and temporal variations, and complex non-rigid hand properties, but also because
of different lighting levels and complex backgrounds. The first attempts to create various
automated systems capable of perceiving the world like humans were made decades ago.
Over time, greatly improved, these technologies have been widely used in many fields.

The authors proposed an algorithm for recognizing the dactylic alphabet of the Kazakh
sign language. This algorithm can in turn can be used for recognition systems calculating
Kazakh sign speech. The novelty of the proposed algorithm is that there are no full-fledged
recognition systems of the Kazakh dactylic alphabet. Because of its similarity with the
Russian sign language, the scientific community is limited to recognizing only the Russian
dactylic alphabet, which consists of 33 letters, and the Kazakh dactylic alphabet of 42 letters,
in which the letters i, ң, ғ, к, қ, ө, ë, ъ, and ь are denoted by several positions. The authors [4]
compared Kazakh, Russian, English, and Turkish sign languages to prove that Kazakh
Sign Language can exist as a separate sign language. A study of the form of the display
was carried out in terms of configuration (arm/forearm), place of execution (localization),
the direction of movement, nature of the movement, and a component that cannot be
performed manually (facial expression and articulation). Despite the 50% similarity with
Russian Sign Language, it can be said that Kazakh Sign Language is a separate language
since, in turn, Russian Sign Language has 1050 words employed in the course of the study,
about 30% of which are borrowed from English. The vocabulary of languages is many
times less than the vocabulary of natural languages. In addition, during communication
with each other, hard-of-hearing people continue to create new words, adapting them to
the conversation. Therefore, we can conclude that the Kazakh sign language, in terms of
vocabulary, is a separate sign language with its own specifics.

The next innovation of this work is that a unified “draw_people” functionality was
integrated into the system for recording and demonstrating gestures in real life, in which
users can set up a frame depth map mode, which in turn contributed to better results. The
draw_people functionality makes it possible to obtain an approximately equal depth map
of the dataset and the frame when shown in real time.

Moreover, linguists and sign language interpreters should also consider Kazakh Sign
Language, as it is necessary to consolidate its status as a separate sign language and prevent
its extinction.

2. Related Works

In order to find and determine the most appropriate and most optimal approach for
the development of a full-fledged automatic sign language translation system, and for the
development of appropriate digital devices based on gesture recognition methods to solve
the previously identified social problem, work was carried out for the deaf and mute to
analyze similar works based on machine learning methods (hereinafter ML).
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It should be noted that there are a great number of types of tasks solved with ML, types
of ML, and algorithms of ML models; therefore, a systematic special study of the application
of ML for gesture recognition tasks is required. For a more complete characterization of
the issue under consideration, the works of a number of authors have been studied. The
scope of machine learning applications is very diverse. A number of scientific directions
that are used in gesture recognition tasks can be distinguished: classical learning [5–9],
ensembles [10–12], neural networks, and deep learning [13–27].

Classical learning: the simplest algorithms, characterized by direct heirs of computing
machines of the 1950s. They knowingly solved formal problems, such as finding patterns
in calculations and calculating the trajectory of objects. Today, methods based on classical
learning are the most common. They form the recommendation module on many platforms.

When learning without a teacher, the machine itself must find the right solution among
the cluttered data and sort objects by obscure features. For example, the machine may be
required to classify a particular gesture among a set of data. The K-mean method is used
in teacherless learning. Gani et al. [5] have applied the K-means algorithm in 2D space to
divide all pixels into two groups corresponding to the hands of the signer. The K-means
algorithm begins by placing K points (centroids) at random locations in 2D space. It places
only two centroids that correspond to the user’s hands. Each pixel is assigned to the cluster
with the closest centroid, and then the new centroids are calculated as the average of the
pixels assigned to it. The algorithm continues until no pixel changes its affiliation to the
cluster. If the distance between two centroids is less than a constant, they are combined
into one.

