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Abstract: Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
effectively separates the fault vibration signals of rolling bearings and improves the diagnosis of
rolling bearing faults. However, CEEMDAN has high memory requirements and low computational
efficiency. In each iteration of CEEMDAN, fault vibration signals are added with noises, both the
vibration signals added with noises and the added noises are decomposed with classical empirical
mode decomposition (EMD). This paper proposes a rolling bearing fault diagnosis method that
combines piecewise aggregate approximation (PAA) with CEEMDAN. PAA enables CEEMDAN to
decompose long signals and to achieve enhanced diagnosis. In particular, the method first yields the
vibration envelope using bandpass filtering and demodulation, then compresses the envelope using
PAA, and finally decomposes the compressed signal with CEEMDAN. Test data verification results
show that the proposed method is more effective and more efficient than CEEMDAN.

Keywords: rolling bearings; fault diagnosis; piecewise aggregate approximation; CEEMDAN

1. Introduction

Rolling bearings are one of the most widely used components in rotating machinery.
Failure of rolling bearings are one of the most frequent reasons for machine breakdown.
Thus, fault diagnosis of rolling bearings is crucial to ensure the operational efficiency and
reliability of engineering systems [1,2]. When a fault bearing rotates, a localised defect on
the outer or inner race is struck by the rollers, or a localised defect on a roller strikes the inner
and outer races. High-frequency resonances are excited and presented as impact transients.
The periodicity of the successive impact transients is expressed as characteristic fault
frequencies [2]. The vibration of fault bearing is recognised as the modulation between the
components of low fault frequency fF and high natural frequency fn, as shown in Figure 1.
It is the most classic bearing fault diagnosis method to obtain the envelope spectrum
or squared envelope spectrum using bandpass filtering and demodulation [3]. Finding
the optimal frequency band for filtering is critical for the envelope analysis [4]. Some
successful tools, such as fast Kurtogram [5], the improved Kurtogram based on wavelet
packet transform [6], protrugram [7], and Autogram [8], have been developed for finding
the optimal band.
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Figure 1. Transient response of bearing defects. 
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It can be seen from Equation (1) that a frequency component reflects the average en-
ergy of the periodic component over the entire test period of 𝑡 − 𝑡 . Theoretically, the 
longer the signal is, the more times that a component is averaged, and the clearer the spec-
trum will be. Figure 2a shows the simulation signal of a bearing with background noise. 
The signal length is 𝐿 = 100 s and the signal noise ratio (SNR) is −18.091 dB. The fault 
characteristic frequency is 15 Hz. Signals with a length of 2 s, 10 s, 30 s, and 100 s are 
selected for envelope analysis. The corresponding envelope spectra yielded are shown in 
Figure 2b–e, respectively. It can be seen that the harmonics of fault frequency, which can-
not be seen in the spectrum of 2 s, can be seen in the spectra of 10 s, 30 s, and 100 s. Alt-
hough the harmonics of 10 s, 30 s, and 100 s have nearly equal amplitudes, the harmonics 
become increasingly clearer from Figure 2c–e, as the longer the signal length is, the better 
the background noise is reduced. 

Figure 1. Transient response of bearing defects.

