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Abstract: The rapid growth of wireless spectrum access through cellular and IoT devices, for example,
requires antennas with more capabilities such as being conformal and self-adapting beamforming. In
this paper, the adaptive beamforming patterns of microstrip patch antenna arrays on changing flexible
(or conformal) curved surfaces are developed by deriving array coefficients based on the projection
method that includes the mutual coupling between elements. A linear four-element microstrip patch
antenna array is then embedded on two deformed conformal surfaces to investigate the projection
method for desired beamforming patterns. The generated beamforming radiation patterns using the
computed weighting coefficients are validated with theoretical equations evaluated in MATLAB, full-
wave simulations in HFSS and measurement results. The measured results of the fabricated system
agree with the simulated results. Furthermore, new guidelines are provided on the effects of mutual
coupling and changing conformal surfaces for various beam-forming patterns. Such demonstrations
pave the way to an efficient and robust conformal phased-array antenna with multiple beam forming
and adaptive nulling capabilities.

Keywords: beam-forming antenna array; conformal surface; self-adapting

1. Introduction

More sophisticated wireless technology will certainly be required to meet the demand
of an increasing number of wireless users and IoT devices throughout the world accessing
the spectrum. One major component of a wireless system that will fulfill this need of
spectrum access is a smart antenna [1–10]. This is because a smart antenna can measure the
surrounding electromagnetic environment and steer the main lobe of the pattern towards
the desired users and move the nulls of the antenna toward unwanted noise sources; thus,
making the antenna adaptive and increasing the capacity of the overall system in real time.
Furthermore, to increase the coverage and capacity of multifunctional wireless platforms,
conformal smart antennas are being placed in unique locations such as buildings, vehicles
and aircraft [9,10]. In many of these locations, however, the conformal smart antennas
are subjected to forces that may deform the topology of the antenna and thus degrade
the performance.

In the area of conformal antennas, researchers have studied how the radiation pattern
of a conformal antenna changes as it is deformed in various ways [11–16]. It has been
shown that the overall gain of an antenna array can be reduced by as much as 25 dBi in
a particular direction without appropriate phase and amplitude compensation [16]. To
mitigate some of the unwanted effects of deformation on the overall gain of the array, sev-
eral compensation techniques have been proposed [17–26]. The aforementioned literature
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study shows that the main focus is on the broadside radiation pattern correction of a confor-
mal antenna array attached to a changing surface (i.e., vibrating surface) using composite
amplitude and phase errors measurements, mechanical calibration methods, hardware
sensor monitoring and the null points adjusting method. Then again, the previous work
(with the exceptions of [27–30]) was developed under the assumption that the main lobe
direction of the radiation pattern was fixed and the location of the nulls for beamforming
was not defined.

Thus, the objective of this work is to study the theory of beamforming for confor-
mal antenna arrays attached to the changing wedge- and cylindrical-shaped surfaces in
Figure 1a,b for a specific main lobe direction and null locations for the first time. Moreover,
the changing surface effects on the radiation properties of conformal beamforming anten-
nas will be explored. In particular, this work will focus on the beamforming for the one
dimensional 1 × N arrays on the wedge- and cylindrical-shaped surfaces in Figure 1a,b,
respectively. For both Figure 1a,b, the location of each antenna element on the conformal
surface is shown as a black dot and denoted as A±n where N is assumed to be even and
n = −N/2, . . . ,−1, 1, . . . , N/2. It should be mentioned that similar work could be carried
out for an odd value of N. Moreover, the wavefront is denoted as a grey dotted line and the
direction of propagation is shown with a black arrow. The wavefront is shown away from
the origin for illustration purposes only.
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2. Theory of Beamforming Antennas on Changing Conformal Surfaces
2.1. Beamforming of Antenna Array on a Singly Curved (Wedge Shaped) Surface