When learning with a teacher, the machine has a instructor who knows which answer
is correct. This means that the raw data is already marked (sorted) in the right way, and
the machine only has to determine the object with the right attribute or calculate the result.
The authors Sharma et al. [6] created a set of key descriptors with identical characteristics
for each class of gesture image. This set is used to create a set of feature models for
all training images. K-means clustering is performed to obtain K clusters with similar
descriptors. Each image fragment is correlated with the closest cluster. Then for each
image, all descriptors are compared to their nearest cluster, and a codeword histogram
is created. A codeword dictionary is created using a set of feature histograms. In their
approach, K is taken to be 150; i.e., 150 codewords are created for each image. Subsequently,
different algorithms, including k-NN, were applied for classification. Arshad Malik et al. [7]
proposed a system which captures the input data through a web camera without using
any additional equipment, and then, using segmentation approach, the hand is separated
from the background, and one can extract the necessary features from the image using
principal component analysis (PCA). Finally, the gesture function is classified using K-
nearest neighbors (k-NN). Anuradha Patil et al. [8] proposed a structure using Kinect
with SVM, which is linear, and k-NN with weights. In general, their algorithm achieved
moderate accuracy and speed in most conditions. Ramesh et al. [9] proposed an algorithm
which consists of two steps: training and testing. In a training set of 50 different domains,
video samples are collected. Each domain contains five samples, and each video sample is
assigned a word class and stored in the database. The test sample is pre-processed using
median filter, canny operator for edge detection, and HOG for feature extraction. The SVM
receives the input data as HOG features and predicts the class label based on the trained
SVM model. Finally, a textual description is generated in the Kannada language.

Works based on classical learning are limited in the number of recognized gestures,
mostly applied to dactyl alphabets of gesture languages; that is, limited in the amount of
tested data, in real-time work, to a small number of gestures. Many works used differ-
ent algorithms for feature extraction and classification, and they are also often used for
recognition of static gestures.

Ensembles: groups of methods that use several machine learning methods at once
and correct each other’s errors. They include such classifiers as Random Forest and
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XGBoost, which boost when algorithms are trained sequentially, with each one paying
special attention to the errors of the previous one.

Qin et al. [10] proposed a method of gesture recognition based on the fusion of
several spatial features. These spatial features describe the shape and distribution of
gestures in the local space, and one performs feature filtering, preserving the features of the
discriminant information to reduce the computational cost. We have experimented with
two large sets of gesture data and, compared to popular methods, our method effectively
improves recognition quality. In the future, we will consider how to improve the features
to make them more intelligible; for example, by using convolutional neural networking
and other methods to automatically learn gesture characteristics. Su et al. [11] proposed a
random forest-based Chinese Sign Language (CSL) sub-word recognition method using
an improved decision tree to increase the probability of obtaining the correct result from
each decision tree in random forests. Based on the recognition results of 121 frequently
used CSL sub-words, the superior performance of the random forest method in terms of
accuracy and reliability was tested. Results with a recognition accuracy of 98.25% were
obtained. Su et al. [11] proposed a system in which they introduced a two-stage pipeline
based on two-dimensional body connection positions extracted from RGB camera data.
First, the system divides the signed expression data stream into meaningful word segments
based on a frame-by-frame binary random forest. Each segment is then converted into
an image-like form and classified using a convolutional neural network. The proposed
system is then evaluated on a data set of continuous Japanese gesture language sentence
expressions with variations of non-manual expressions. By exploring a variety of data
representations and network parameters, we can distinguish verbal segments of specific
non-manual intonations from the underlying body joint motion data with 86% accuracy.

Kenshimov et al. [12] proposed a system of dactylic alphabet recognition of Kazakh
Sign Language based on SVM, Extreme Gradient Boosting, and Random Forest. The
Kazakh Sign Language dactyl alphabet has 42 letters, but in their work 31 classes were
distinguished; that is, two-handed and dimaic gestures were not included, in contrast to
our system.

Ensemble methods are a machine learning paradigm in which multiple models (often
called weak learners or baseline models) are trained to solve the same problem and com-
bined to improve performance. The basic hypothesis is that if we combine weak learners
correctly, we can obtain more accurate and/or reliable models.

Neural networks and deep learning: the most complex level of AI learning. Neural
networks simulate the work of the human brain, which consists of neurons constantly forming
new connections with each other. They can be conventionally defined as a network with many
inputs and one output. Neurons form layers through which a signal sequentially passes. All
this is connected by neuronal connections, or channels, through which data are transmitted.
Each channel has its own “weight”—a parameter that affects the data it transmits.

The AI collects data from all inputs, evaluating their weight according to given param-
eters, and then performs the desired action and outputs the result. At first, it is random,
but then, through many cycles, it becomes more and more accurate. A well-trained neural
network works like a normal algorithm, or more accurately.

The real breakthrough in this field has been deep learning, which trains neural net-
works at multiple levels of abstraction.