Empirical mode decomposition (EMD) is another widely used method for bearing
fault diagnosis. EMD decomposes a signal into a set of intrinsic mode functions (IMFs)
and a residue signal [9]. The IMFs are narrow-band components and indicate the natural
oscillatory mode imbedded in the original signal [10]. As EMD is effective for nonlinear,
non-stationary signals with both Gaussian and non-Gaussian noise, it has been applied
with success in different fields, including bearing fault diagnosis [11], planetary gearbox
fault diagnosis [12], railway structural wavelength identification [13], automatic sleep
scoring [14], etc. However, EMD suffers from endpoint effects and mode mixing. As for
mode mixing, a single IMF consists of signals of widely disparate scales, or a signal of
a similar scale resides in different IMF components [15]. The mode mixing is the major
drawback of the EMD. Ensemble EMD (EEMD) is developed to suppress mode mixing by
adding assisted noises to improve the extrema distribution of the signal [16]. However, the
IMFs generated by EEMD contain residual noise, and different numbers of IMFs can be
generated as different assisted noises are added to the signal to be decomposed. In order
to solve the problem that the IMFs are contaminated by residue noise, complementary
EEMD (CEEMD) is presented via adding noises in pairs with opposite signs to the targeted
signal [17,18]. However, the completeness property is not proven, and different noisy copies
of the signal can produce a different number of modes. How to choose proper parameters
is also a problem for CEEMD. A further improved algorithm named CEEMD with adaptive
noise (CEEMDAN) is proposed to solve the problem of incomplete decomposition by
adding particular noise to the signal, which in turn reduces the residual noise in the
IMFs [19]. CEEMDAN has been applied in the fields of biomedical engineering [20], energy
economics [21], and fault diagnosis [22,23]. In each iterative layer of CEEMDAN, N signals
added with noises, as well as the N assisted noises (N is the number of overall averages),
are decomposed. Thus, CEEMDAN takes up a lot of memory, and is of low computational
efficiency especially for long signal analysing.

A longer signal brings more robust information. For a signal of x(t), its Fourier
transform is:

F(ω) = F [ f (t)] =
t2∫

t1

f (t)e−jωtdt. (1)

It can be seen from Equation (1) that a frequency component reflects the average
energy of the periodic component over the entire test period of t2 − t1. Theoretically, the
longer the signal is, the more times that a component is averaged, and the clearer the
spectrum will be. Figure 2a shows the simulation signal of a bearing with background
noise. The signal length is L = 100 s and the signal noise ratio (SNR) is −18.091 dB. The
fault characteristic frequency is 15 Hz. Signals with a length of 2 s, 10 s, 30 s, and 100 s
are selected for envelope analysis. The corresponding envelope spectra yielded are shown
in Figure 2b–e, respectively. It can be seen that the harmonics of fault frequency, which
cannot be seen in the spectrum of 2 s, can be seen in the spectra of 10 s, 30 s, and 100 s.
Although the harmonics of 10 s, 30 s, and 100 s have nearly equal amplitudes, the harmonics
become increasingly clearer from Figure 2c–e, as the longer the signal length is, the better
the background noise is reduced.
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Figure 2. Fault bearing simulation signal and its envelope spectra: (a) Time domain signal with noise;
(b) envelope spectrum of 2 s signal; (c) envelope spectrum of 10 s signal; (d) envelope spectrum of
30 s signal; (e) envelope spectrum of 100 s signal.

However, longer signals of high sampling frequency also increase the requirement
of computing hardware, which can be a challenge especially for the application cases of
edge computing. Particularly, as the natural frequency fn is as high as thousands (or even
tens of thousands) of Hz, the sampling frequency of bearing vibration, fS, is set to be
tens of thousands of Hz according to the Nyquist sampling theorem. Thus, it is natural to
compress the signal before processing it using algorithms of high complexity. The technique
of compressed sensing achieves data acquisition and compression at the same time. The
measurements that compressed sensing obtains are nonadaptive linear projections of the
original signals. And the original signals can be reconstructed with the measurements
using recovery algorithms [24]. Compressed sensing is originally used for image pro-
cessing in the fields of medical imaging [25–27], radar imaging [28,29], astronomy [30,31],
face recognition [32,33], etc. Compressed sensing is also introduced for machinery fault
diagnosis to obtain sparse representation of original signals and to extract fault features
from the compressed signals [34–36]. The major drawback of compressed sensing for fault
diagnosis is that the compression is not supervised with prior knowledge. Some classical
diagnosis methods, such as envelope analysis and EMD, are not applicable any more for the
compressed signals. In addition, loss of fault information is inevitable when reconstructing
the original signals from the compressed signals.

Piecewise aggregate approximation (PAA) is a far easier method that can be used for
signal compression [37,38]. An improved PAA is proposed to take fluctuating trends into
account as well [39]. PAA first divides the time series into N segments equally and uses
the average of each segment as an approximate representation of that segment. In this
process, the original time series with L samples is compressed into a signal of N samples,
which can be regarded as a process of dimensionality reduction. The equivalent sampling
frequency of the compressed signal is fES = fS × N/L, where fS is the sampling frequency
of the original signal. Thus, there is information loss for components whose frequencies are
larger than fES/2.56.