For this work, the 1 × 4 array (i.e., N = 4) on the singly curved (wedge)-shaped
surface shown in Figure 2a with a bend angle of θb will be considered first. The spacing
between adjacent antenna elements lying along the wedge is denoted as d and the location
of element A±n is denoted as (x±n, z±n). The motivation for using a beamforming antenna is
the feature of being able to generate a main beam in a desired direction while simultaneously
defining nulls in the radiation pattern in other directions. The main lobe can then be used
to communicate with a desired user in a particular direction and the nulls can be used
to reduce the incoming signal from users not of interest. For this work, the angle of the
signal of interest will be denoted as θSOI and one user of interest will be assumed while
the angle of the nth user not of interest will be denoted as θSNOIn . Because a four-element
array is being considered here, three nulls at θSNOI1 , θSNOI2 and θSNOI3 are defined. Now,
the goal is to define appropriate array weights that can be used to drive the four-element
array in Figure 1a,b to give a main lobe at θSOI and three nulls at θSNOI1 , θSNOI2 and θSNOI3 .
Furthermore, to determine how the shape of the wedge changes the weights, they are to be
determined for various bend angles θb of the wedge.
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Figure 2. Geometrical illustration of the proposed projection method for (a) antenna array on a
wedged-shaped surface with desired signal at angle θSOI; (b) antenna array on a wedged-shaped
surface with undesired signal at angle θSNOI and (c) antenna array on a cylindrical curvature with
desired (undesired) signal at angle θSOI(SNOI).

To compute the surface-dependent array weights, the projection method [31] will be
used along with the matrix method for computing antenna weights defined in [1]. Since a
maximum radiation in the direction of θSOI and nulls in the directions of θSNOI1 , θSNOI2 and
θSNOI3 are desired, the array will be considered as a transmitter. First, suppose the antenna
array is radiating in the direction of θSOI , as shown in Figure 2a. One method used to provide
a field in the direction of θSOI is to ensure that the fields radiated from elements A−2,
A−1, A1 and A2 reach at the reference wavefront with equal phases, thereby resulting in a
broad-side pattern to the wavefront. To ensure that these fields arrive with the same phase,
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the voltage phase driving each individual element can be adjusted with a phase shifter.
The amount of phase required is equal and opposite to the sign of the phase introduced by
the free-space propagation from the antenna element to the wavefront. To compute this
distance, the values for ∆−2, ∆−1, ∆1 and ∆2 in Figure 2a, which denote the distance from
the elements A−2, A−1, A1 and A2, respectively, to the wavefront (or the projected elements
on the wavefront), need to be computed. Furthermore, the expressions for A−2, A−1, A1
and A2 should be written in a general manner including surface dependent position of
each antenna element and the bend angle θb. A similar argument can be made for the case
when the array is transmitting a null in the direction of θSNOIn , which is shown in Figure 2b.
For this case, the values of ∆±n still need to be computed.

2.2. Computing the Distance to the Projected Elements on the Wave Front

For this work, the values of θSOI and θSNOIn are between−π/2 and π/2. Because of this,
the problem will be broken down into two cases. For the first case, −θb ≤ θSOI(SNOIn) ≤ θb.
For these angles of θSOI(SNOIn), the projected elements on the wavefront are all outside
of the wedge-shaped surface. For the second case, θb ≤ θSOI(SNOIn) ≤ π/2 or
−π/2 ≤ θSOI(SNOIn) ≤ −θb. For these angles of θSOI(SNOIn), half of the projected el-
ements are outside of the wedge-shaped surface and half are inside of the surface. This is
because when θSOI(SNOIn) ≥ θb or θSOI(SNOIn) ≤ −θb, the projected elements for A1 and
A2 or A−1 and A−2, respectively, are inside of the wedge-shaped surface in Figure 2a,b.

2.2.1. Case 1: Computing ∆±n for −θb ≤ θSOI(SNOIn) ≤ θb

Using the notation in Figure 2a,b and several identities, the projected distance from
antenna elements on the wedge to the reference wavefront is given by:

∆±n = d
|n|
2n

(2|n| − 1)sin
(

θb ∓ θSOI(SNOIn)

)
(1)

for 0 ≤ θSOI(SNOIn) ≤ θb and

∆±n = d
|n|
2n

(2|n| − 1)sin
(

θb ±
∣∣∣θSOI(SNOIn)

∣∣∣) (2)

for −θb ≤ θSOI(SNOIn) ≤ 0. Notice that the expressions in (1) and (2) are written as
a function of the flexing (bend) angle θb of the wedge and the location of each antenna
element, indicating the generality of the expressions.