Deep neural networks are the first to learn how to recognize gestures, one of the most
complex objects for AI. They do this by breaking them into blocks, identifying the dominant
lines in each, and comparing them to other images of the desired object [12–27].

Recurrent neural networks [16,28] are mainly used for text and speech recognition.
They identify sequences in them and associate each unit—a letter or sound—with the rest.

For machine learning algorithms, it is important that the data arriving to the input
of the algorithm can accurately describe the properties of the object, provide accurate
information about the object, and the volume of incoming input data. Because the amount
of incoming data depends on the speed of data processing, the requirement for machine
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performance and the accuracy of object recognition depends directly on the accuracy of
the input data. The MediaPipe technology used in this work allows one to solve these
problems, and at the input of the artificial neural network it provides only the coordinates
of 21 points and the trajectory of change of each point. In addition, it removes the load on
the algorithm used.

In their study, Nafis and Ayas Faikar used the wrist position recommended by Me-
diaPipe. The Shift-GCN model included modification of the moving weight of the main
points of the obtained palmar joints. The study used the values of the main points of the
hand as a data set [18]. Caputo and Ariel created the SHREC 2021: Track system, which
recognizes hand gestures based on the hand skeleton. With Leap Motion, they created
many datasets for 18 character classes, and the datasets were learned and recognized by
the ST-GCN model. The authors wrote that there were some errors in the recognition of
dynamic gestures [29].

Halder et al. proposed a method based on the open-source MediaPipe platform and a
machine learning algorithm. The model is lightweight and can be adapted to a smart device
with American, Indian, and Turkish sign languages serving as the data set. The reliability
and accuracy of the proposed models are estimated at 99% [30]. The algorithm proposed by
Gomase and Ketan using Mediapipe and recognition using computer vision was partially
successful, and accurate at an average of 17 frames per second, with an average accuracy of
86 to 91% [31]. In their papers, Alvin and Arsheldy proposed an American Sign Language
recognition system based on Mediapipe and K-mean. Thus, Mediapipe is one of the most
advanced real-time gesture recognition technologies [32].

Chakraborty proposed a methodology for classifying English alphabets rendered
by various Indian Sign Language (ISL) hand gestures using the Mediapipe Hands API
launched by Google. The purpose of using this API is to find the 21 significant points in
each hand along with their x, y, and z coordinates in 3D space. Due to the lack of a proper
dataset available on the internet for ISL, at the very beginning, they created a dataset of
15,000 per English character, each consisting of the coordinates of 21 points recognized by
the Mediapipe Hands API [33].

The listed studies [29–33] have significantly contributed to the development of mul-
timodal gesture corpora. However, the problem of calculating the frame depth map for
gesture recognition using the Mediapipe technology is still relevant. The image data is
first acquired with a simple camera. The coordinates of the human palm joints are then
computed using the BlazePalm single finger detector model, which is available in Medi-
aPipe. In Kazakh Sign Language, SVM was used for multiple classifications of various
numbers and letters. The novelty of the proposed algorithm is that, firstly, there are no full-
fledged systems for recognizing the Kazakh dactyl alphabet today, and secondly, a unified
draw_people functionality was integrated into the system for recording and demonstrating
gestures in real time. Moreover, users can configure the frame depth map mode in that
mode, contributing to the achievement of superior results.

The task of creating universal multimodal gesture corpora arises due to the solution
of several unimodal subtasks: recognizing hand gestures, identifying the movement of the
body and head, and recognizing facial emotions. The listed tasks are fraught with problems
of spatial and temporal variations and complex non-rigid properties of hands, different
levels of illumination, and complex backgrounds. Recognizing hand gestures is a semiotic
task in which the dactyl alphabet and tracing speech are used. The dactyl alphabet is used
for the introduction and transmission of the sound of new words (for example, proper
names), for which there are no ready-made means of sign language. Tracing signed speech
is a secondary sign system that traces the sounding language’s linguistic fabric.

S. Zhang et al. [34] propose a sign language recognition structure that combines RGB-B
input and two-stream space–time networks. The ARS approach covers key information
for aligned multimodal input data and effectively eliminates redundancy. The local focus
of the hand optimizes the input of the spatial network. In addition, the D-shift network
generates depth movement features to investigate depth information efficiently. Subse-
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quently, convolution fusion is performed to merge the two feature streams and improve
recognition results. Yu et al. [35] proposed the SKEPRID system, a repeated recognition
method resistant to significant body posture and lighting changes. By including informa-
tion about the skeleton, they reduced the influence of various poses and developed a set of
light-independent features based on the skeleton, significantly increasing the accuracy of
repeated recognition.