In order to obtain reliable diagnostic results using long signals, a method combining
PAA and CEEMDAN is proposed. In order to overcome the problem that CEEMDAN
has large memory requirements and low computational efficiency, PAA is introduced to
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compress the signals before decomposing them. Moreover, in order to avoid information
loss caused by signal compression, the traditional envelope analysis method is applied and
PAA is performed on the envelopes instead of the original signals. Validations are carried
out with signals collected from real rolling bearings.

2. Methodology
2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

CEEMDAN is an improved algorithm of EMD and EEMD, which overcomes the
shortcomings of EEMD, as mentioned in Section 1. The flow chart of CEEMDAN is shown
in Figure 3.
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Figure 3. Flow chart of the CEEMDAN algorithm.

Assuming y is the signal to be decomposed, CEEMDAN is performed to decom-
pose the signal y, and the IMF obtained by layer i decomposition is expressed as Ci,
i = 1, 2, · · · , I, where I is the number of layers of decomposition, and the decomposition
steps are as follows:

(1) First layer decomposition, i.e., i = 1.
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1© Adding white noise vj to the signal of y yields a new signal of y + εi=1vj, where
j = 1, 2, . . . , N, N is the number of adding white noise, and εi=1 is the amplitude of
white noise.

2© Decomposing the new signal of y + εi=1vj with EMD yields a series of IMFs, and
the first IMF is presented as Ej

1st,i=1.

3© Ensemble averaging of N IMFs Ej
1st,i=1 yields the ith (i = 1) IMF of CEEMDAN:

Ci=1 =
1
N

N

∑
j=1

Ej
1st,i=1 (2)

4© Removing the first IMF of Ci=1 from y yields the residual of ri=1:

ri=1 = y− Ci=1 (3)

(2) Second layer decomposition, i = 2.

1© Decomposing vj with EMD yields a series of IMFs, the first of which is presented as
E1
(
vj). Adding E1

(
vj) as noise to the residual ri−1 yields a new signal of ri−1 + εiE1

(
vj).

2© Decomposing the new signal ri−1 + εiE1
(
vj) with EMD yields a series of IMFs, the

first of which is presented as Ej
1st,i.

3© Ensemble averaging of N IMFs Ej
1st,i yields the ith IMF of CEEMDAN:

Ci =
1
N

N

∑
j=1

Ej
1st,i (4)

4© Removing the ith IMF of Ci from ri−1 yields the residual of ri:

ri = ri−1 − Ci (5)

(3) The above steps are repeated until the residual signal obtained is a monotone function
and cannot be further decomposed, at which point the algorithm ends. At last, the
signal to be decomposed is presented as:

y =
I

∑
i=1

Ci + rI (6)

in which I is the number of IMFs and rI is last residual signal.

2.2. Piecewise Aggregate Approximation

It can be seen that CEEMDAN has large memory requirements and low computational
efficiency, as in each iteration of CEEMDAN, tens of fault vibration signals added with
assisted noises, as well as the assisted noises, are decomposed with classical EMD. To solve
the problem of low computational efficiency, PAA is introduced to compress the signals
before performing CEEMDAN.

PAA compresses a large amount of time series data while keeping as many original
features of the data as possible. Assuming that the test signal is x = {xi}, the sampling
frequency is fS, and the signal length is L. PAA defines a constant window w, then divides
the sample sequence x into N equal segments, N = bL/wc, and finally calculates the mean
of each segment:

pn =
1
w

nw

∑
i=w(n−1)+1

xi , n = 1, 2, · · · , N (7)
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The new sequence p = (p1, p2, . . . , pN) is the obtained compressed signal. It can be
seen that the equivalent sampling frequency of the compressed signal is fES = fS/w. The
larger w is, the smaller the samples that the compressed signal has obtained.

2.3. Diagnosis Flowchart

Figure 4 shows the flow chart of the proposed method, which consists of five main
steps: optimal band selection for filtering, bandpass filtering and demodulation, PAA,
CEEMDAN, and spectra analysis. The steps are depicted as follows:
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Figure 4. Flow chart of the proposed method.