2.2.2. Case 2: Computing ∆±n for θb ≤ θSOI(SNOIn) ≤ π/2 or −π/2 ≤ θSOI(SNOIn) ≤ −θb

Next, for the remaining values of θSOI(SNOIn), the projected distance from each antenna
element in the array to the reference wavefront can be calculated as:

∆±n = d
|n|
2n

(2|n| − 1)sin
(

θSOI(SNOIn) ∓ θb

)
(3)

for θb ≤ θSOI(SNOIn) ≤ π/2 and

∆±n = d
|n|
2n

(2|n| − 1) sin
(∣∣∣θSOI(SNOIn)

∣∣∣ ± θb

)
(4)

for −π/2 ≤ θSOI(SNOIn) ≤ θb. Notice that (3) and (4) are also written in terms of θb of the
wedge and the position of each antenna element in a general fashion.
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2.3. Computing the Radiation in the Direction of θSOI , θSNOI1 , θSNOI2 and θSNOI3

Next, the field from the array in the direction of θSOI (signal of interest), and θSNOI1 ,
θSNOI2 and θSNOI3 (signals of no interest) on the singly curved surface (wedge) is computed
with the Array Factor (AFw) expression in [15]:

AFw(θ, φ) =
−1

∑
n=−2

Fn,Lejk[uxn+vyn+zn cos θ] +
2

∑
n=1

Fn,Rejk[uxn+vyn+zn cos θ] (5)

where
Fn,L = wn cos θPLe±jk∆±n (6)

and
Fn,R = wn cos θPRe±jk∆±n (7)

A spherical coordinates system is assumed in (5) with u = sin θ cos φ, v = sin θ sin φ,
∆±n is defined in (1)–(4), (xn, yn, zn) is the location of the nth array element and wn are the
array excitation weights (amplitudes and phases) to drive the individual antenna elements.
Furthermore, the element patterns for A1 and A2 are denoted as eR(θ) = cosθPR and the
element patterns for A−1 and A−2 are denoted as eL(θ) = cos θPL where θPR and θPL are
defined in Figure 2.

2.4. Computing the Array Weights for N = 4 Elements

The complex weighting functions (i.e., array weights) in (5) are of interest in this work
because these are the array weights that need to be computed for beamforming of the array.
To compute these weights, the matrix method for smart antennas presented in [1] will be
used. Because the array studied here has four elements, four array weights are needed.
This then requires a set of four equations with four unknowns that can be written as a
square matrix. Then, the array weights can be computed using a matrix solver. The sum in
(5) has four terms for N = 4 and to obtain four equations with four unknowns, (5) will be
evaluated at each value of θSOI , θSNOI1 , θSNOI2 and θSNOI3 . This then gives the following
array factor matrix for antenna array on wedge-shaped conformal surface AFw:

AFw =


AFw(θSOI)

AFw
(
θSNOI1

)
AFw

(
θSNOI2

)
AFw

(
θSNOI3

)
 (8)

where θ = θSOI , θSNOI1 , θSNOI2 or θSNOI3 and φ = 0. Then, factoring out the array weights
gives,

AFw = AW (9)

where A is the array factor in (5) for antenna array on wedge-shaped conformal surface
with factoring out the complex weights and

W =


w−2
w−1

w1
w2

 (10)

Next, to ensure that the conformal antenna will have a main beam at the scan angle
θSOI , AFw(θSOI) must equal 1 in (8), or AFw(θSOI) = 1. Then, in order to provide nulls in the
direction of θSNOI1 , θSNOI2 and θSNOI3 , AFw

(
θSNOI1

)
= AFw

(
θSNOI2

)
= AFw

(
θSNOI3

)
= 0

in (8). This can be written in matrix form in the following manner:

AW = C (11)
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where

C =


1
0
0
0

 (12)

and AW is defined in (9). Finally, solving for the weights in (11) gives

W = A−1C (13)

By setting the first element in (12) to be 1 and the rest of the elements to be 0, the array
factor is forced to give nulls (or a zero field) analytically at the angles of θSNOI1 , θSNOI2

and θSNOI3 . Thus, the solution of (13) are the array weights required to give these pattern
null features. Furthermore, since the values of ∆±n in the array factor expression in (8)
are written in terms of the wedge angle θb and the location of each antenna element, the
weights computed with (13) are determined in a setting where the antenna, and hence the
wedge, can change shape.