Luqman et al. [36] presented a new multimodal video database for sign language
recognition. Unlike existing databases, the database focuses on signs that require both
manual and non-manual articulators, which can be used in various studies related to sign
language recognition. Two cases were considered for sign-dependent and sign-independent
modes using manual and non-manual signs. In the first case, we used color and depth
images directly, while in the second, we used optical flow to extract more relevant features
related to the signs themselves and not to the signatories. The best results were obtained
using MobileNet-LSTM with transfer training and fine-tuning: 99.7% and 72.4% for the
“sign-dependent” and “sign-independent” modes, respectively. Kagirov et al. [37] also
presented the Russian multimedia database of the Russian sign language. The database
includes lexical units (individual words and phrases) from the Russian sign language
within one thematic area, called “food in the supermarket”, and was collected using the
MS Kinect 2.0 device with Full HD video modes and depth maps. They provide new
opportunities for a lexicographic description of the vocabulary of Russian sign language
and expand research in the field of automatic gesture recognition.

D. Ryumin et al. [38] proposed an approach for the detection and recognition of 3D
gestures of one hand for human–machine interaction. The logical structure of the system
modules for recording the gesture database is described. The logical structure of the 3D
gestures database is presented. Examples of frames demonstrating gestures in full high
definition format, in map depth mode, and the infrared range are given. Models of a deep
convolution network for recognizing faces and hand shapes are described. The results of
automatic detection of the area with the face and the shape of the hand are given.

The works 44–48 listed above aim to calculate depth using a D-shift network that
generates depth movement features, or a Kinect camera that provides depth information to
increase gesture recognition. However, in our work, we calculate the depth of the frame
using a simple draw_people functionality, which also contributed to the improvement of
the indicator without using additional models or special cameras.

3. Problem Description and Proposed Solution
3.1. Problem Description

Gesture (lat. Gestus—body movement)—movement of the human body or its parts,
which has a certain meaning, i.e., is a symbol or emblem.

Sign language is a method of interpersonal communication, characterized by specific
lexical and grammatical patterns, supported by gestures of hearing-impaired people.

Sign language is a system of non-verbal communication between people with nor-
mal hearing and people with hearing impairments, and the latter is actually used as the
main mode of communication, in which one can find a gesture that corresponds to each
word [15]. The basic unit of sign language is a gesture, i.e., the ability to indicate an object
through gestures, facial expressions and articulation, head turning, etc., visualization of
object parameters.

In most cases it is not possible to convey names, foreign, technical and medical
references with the help of sign language. Therefore, along with sign language, the deaf
(hearing-impaired) widely use dactylic alphabet as a supplement (Figure 1).

The grammar of the dactylic language resembles that the grammar of the native
language of the deaf. Dactylogy can often be described as writing with fingers in the
air: visual perception and reliance on all the rules of spelling, such as writing. But not
punctuation marks: exclamation and question marks are conveyed through appropriate
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facial expressions; period and multi-point pauses; dashes, colons and other punctuation
marks, although peculiar types of expression, are not indicated in dactyl writing.

Figure 1. Kazakh Sign Language dactyl alphabet.

To parameterize gesture demonstration, five components of gesture are distinguished:
configuration (hand/forearm), place of performance (localization), direction of movement,
nature of movement, and a component not performed by hands (facial expression and
articulation) [39,40]. Let’s take localization, movement and direction of the palm as the
basic properties in the gesture demonstration, and introduce the following concept and
notations for the model construction (Table 1).

Table 1. The basic parameters of Kazakh Sign Language, received at demonstration.