(1) Optimal filtering band selection.

In order to enhance the modulation signal of low fault frequency and high natural
frequency, finding an optimal resonance band for bandpass filtering is critical. The fast
Kurtogram, which finds the optimal band according to the kurtosis of the filtered time
signal in different filter banks, has been proven to be a practical tool in bearing fault
diagnosis. Thus, the fast Kurtogram is introduced for optimal filtering band selection.

(2) Bandpass filtering and demodulation.

Bandpass filtering enhances the modulation signal of low fault frequency and high
natural frequency, while demodulation obtains the envelope signal y of low fault frequency,
y = |x + iH(x)|, where x is the filtered signal and H(x) is the Hilbert transform of x.
The envelope consists of components of low frequencies, including the harmonics of fault
frequencies. As the fault frequencies are far smaller than the natural frequency, the envelope
can be compressed to obtain a signal whose equivalent sampling frequency is far smaller
than the original sampling frequency.
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(3) Signal compression.

PAA is introduced to compress the envelope yielded in the second step. PAA first
divides the envelope into N segments of equal length w, N = bL/wc, where L is the
length of the envelope. Then, PAA uses the mean pi of each segment as an approximate
representation of the segment. The obtained compressed signal is p = {pi}.

The window size, or the segment length, w, is the only unknown parameter of PAA. In
addition, w can be set according to the requirement for the equivalent sampling frequency
fES of the compressed signal. As for the envelope of the bearing fault signal, the interesting
components are the harmonics of bearing fault characteristic frequencies, which include
the ball pass frequency of outer race fBPFO, the ball pass frequency of inner race fBPFI, the
ball spin frequency fBS, and the cage frequency fC. The maximum of the bearing fault
characteristic frequencies, fmax = ( fBPFO, fBPFI, fBS, fC), is generally fBPFI. According to
the Nyquist sampling theorem, the equivalent sampling frequency of the compressed
signal should satisfy the condition of fES ≥ 2.56Z fmax, in which Z is the max order of fault
frequency harmonics. Therefore, the window size meets the inequality of:

w ≤ fS/(2.56Z fmax). (8)

(4) CEEMDAN.

Following the steps of CEEMDAN described in Section 2.1, the compressed signal is
decomposed, and a series of IMFs is obtained.

(5) Spectrum analysis.

Spectrum analysis is performed on the IMFs obtained to find the interesting IMFs
whose frequency bands cover the fault characteristic frequency. Fault diagnosis of rolling
element bearing is finally achieved according to the spectra of the interesting IMFs.

2.4. Remarks

PAA is simple, but the envelope waveform of impact transients is well retained in
the compressed signal. The reason is that signal compression is supervised with prior
knowledge. Particularly, PAA compresses the envelope instead of the original signal. The
series of impact transients produced successively by a localised defect are recognised as the
modulation between the low-frequency fault components and high-frequency resonances.
Thus, bearing vibration is collected with high sampling frequency, and compressing the
original vibration signal causes the information loss of the high-frequency resonance;
while the diagnostic information in the demodulated envelope is the low-frequency fault
components, and the information will be kept in the compressed signal as long as the
equivalent sampling frequency is larger than 2.56 multiples of interesting frequencies.

3. Experiment Validation

Bearing fault simulation tests are carried out on the test bench, as shown in Figure 5.
The test bench consists of a driving motor, a bearing-supported rotating shaft, an inertia
wheel for providing radial load, a belt drive mechanism, a gearbox, a crank connect-
ing rod mechanism, and a reciprocating mechanism. The bearing seeded with defect is
mounted in the bearing housing closer to the motor. The seeded defect is a localised
crack with both a width and depth of 0.2 mm. The bearing is a deep groove ball contact
bearing, the model is MB-ER-10K. The fault characteristic frequencies are fBPFO = 3.052 fr,
fBPFI = 4.948 fr, fBS = 1.992 fr, and fC = 0.382 fr, where fr is the shaft frequency. Vibration
signals were collected using accelerometers of the PCB Model 608A11, whose bandwidth is
of 0.5 Hz~9 kHz. The sampling frequency was set as fS = 25.6 kHz.
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Figure 5. Machinery fault simulation bench.