2.5. Computing the Array Weights for N Elements

The previous expressions were determined for N = 4 and can be generalized for more
elements. More, specifically, (8)–(13) can be generalized in the following manner:

AFw =



AFw(θSOI)
.
.
.

AFw
(
θSNOI1

)
.
.
.

AFw(θSNOIn)


(14)

where

AFwn(θ, φ) =
−1

∑
n=− N

2

Fn,Lejk[uxn+vyn+zn cos θ] +

N
2

∑
n=1

Fn,Rejk[uxn+vyn+zn cos θ] (15)

and Fn,L and Fn,R are defined in (6) and (7), respectively. Then, factoring out the array
weights gives

AFwn = AnWn (16)

where An is the array factor in (15) for antenna array on wedge-shaped conformal surface
with factoring out the complex weights and

Wn =
[
w− N

2
. . . w−1 w1 . . . w N

2

]T
(17)

Finally, the coefficients in (12) can be generalized as

Cn = [c1 c2 . . . cn]
T (18)

and the weights can be computed using

Wn = An
−1Cn (19)
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Equation (19) can then be used to solve for the array weights that will result in a main
radiation pattern in the direction of θSOI and nulls in the directions of θSNOI1 , θSNOI2 , . . .
θSNOI(N−1)

for an N-element array, on a changing wedge-shaped surface.

2.6. Beamforming of a 1 × 4 Array on a Cylindrical-Shaped Surface

Next, the complex weights for antenna array on the cylindrical curvature shown in
Figure 2c are computed. Again, for illustration, the derivations will be carried out for
N = 4 elements. As with the wedge-shaped conformal surface, the projected distance
from the antenna elements on the cylindrical surface to the transmitted wavefront at angle
θSOI(SNOIn) must be computed. Again, these distances are denoted as ∆±n in Figure 2c.
First, the distance from the point where the cylinder intersects the z-axis (denoted as point
P in Figure 2c) to each antenna element is computed using the following equation

h±n =

√
(0− x±n)

2 + (r− z±n)
2, (20)

where again (x±n, z±n) is the location of the nth element on the cylindrical surface, x±n =
r cos φ±n, z±n = r sin φ±n and φ±n is defined in Figure 2c. As with the wedge-shaped
surface, the problem will be considered as two different cases.

The first case is for θSOI(SNOIn) ≥ 0 and the second case is for θSOI(SNOIn) ≤ 0. The
first case is shown in Figure 2c. The projected elements of A−2, A−1 and A2 in the direction
of θSOI(SNOIn) are outside of the cylindrical surface and the projected element of A1 in
the direction of θSOI(SNOIn) is inside of the cylindrical surface. Because some projected
elements are outside of the cylinder and some are inside, each case will be broken into
two parts. The first part will compute the distance from the elements A−1 and A±2 to the
projected elements on the wavefront and the second part will compute the distance from
the element A1 to the projected element on the wavefront (as shown in Figure 2c).

2.6.1. Case 1: θSOI(SNOIn) ≥ 0

Next, using (20) and several trigonometric identities, the projected distance from the
elements A−1 and A±2 to the transmitted wavefront is calculated as:

∆±n = h±n sin(∓θSOI(SNOIn) + θ±n) (21)

where θ±n = cos−1|x±n/h±n|. Then, for the element A1 the distance to the projected
element can be computed as:

∆+n = h+n sin
(

θSOI(SNOIn) − θ+n

)
(22)

2.6.2. Case 2: θSOI(SNOIn) ≤ 0

Again, using (20) and several trigonometric identities, the distance from the elements
A1 and A±2 to the projected elements can be computed as:

∆±n = h±nsin (±
∣∣∣θSOI(SNOIn)

∣∣∣+ θ±n) (23)

where θ±n = cos−1|x±n/h±n|. Then, for the element A−1, the distance to the projected
element can be computed as:

∆−n = h−n sin
(∣∣∣θSOI(SNOIn)| − θ−n

)
(24)

Several comments can be made about (21)–(24). As with the wedge-shaped surface,
these expressions have been written in a general manner in terms of antenna position on
the cylindrical surface and the radius of curvature. Moreover, special care should be taken
when implementing these equations if

∣∣∣θSOI(SNOIn)

∣∣∣ ≤ θ±n. This is because for these
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projected elements, angles on the wavefront will be outside of the cylindrical surface. In
this case, the distance to the wavefront can be computed using (21) or (23) (depending on
whether θSOI(SNOIn) ≤ 0 or θSOI(SNOIn) ≥ 0 and the computations of (22) and (24) are
not required.