Localization Ω

1 in_the_head_area HA
1.1 over_the_head HA/OH
1.2 right_left_of_the_head HA/RLH
1.3 touching_face HA/TF
1.4 touches_the_neck HA/TN
2 neutral_zone NZ
3 near_the_right_shoulder NRLSH
4 at_the_waist W

Palm Orientation ψ

1 palm_look_right_or_left PLRLUD
2 palm_looks_to_from_speaker PTFS

Direction of Movement ↔
1 from_to_the_speaker TFS
2 down_up_ward_Left_right_movement DULRS
3 circular_movement CM
4 Motionless ML

Types K

1 one-handed 1H
2 two-handed 2H

2.1 do not intersect- NTINT
2.2 Intersect INT

Based on the features entered in Table 1, we can determine the complexity of the input
data to solve the problem of sign language recognition. On the basis of the parameters
designated in this table, the classification of words of the Kazakh sign language is carried out.
For the sign language recognition task, the place of the gesture (Figure 2) is very important,
because if the gesture is performed in a neutral area, you can separate the object from the
background by putting on the speaker clothes of the same color, but if the place of display
is marked by touching the face, neck, it is difficult to separate the hand from the face or
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neck. If the display location is at the waist or around the shoulders, you must have certain
requirements for the background in order to separate the object from the background.

Figure 2. Localization.

General gestures can be divided into static and dynamic gestures. Static gestures
represent the position of the hand without any movement in space, and dynamic gestures
are characterized by sequential hand movements from the starting point to the end point
over a certain period of time (Figure 3). At the same time, many letters of the dactyl
alphabet can be referred to static signs (Figure 4).

Figure 3. Direction of movement (straight, intermittent, jumping, repetitive).

Figure 4. Example of static gestures.

When demonstrating the gestures «eкi(two)», «қaзaн (caldron)», «қыcқaшa (briefly)»,
«ipi (large)» in gesture language, the hand takes only one position, and when demonstrating
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dynamic gestures, not only changes the hand position but also the configuration, as well as
all the changes from Table 1.

Gestures with two hands are called symmetrical if the shape and direction of move-
ment of two wrists coincide or reflect each other’s movements. In the words «дәлдiк
(accuracy)», «бapaбaн (drum)» depicted in the pictures, both hands move symmetrically to
each other. In asymmetric two-handed gestures, one hand often does not move, or moves in
a different direction—this hand is called the passive hand, and the other hand can perform
complex movements—this hand is called the active hand, often (it allows you) to determine
the shape and movement of the active hand.

For static and dynamical gestures with the palm pointing to the camera or to the
speaker (Figures 4 and 5), various algorithms can be used to accurately determine the
configurations or shape of the hand [41].

Figure 5. Example of dynamic gestures.

If the palm is oriented left, right, up and down, the hand configuration may not be
correctly read by a simple camera and thus impairs the detection of hand features and
object recognition (Figure 6).

Figure 6. An example of gestures in which it is difficult to recognize the orientation of the palm.

In this paper, we proposed an algorithm for recognizing one-handed and two-handed
gesture types that satisfies the following conditions:

A. Ω HA ψ PTFS↔ML/DULRS
B. Ω HA/OH ψ PTFS↔ML/DULRS
C. Ω HA/RLH ψ PTFS↔ML/DULRS
D. Ω HA/TF ψ PTFS↔ML/DULRS
E. Ω HA/TN ψ PTFS↔ML/DULRS
F. Ω NZ ψ PTFS↔ML/DULRS
G. Ω NRLSH ψ PTFS↔ML/DULRS
H. Ω W ψ PTFS↔ML/DULRS

3.2. Proposed Solution

For a gesture recognition system, the technologies that are used to collect raw data on
hand movements, facial expressions or body language play a crucial role. In general, input
data acquisition devices for gesture recognition systems fall into two categories: simple
cameras and various sensors. Accordingly, it can be said that the methods and algorithms
used in gesture recognition are directly dependent on these data collection devices.
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The MediaPipe technology used in this paper, without special sensors and gloves,
using a simple camera, can ensure information about the main points, characteristics and the
position of the hand, which can be provided by sensors and devices, using a simple camera.

Since the 1990s, the use of special gloves in gesture recognition applications has been
widespread, and there has been great interest in methods using various sensors. The
solution to the problem of gesture recognition using sensors is still relevant and has been
described in many modern works.

Saggio et al. [42] proposed a system based on wearable electronic devices and two
different classification algorithms. The system has been tested on 10 Italian sign language
words: “costo”, “grazie”, “maestro”, as well as on international words such as “Google”,
“internet”, “jogging”, “pizza”, “TV”, “Twitter”, and “ciao”. Hou et al. [43] proposed a
SignSpeaker system based on a smartwatch. Hou described how each sign has its own
specific motion model and can be converted into unique gyroscope and accelerometer
signals. They implemented their system on a pair of ready-made commercial devices—a
smartwatch and a smartphone.