The maximum of the bearing fault characteristic frequencies is fmax = fBPFI. Assum-
ing that Z = 5 orders of fault frequency harmonics are supposed to be retained in the
compressed signals, it yields the condition of the window length, w ≤ 404.20/ fr, according
to Equation (8).

3.1. Validation for Outer Race Defect Case

The vibration signal of a bearing with an outer race defect is shown in Figure 6a. The
signal length is L = 19 s, the shaft speed is fr = 14.1184 Hz, and the corresponding fault
frequency is fBPFO = 43.0894 Hz. The proposed method combining CEEMDAN and PAA
was used to analyse the signal. Firstly, analysing the signal with fast Kurtogram yields the
diagram, as shown in Figure 7. It can be seen that the center frequency of the optimal band
is 10,667 Hz, the bandwidth is 4267 Hz, and the corresponding optimal filtering band is
8533.5~12,800.5 Hz. The filtered signal for the optimal filtering band is shown in Figure 6b.
The envelope of the filtered signal is shown in Figure 6c.
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Figure 6. Case 1 for outer race defect: (a) Original signal; (b) filtered signal; (c) envelope;
(d) compressed signal; (e) partial enlarged envelope; (f) partial enlarged compressed signal.
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Figure 7. Case 1 for outer race defect: Kurtogram results of the vibration signal.

Performing PAA to compress the envelope yields the result shown in Figure 6d. The
window length is set to be w = 20 as w ≤ 404.20/ fr and fr = 14.1184 Hz. The equivalent
sampling frequency of the compressed signal is fES = 1.28 kHz. Partial enlarging the
envelope of Figure 6c yields Figure 6e, and partial enlarging the compressed signal of
Figure 6d yields Figure 6f. Comparing Figures 6d and 6c, and Figures 6f and 6e, it can be
seen that although the compressed signal has smaller amplitudes than the envelope does,
they share the same waveform of impulses.

Decomposing the compressed signal with CEEMDAN yields 16 IMFs. The spectra
of the IMF 2~IMF 7 are shown in Figure 8, from which the component of fBPFO and its
high order harmonics can be seen clearly. Particularly, the spectrum band of IMF 6 is
concentrated around fBPFO, IMF 5 is around fBPFO and 2 fBPFO, IMF 4 is around 2 fBPFO
and 3 fBPFO, and IMF 3 is around 3 fBPFO and 4 fBPFO. These peaks of the fault frequency
harmonics illustrate the tested bearing with outer race defects.
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The time length of the signal is L = 19 s, and the original signal is of fS× L = 486, 400 samples.
CEEMDAN was used to decompose the original signal directly, and the algorithm was
still running after 24 h of operation (the computer processor is I5 2.5 g dual-core, and the
operating memory is 8G). The compressed signal is of fES × L = 24, 320 samples, which
equals the original signal of 0.95 s. Performing CEEMDAN to decompose the compressed
signal 10 times, the mean operation time is 359.2 s.

For a segment of the original signal, which is of 0.95 s, it consists of the same
24,320 samples as the compressed signal does. Performing CEEMDAN to decompose
the signal segment also yields 14 IMFs. The spectra of IMF 7~IMF 12 are shown in Figure 9.
It can be seen that the spectrum band of IMF 10 is concentrated around fBPFO, IMF 9 is
around 2 fBPFO, and IMF 8 is around 3 fBPFO and 4 fBPFO. However, none of these harmonics
can be seen from these spectra. The reason is that the signal segment to be decomposed is
too short, and the times that these harmonics are averaged during FFT are not enough to
reduce background noises.
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Figure 9. Case 1 for outer race defect: Amplitude spectra of IMFs obtained from an original signal
segment that has the same samples as the compressed signal.

Comparing Figures 8 and 9, it can be seen that PAA enables CEEMDAN to decompose
long signals and to yield enhanced diagnostic results.