2.7. Computing the Array Weights for N = 4 Elements

Next, as with the antenna array on the wedge-shaped conformal surface, the array
weights can be computed using (13). For the computations of these array weights on
the cylinder, the distance from the elements to the wavefront should be computed using
(21)–(24).

2.8. Computing the Array Weights for N Elements

Finally, (19) can be used (with the updated distances computed using (21)–(24)) to
compute the array weights for an N-dimensional array on a cylindrical surface with radius
r. As with the wedge-shaped surface, the expressions to compute the array weights
have been written in a general manner that includes element spacing and the radius of
the cylinder. This makes the technique presented here useful for an array attached to a
changing cylindrical surface.

2.9. Computing the Weighting Coefficients with Mutual Coupling

For the previous derivations of (13) and (19), it was assumed that there was no mutual
coupling between the elements. To model the mutual coupling, the work presented in [32]
was considered. More specifically, the work in [32] proposed a model for the mutual coupling
in adaptive arrays and demonstrated that the mutual coupling between the elements of an
adaptive array can cause a significant degradation in the signal-to-interference-plus-noise
ratio (SINR). The methods in [32] will be adopted here to model the mutual coupling
effects on the radiation pattern of the conformal beamforming array. The coupling between
the antenna elements can be modelled as an N + 1 port network, as shown in Figure 3.
The antenna elements in the array are all terminated with ZL and denoted as ports 1, 2, . . .
N. The antenna port driven by a voltage source Vs is denoted as N + 1. The port driven
with Vs is the representation of the transmitted (or incoming) signals at angles θSOI or
θSNOIn . Then, using the Kirchhoff relations for the N + 1 terminal network, the voltage at
the terminated port n can be written as:

VTn = I1Zn,1 + I2Zn,2 + . . . + InZn,m + . . . + IsZn,s (25)

where Zn,m is the mutual impedance between the nth and mth port, In is the current going
through the terminating load on the nth port, Zn,n is the self-impedance of the nth port and
Zn,s represents the mutual coupling term between the driven element with Vs and the nth

antenna element. Furthermore, the current at the nth port can be written in terms of the
terminal voltage and load impedance in the following manner:

In =
−VTn

ZL
(26)

Then, making use of the open circuit condition and removing the terminating impedances
results in I1 = I2 = . . . IN = 0. This simplifies (25) to VTn = IsZn,s. Under these conditions,
(25) represents the open circuit voltages at the nth port caused by the mutual coupling
between the driven element and the nth port, and can be computed as VTn = IsZn,sVOCn.
Next, substituting (26) into (25), making use of the open-circuit condition and writing (25)
in matrix form results in the following:

ZcVT = VOC (27)
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where

Zc =


1 + Z1,1

ZL

Z1,2
ZL

· · · Z1,N
ZL

Z2,1
ZL

1 + Z2,2
ZL

· · · Z2,N
ZL

...
...

. . .
...

ZN,1
ZL

ZN,2
ZL

. . . 1 + ZN,N
ZL

 (28)

VT = [VT1 VT2 . . . VTn]
T (29)

and
VOC = [VOC1 VOC2 ···VOCn]

T (30)

The normalized impedance matrix Zc includes self- and mutual-terms, and can be
determined from a 3D full wave simulator such as HFSS [33]. The open circuit voltage
column matrix VOC represents the array weights (i.e., the complex voltages used to drive
the beamforming conformal antenna) without including mutual coupling. This then results
in VOC = Wn where Wn is given in (19). The terminal voltage column matrix VT repre-
sents the array weights that include the mutual coupling and can be computed from (27)
as follows:

VT = Zc
−1VOC (31)

Next, to write the array weights with mutual coupling in terms of Zc, substitute
VOC = Wn into (19) and rearranging gives the following expression:

AnVOC = Cn (32)

Then, solving for VOC in (32) and substituting into (31) gives:

VT = Zc
−1An

−1Cn = Wc
n (33)

where Wc
n represents the new array weights with the coupling included in the computations.