The FinGTrAC system [44] demonstrates the feasibility of fine-grained finger gesture
tracking using a minimally invasive wearable sensor platform (a smart ring worn on the
index finger and a smartwatch worn on the wrist). The main contribution is to increase the
scale of gesture recognition to hundreds of gestures using only a rare set of wearable sensors.
In contrast, previous work detected only dozens of hand gestures. Such rare sensors are
comfortable to wear, but they cannot track all fingers and provide insufficient information.

Yin et al. [45] proposed a gesture recognition system based on an information glove;
their proposed glove included a FLEX2.2 sensor and an STM32 chip to detect finger position.
The data received from the sensor is fed to the input of the ANN and a signal is recognized
as a result of comparison with a reference. Similarly, Bairagi [46] et al. used an information
glove and mounted an ADXL335 accelerometer sensor and a resistance sensor. The data
from the accelerometer was converted into digital data using an ADC and recognized
using a microcontroller. It was then sent to the Android device via a Bluetooth module and
converted from text to speech.

Chiu [47] et al. proposed a gesture recognition system using an autonomous current
source attached to the back of the hand; that is, the gesture was recognized by detecting the
movement of the joints of the hand using a triboelectric nanogenerator.

Mummadi et al. [48] have developed a data processing glove design that detects fine-
grained hand shapes on gloves, based on IMU sensors on all fingertips. It takes advantage
of the latest System-on-Chip designs that are powerful enough to perform real-time data
fusion and classification procedures in the glove. A total of five IMUs, a multiplexer, and
an embedded microprocessor make up the entire configuration of the glove. To improve
the noisy and drift-prone sensor readings from the IMUs, an additional filter was used to
generate a smooth and consistent signal. In addition, combining the data allows accurate
measurement of orientation and finger movements.

The aforementioned research on glove use has made a major contribution to gesture
recognition. However, the problem of the number of recognized gestures is still relevant,
since there is a limited amount of test data, despite the fact that many of them are effective
and show results above 90%. In addition, the systems in question use gloves and additional
devices to obtain information about hand joints and finger positions, and these devices are
known to be very expensive and inconvenient to use in the household. The MediaPipe tech-
nology [49] used in our work is a revolutionary product in the field of gesture recognition
because it does not require the use of additional, very expensive, or unavailable devices to
formalize and track palm and finger movements.

Many current automatic sign language translation systems, especially those based on
machine learning, require the performance of processing; therefore, the architecture and
levels of the artificial neural network are large enough to recognize dynamic gestures.

The algorithm we proposed does not require processing performance and can also be
updated for mobile gadgets (Figure 7). This algorithm, based on the MediaPipe Hands
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technology and the OpenCV library, was able to recognize two-handed and one-handed
gestures in real time and provide reliable results. MediaPipe Hands is one of the best
solutions for hand and finger recognition.

Figure 7. Sign language recognition in a real-time system based on the palm definition model.

3.2.1. Get Image

Within the framework of the article, a gesture recording functionality was developed,
in which the active region (ROI) and depth map mode can be configured, which in turn
significantly improved the results of gesture recognition compared to previous similar
systems [29–33]. This functionality has been integrated into the gesture recording module
and into the real-time dactyl letter recognition module.

The gesture recording system consists of the following steps:

(1) Starting the camera
(2) Clicking on the screen
(3) The layout of the human upper body appears (Figure 8)
(4) Adjusting the layout
(5) Starting recording

Figure 8. Draw_people functionality.

As emphasized in the introduction, it was essential for us to develop budget sys-
tems with an ordinary everyday camera without additional devices. The recording was
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made by a regular Logitech WebCam C270 USB webcam, which allows one to receive
1280 × 720 video with a frequency of up to 30 frames. The system works with any cam-
era above 480 × 640.The proposed system works in real time, so it is necessary to record,
analyze, and pre-process video in a short time and feed the information to the input of
the model. In the Get Image module, recording is performed in real time until 500 frames
are reached, or until the speaker presses the letter q. Every 5th frame out of 500 recorded
frames is saved. Thus, 100 frames are recorded for each 500 frames. A total of seven people
(four of 20 years of age, one of 40 years of age, one of 11 years of age, and one of 8 years of
age) participated in the experiment, and 4100 frames of the KSL alphabet and 1500 frames
of numbers from 1 to 15 were captured for each.