3.2. Validation for Inner Race Defect Case

The vibration signal of a bearing with an inner race defect is shown in Figure 10a. The
signal length is L = 19 s, the shaft speed is fr = 19.7 Hz, and the characteristic frequency of
the inner race fault is fBPFI = 97.48 Hz. Analysing the signal with fast Kurtogram yields
the result shown in Figure 11. The diagram is different from the one in Figure 7. The same
band is selected, with a center frequency of 10,667 Hz, and a bandwidth of 4267 Hz.
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Figure 10. Case 2 for inner race defect: (a) Original signal; (b) filtered signal; (c) envelope;
(d) compressed signal; (e) partial enlarged envelope; (f) partial enlarged compressed signal.
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Figure 11. Case 2 for inner race defect: Kurtogram results of the vibration signal.

Figure 10b shows the filtered signal for the filtering band, Figure 10c shows the
envelope of the filtered signal, and Figure 10d shows the compressed signal of the envelope
obtained with PAA. The window length of PAA is also set to be w = 20, which satisfies
w ≤ 404.20/ fr. The equivalent sampling frequency of the compressed signal is also
fES = 1.28 kHz. Figure 10e,f shows the partial enlarged envelope and the partial enlarged
compressed signal, respectively. It can be seen that the compressed signal keeps the
waveform of low frequency components in the envelope.

Decomposing the compressed signal yields 16 IMFs. The spectra of IMF 3~IMF 6
are shown in Figure 12. It can be seen that the spectrum band of IMF 4 is concentrated
around the inner race fault frequency fBPFI. The harmonic of fBPFI and its sidebands of
fBPFI ± fr, and fBPFI + 2 fr are clearly presented in the spectrum of IMF 4. The reason for
the modulation frequency of fr is that the inner race defect passes the bearing load zone
once every rotation of the shaft, and the transient amplitudes change periodically.
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The spectrum of IMF 5 is concentrated around the frequency of fBPFI − fr, and clearly
shows the harmonics of fBPFI, fBPFI ± fr, and fBPFI − 2 fr. The spectrum of IMF 3 is concen-
trated around the band of [ fBPFI, 2 fBPFI]. The harmonic of the fault frequency fBPFI and its
sidebands of fBPFI + fr and fBPFI + 2 fr, as well as the second order fault frequency of 2 fBPFI
and its sidebands of 2 fBPFI − 3 fr and 2 fBPFI − 2 fr, can be clearly seen from the spectrum.
The sideband of 2 fBPFI − 3 fr can also be seen in the spectrum of IMF 4.

It is worth noting that the characteristic frequency of fBPFI = 4.948 fr is very close to the
5th order harmonic of shaft frequency 5 fr. Thus, the fault frequency harmonics and their
sidebands are very close to the high order shaft frequencies. In any case, the components of
fBPFI, 2 fBPFI, and their sidebands illustrate that the tested bearing has inner race defects.

4. Conclusions

In this paper, a rolling bearing fault diagnosis method that combines PAA and CEEM-
DAN is proposed. The method firstly extracts the envelope signal from an original signal
using bandpass filtering and demodulation, then compresses the envelope with PAA,
decomposes the compressed signal with CEEMDAN, and finally investigates the spec-
tra of IMFs. Validation results with real bearings show that the proposed method is
effective and efficient.

The interesting components in the original signal for fault diagnosis are the modu-
lation between the fault frequencies and the resonance natural frequencies. The natural
frequencies are as high as thousands of Hz, or even tens of thousands of Hz, while the
interesting components in the envelope are the fault frequency harmonics demodulated
from the original signal. As the fault frequencies are far lower than the natural frequencies,
compressing the envelope instead of the original signal avoids information loss.

The spectra of IMFs reflect the average energy over the entire test period. The longer
the signal is, the more times the spectra are averaged during FFT, and the better the back-
ground noise is reduced. However, in each iteration of CEEMDAN, an IMF is yielded
by decomposing tens of signals added with assisted noises, as well as the assisted noises
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themselves. Thus, CEEMDAN has large memory requirements and low computational effi-
ciency for long signals. Compressing the envelope with PAA enables the use of CEEMDAN
for long signals to achieve enhanced diagnosis.
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