In the next Section, validation of Wn using (19) and Wc
n using (33) for various values of

θSOI and θSNOIn will be presented followed by the characteristics of the array weights for
various conformal surfaces.
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3. Validation with Analytical, Simulations and Measurement Results

In this Section, a beamforming array is used to validate the previously derived array
weight expressions using simulations and measurements. More specifically the array
weights are computed using (19) and (33) for the 1 × 4 element array on the singly curved
wedge and cylindrical curvature surfaces, shown in Figure 2. Two different beam-formation
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patterns were considered, and each pattern was evaluated on three different conformal
surfaces. The characteristics of each beam-formation pattern, denoted as pattern 1 and
pattern 2, are mentioned in Table 1. Furthermore, the three conformal surfaces considered
were the singly curved wedge surface with θb = 30◦ and θb = 45◦ and a cylindrical surface
with r = 10 cm.

Table 1. Specifications of the beamforming patterns.

Variable Pattern 1 Pattern 2

θSOI 0◦ 40◦

θSNOI1 −30◦ −45◦

θSNOI2 30◦ −25◦

θSNOI3 40◦ 10◦

3.1. Four-Element Beamforming Array

For measurement purposes, the four-element beamforming array shown in Figure 4a
was manufactured. The array consisted of connectorized voltage-controlled phase shifters,
voltage-controlled attenuators, a four-way power divider, an amplifier and four microstrip
patches designed to operate at 2.47 GHz. A picture of the attenuators, phase shifters and
power divider of the manufactured array is shown in Figure 4b, and a picture of the four
microstrip patches is shown in Figure 4c. Four individual microstrip patches were used for
the convenience of placing the array on the various conformal surfaces. The phase shifters
were manufactured by Hittite Microwave Corporation [34] (PN: HMC928LP5E) and the
power divider, attenuators and amplifiers were manufactured by Mini-Circuits [35] (PNs:
ZN8PD1-53-S+, ZX73-2500-S+ and ZX60-33LN-S+, respectively). Identical SMA cables
were used to connect each patch to a port on the power divider.
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Figure 4. (a) Topology of the four-element beamforming array, (b) a picture of the power divider,
voltage-controlled phase shifters and voltage-controlled attenuators used for measurements and (c) a
picture of the microstrip patch elements used for attachment to conformal surfaces.

3.2. Beamforming Results on the Conformal Wedge Antenna Array with θb = 30◦

First measurements taken were for the 1 × 4 element beamforming array on the singly
curved flexing wedge in Figure 2a for θb = 30◦, and the array weights were computed using
(33). The inter-element spacing was 0.5 λ and a picture of the array being measured on the
surface with a 2-port network analyzer in a fully calibrated anechoic chamber is shown in
Figure 5a. The results from these measurements for both patterns summarized in Table 1
are shown in Figure 6a,b. Next, the four-element beamforming array was modelled in
HFSS and the weights computed using (33) were used to drive the array. More specifically,
the separate substrates, conducting layers and SMA connectors were modelling in HFSS to
provide an accurate representation of the measurement setup in Figure 5. The radiation
pattern from these simulations can also be seen in Figure 6a,b at 2.47 GHz. Then, for a third
comparison both patterns were computed analytically using the array factor expression
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in (5) with the weights determined using (19). These results are also shown in Figure 6a,b.
Finally, new weights that include the mutual coupling were computed using (33) and used
in (5) to compute the radiation pattern analytically. These results are shown in Figure 6a,b.
Overall, agreement between measurements, simulations and analytical computations (with
both sets of array weights) is shown. The array weights for the results in Figure 6a,b are
shown in Tables A1 and A2 in Appendix A.
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3.3. Beamforming Results on the Conformal Wedge Antenna Array with θb = 45◦