3.2.2. Get Data

Recognizing human hand configuration and direction of movement is one of the
vital components, as it opens up possibilities for natural human–computer interaction.
Among the five components described above, the configuration, direction of movement,
and character of movement are important components, since the main information about
the gesture is read from them. Correspondingly, reading the coordinates of the finger
joints and reading the trajectory of each finger can be a prerequisite for calculating gesture
language recognition.

To determine the initial location of the hand, we use the BlazePalm single-finger
detector model which is available in MediaPipe. Hand detection is quite a complex task: the
system must process hands of different sizes, in different lighting, on different backgrounds,
with crossed fingers or closed hands, etc. In addition, after separating the palm in the
frame from the frame, the system processes only the values inside the frame, which, in turn,
reduces the load on the performance of the machine by a multiple of five to six.

The Get Data module reads a static frame, then converts the image from BGR to RGB,
outputs a Y-axis image, sends it to the MediaPipe input, and detects a palm.

The defined palm is a list of 21 base coordinates, in which each point consists of x, y,
and z values; x and y are set to the width and height of the image, respectively [0, 0, 1.0],
and z to the depth of the point. The forearm depth is the reference point, and the smaller
the value, the closer the orientation is to the camera. The z value uses approximately the
same scale as x.

After obtaining the coordinates of 21 joints of the human palm, these values are
transferred to the real coordinates of the virtual three-dimensional world, and the hand
orientation is determined based on magnetic positioning (Figure 1). There is a terminology
for the digital three-dimensional space coordinate system. This is unconventional, although
these concepts help programmers create 3D applications and games. Here, x is width, y is
height, and z is depth compared to mapping.

From the 100 frames recorded in the Get Image module, the palm is detected by
BlazePalm, and the palm is extracted from the frames with the detected palm (Figure 9). A
csv data file will be created as a result of palm detection frames.

Figure 9. Detected palm.

When submitting input data into an artificial neural network, it is important to process
the input data correctly, not the neural network itself. Accordingly, it is first necessary to
analyze the correlation and select the correct data. To realize this goal, data visualization
is performed (Figure 10). Knowing how to choose the right type of graph is a key skill,
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because distortion can lead to misinterpretation of the data obtained by qualitative data
analysis. Therefore, the data were visualized using two tools.

Figure 10. An example of data visualization of some classes.

For example, if class “4” initially has 100 frames, palms are detected from about
70 of these frames, and hand values are recorded in a csv file. The mutual similarity of the
recorded values can be seen in the following graph (Figure 11).

Figure 11. An example of data.

3.2.3. Get Train and Get Classification

The Support Vector Machine (SVM) method is a very powerful and versatile machine
learning model, capable of performing linear or non-linear classification, regression, and
even outlier detection. SVM methods are particularly well suited for classifying complex
but small or medium datasets, such as a gesture language dataset.

The fundamental idea behind SVM methods can be better revealed using illustrations.
Figure 12 shows part of the gesture dataset 0 and 1. The two classes can be easily and
clearly separated with a straight line (they are linearly separable).

The graph on the left shows the decision bounds of the two 1.5 gestures of possible
linear classifiers. The model is so poor that it doesn’t even separate classes properly.

For multiple classification problems, we used SVC with an OVO strategy. Although
SVM linear classifiers are efficient and work surprisingly well in numerous cases, many
datasets are far from being linearly separable. One approach to processing nonlinear
datasets involves adding additional features, calculated using a similarity function that
measures how much similarity each sample has to a separate landmark.

The technique for solving nonlinear problems involves adding features calculated
using the similarity function, which measures how much similarity each sample has to
a separate landmark; for example, if we utilize a one-dimensional data set and add a
landmark to it at x1 = 0.6, as illustrated by the graph in Figure 13:
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Figure 12. Visualization of gesture data 1.5.

Figure 13. One-dimensional dataset with a landmark.

Subsequently, we defined the proximity function as a Gaussian Radial Basis Function
(RBF) with γ = 0.1 (Equation (1)):

φγ(x, `) = exp
(
−γ ‖ x− ` ‖2

)
(1)

The Gaussian RBF is a bell-shaped function that changes from 0 (very far from the
landmark) to 1 (at the landmark). New features can be computed in this way. We use
this approach in order to create a landmark based on the location of each sample in the
data set. This approach creates many dimensions, and thus increases the chances that the
transformed dataset will be linearly separable. If the training set is very large, one will
obtain an equally large number of features. SVM allows one to obtain similar results as if
multiple proximity features were added, without actually adding them.