Next, measurements were taken for the four-element beam-forming array on the
singly curved flexing wedge in Figure 2a for θb = 45◦. The adjacent element spacing was
again 0.5 λ and (33) was used to compute the new array weights. The results from these
measurements for both patterns summarized in Table 1 are shown in Figure 7a,b. Next, the
four-element beamforming array was simulated in HFSS with the array weights computed
using (33) for θb = 45◦ and the radiation pattern can also be seen in Figure 7a,b at 2.47 GHz.
Then, for a third comparison, the expression in (19) was used to compute the analytical
results shown in Figure 7a,b. Next, the four-element beamforming array was simulated in
HFSS with the array weights computed using (33) for θb = 45◦ and the radiation pattern can
also be seen in Figure 7a,b at 2.47 GHz. Then, for a third comparison the expression in (19)
was used to compute the analytical results shown in Figure 7a,b. New weights that include
the mutual coupling were also computed using (33) for the new value of θb = 45◦. These
weights were then used in (5) to compute the radiation pattern and these results are shown
in Figure 7a,b. As with the θb = 30◦ results, agreement between measurements, simulations
and analytical computations is shown. The array weights for the results in Figure 7a,b are
shown in Tables A3 and A4 in Appendix A.
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3.4. Beamforming Results on the Conformal Cylindrical Antenna Array with r = 10 cm

Finally, the same comparison between measurements, simulations and analytical
computations was conducted for the four-element array on the cylindrical-shaped surface
with r = 10 cm. The array being measured in the full anechoic chamber is shown in Figure 5b
and the results are shown in Figure 8. It should be mentioned that in order to measure the
array on a cylindrical surface, a sphere was used and the antenna elements were placed
along the equator. This then resulted in an antenna shape similar to a cylindrical surface.
Simulation results and analytical computations with and without the coupling are also
shown in Figure 8 and overall agreement is shown. The array weights for the results in
Figure 8 are shown in Tables A5 and A6 in Appendix A.
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4. Discussions

For the results in Figures 6 and 7, the most agreement is between the measured results,
the HFSS simulations and the analytical computations with the array weights including
the mutual coupling. This illustrates the improved accuracy of the weights computed
using (33).

Moreover, when comparing the pattern 2 results in Figure 6b and b, it is shown that
more agreement between the results around −60◦ exist for the θb = 45◦ surface than for
the θb = 30◦ surface. This is thought to be due to the more severe surface deformation that
exists for the θb = 45◦. Overall though, the array weights computed using (19) and (33)
have been shown to be accurate and the effects due to the mutual coupling and surface
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deformations on the radiation pattern have been demonstrated. Thus again, the weights
computed using (33) can be used to model the coupling, and with proper optimization, an
improved beam-formation could be achieved in a general setting that includes the mutual
coupling between elements on a changing conformal surface.

The approach to beamforming presented in this paper has many applications ranging
from IoT devices, 5G and mobile satellite communications. As devices in these spaces
become smaller, phased array antennas are required to operate in the vicinity of scattering
surfaces and other array elements, hence requiring knowledge of mutual coupling.

5. Dependence of Complex Weights on the Geometry of the Conformal Surface

Next, the array weights for a three-element array were computed analytically using
(19). This was undertaken to show how the array weights are dependent on bend angle
θb and the radius of curvature r. It should be mentioned that = 3 was chosen because the
problem becomes much more complex for N > 3 and requires a numerical analysis of the
matrices in (19). After several algebraic steps it can be shown that the array weights can be
written as:

w+1 =
1

F1,R
∆ − DF−1,L

∆ (34)

w0 = 1− w+1[F1,R(θSOI)− DF−1,L(θSOI)] (35)

and
w−1 = −w+1D (36)

where

D =
F1,R

(
θSNOI2

)
− F1,R

(
θSNOI1

)
F−1,L

(
θSNOI2

)
− F−1,L

(
θSNOI1

) (37)

F1,R
∆ = F1,R(θSOI)− F1,R

(
θSNOI1

)
, F−1,L

∆ = F−1,L(θSOI)− F−1,L
(
θSNOI1

)
and Fn,L and

Fn,R are defined in (6) and (7), respectively, with the weights factored out. For a small value
of N the results in (34)–(36) show that the expression for the array weights can be quite
complicated. Then again, it does also show the dependency of each weight on the angle
θSOI(SNOIn) and the location of each antenna element in the array.

To illustrate the behavior of the weights using (34)–(36) for various surfaces, the
three-element array was considered on a wedge-shaped surface for various values of θb.
For these computations, the values of θSOI and θSNOIn were θSOI = 40

◦
, θSNOI1 = −45

◦

and θSNOI2 = 10
◦
. The amplitude and phase of the array weights computed using (34)–(36)

are shown in Figure 9. The results show that for a fixed beam-formation there is a strong
relationship between the array weights and the conformal surface. A similar derivation
could be conducted to compute (33) for the array weights that include coupling, and the
same relationship between the array weights and the surface deformation was shown to
exist for the cylindrical surface.
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6. Conclusions

Beamforming of a one-dimensional array on a changing singly curved wedge and
cylindrical curvature surface was investigated. New matrices for computing the array
weights that both do not include and include the mutual coupling between elements are
presented. The computations of these array weights were then validated with the simulation
and measurements of a four-element beamforming array. Overall agreement between the
results was shown and the characteristics of a beamforming array on a conformal surface
were discussed.
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Appendix A

The following tables summarize the array weights for the results in Figures 6–8.

Table A1. Array weights of the conformal antenna on the wedge-shaped surface with θb = 30◦

without coupling using (19).

Pattern 1 Weights Pattern 2 Weights

w−2 = 0.98∠+ 128.76
◦

w−2 = 0.31∠− 72.72
◦

w−1 = 0.21∠− 75.85
◦

w−1 = 0.56∠+ 135.57
◦

w1 = 1.00∠+ 35.24
◦

w1 = 1.00∠− 2.34
◦

w2 = 0.59∠− 174.73
◦

w2 = 0.84∠− 78.45
◦

Table A2. Array weights of the conformal antenna on the wedge-shaped surface with θb = 30◦ with
coupling using (33).

Pattern 1 Weights Pattern 2 Weights

w−2 = 0.96∠+ 88.34
◦

w−2 = 0.35∠− 112.26
◦

w−1 = 0.26∠− 108.76
◦

w−1 = 0.61∠+ 91.65
◦

w1 = 1.00∠− 8.1
◦

w1 = 1.00∠− 39.52
◦

w2 = 0.65∠+ 146.62
◦

w2 = 0.84∠− 124.1
◦

Table A3. Array weights of the conformal antenna on the wedge-shaped surface with θb = 45◦

without coupling using (19).

Pattern 1 Weights Pattern 2 Weights

w−2 = 1.00∠− 154
◦

w−2 = 0.26∠− 14.85
◦

w−1 = 0.74∠− 31.9
◦

w−1 = 0.26∠+ 165.14
◦

w1 = 0.62∠+ 65.6
◦

w1 = 1.00∠+ 39.57
◦

w2 = 0.52∠− 107.1
◦

w2 = 0.88∠− 16.86
◦

Table A4. Array weights of the conformal antenna on the wedge-shaped surface with θb = 45◦ with
coupling using (33).

Pattern 1 Weights Pattern 2 Weights

w−2 = 1.00∠− 155.1
◦

w−2 = 0.34∠− 15.8
◦

w−1 = 0.41∠− 56.29
◦

w−1 = 0.14∠+ 121.26
◦

w1 = 0.24∠+ 55.72
◦

w1 = 0.17∠+ 21.0
◦

w2 = 0.53∠− 116.44
◦

w2 = 1.00∠− 28.94
◦
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Table A5. Array weights of the conformal antenna on the cylindrical-shaped surface with r = 10 cm
without coupling using (19).

Pattern 1 Weights Pattern 2 Weights

w−2 = 0.95∠+ 48.27
◦

w−2 = 0.53∠− 133.55
◦

w−1 = 0.22∠+ 38.35
◦

w−1 = 0.86∠+ 83.9
◦

w1 = 1.00∠− 7.36
◦

w1 = 0.91∠− 51.41
◦

w2 = 0.60∠+ 110
◦

w2 = 1.00∠− 136.1
◦

Table A6. Array weights of the conformal antenna on the cylindrical-shaped surface with r = 10 cm
with coupling using (33).

Pattern 1 Weights Pattern 2 Weights

w−2 = 0.97∠+ 5.39
◦

w−2 = 0.59∠+ 168.29
◦

w−1 = 0.26∠+ 102.15
◦

w−1 = 0.94∠+ 29.34
◦

w1 = 1.00∠− 75.79
◦

w1 = 1.00∠− 102.68
◦

w2 = 0.93∠+ 61.92
◦

w2 = 0.88∠+ 169.59
◦
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