We tested (Figure 14) the Gaussian RBF kernel (Gaussian RBF kernel) using the SVC
class: svm = SVC (C = 15, gamma = 0.1, kernel = ‘rbf’):
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Figure 14. The result of classifying numbers 1–15.

Figure 15 shows models trained with the values of hyperparameters gamma (γ) and
C = 41 (dactyl alphabet).

Figure 15. The result of the classification of the Kazakh dactylic alphabet.

4. Results

As part of the paper, a dataset of the alphabet of the Kazakh language, numbers
from 1 to 15, with approximately the same depth map, were created. Next, the Get_Data
module calculates the coordinates of the joints of the human palm using the BlazePalm
palm detector model and creates a data set for one class of gestures. The fastest and most
convenient way to store a dataset is the Pickle format, since even a csv file cannot compare
with the speed of reading, processing, and viewing pkl files. The SVM is trained using a
file, and the model was prepared with a data set of numbers from 1–15 and the alphabets.
Two-handed and one-handed gestures were taught separately.

System example: the system was trained based on a data set recorded by a girl of
20 years old, and showed high recognition results at the same distance for children of
8 and 11 years old (Figure 16). In the case where the depth coordinates were changed, the
system outputs erroneous classes (Figure 17).

The results obtained during the experiment are clearly shown in the Confusion Matrix table.
The algorithm is usable, but the model does not always perform well because it is

filmed in adverse lighting conditions with a weak webcam. Reassembling the model under
ideal conditions provides the new possibilities for the program. Therefore, the program is
yet to be improved further (Figures 18 and 19).
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Figure 16. An example of a correctly working system.

Figure 17. An example of incorrect system operation.

Figure 18. Confusion Matrix of numbers.

We use the graph of the confusion matrix to see how the currently selected classifier
performs in each class.

Classification accuracy is the accuracy we usually have in mind when we use the term
“precision”. We obtain classification accuracy by calculating the ratio of correct predictions
to the total number of input samples.

Classification accuracy is good, but gives a false positive sense of achieving high
accuracy. The problem arises because the probability of misclassifying samples of a minor
class is very high.

In our example, using the dataset of numbers 1–15, and 41 letters of the Kazakh
alphabet, the top row shows all data with a true class. The columns show the predicted
classes. In the top row, 99% of the numbers 0 of the other numbers are classified correctly;
therefore, 99% is the true positive for the correctly classified data in this class, shown in the
green cell in the True Positive column. For 99%, we obtained the highest average score of
99.6%, for a dactylic alphabet of 90.6%.
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Figure 19. Confusion Matrix of the Kazakh dactylic alphabet.

5. Discussion

The proposed method recognizes in static and short dynamic gestures in real time,
which are represented by two hands, in comparison with the methods described in reference
sources considered above.

There are 42 letters in Kazakh Sign Language. Of these, the Kazakh letters i, ң, ғ, k, қ, ө,
ë, ъ, and ь are different from the letters of other languages and possess dynamic elements.

In general, the results show the feasibility of the proposed approach to machine
learning. In particular, it is shown that the SVM classification model can be trained on the
data of a large set of available images, which are processed by the manual control algorithm
(MediaPipe Hands) and then successfully tested by the system.

6. Conclusions

In this paper, a method based on the palm recognition model and linear recognition
models of the dactyl alphabet and sign language numbers is discussed. The method
considered was tested experimentally on the data of the magnetic positioning system
using a kinematic model of the hand. During the test, the results for letters displayed in
two positions were presented. The findings confirm the feasibility of the approach, with
approximately 97% classification accuracy.

Therefore, the method enables the development of efficient automated sign language
translation systems for sign languages. Such systems are capable of supporting effective
human–machine communication and interaction for the deaf and hard of hearing.

Future developments of issues considered in this paper include the application of the
method proposed, and experimental setup to solve problems of hand movement recognition.
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7. Future Work

Firstly, by expanding the system we offer, it is possible to develop a sign language
recognition system, which will work on recognizing proper names in the future. Secondly,
use of the unified functionality offered in this system can be a prerequisite for developing
multimodal videos without the words of sign languages. Thirdly, our system can be a
prerequisite for the creation of multimodal sign corpora in the Kazakh language.
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