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Abstract: Path planning is a very important step for mobile smart vehicles in complex environments.
Sampling based planners such as the Probabilistic Roadmap Method (PRM) have been widely used
for smart vehicle applications. However, there exist some shortcomings, such as low efficiency, low
reuse rate of the roadmap, and a lack of guidance in the selection of sampling points. To solve the
above problems, we designed a pseudo-random sampling strategy with the main spatial axis as
the reference axis. We optimized the generation of sampling points, removed redundant sampling
points, set the distance threshold between road points, adopted a two-way incremental method for
collision detections, and optimized the number of collision detection calls to improve the construction
efficiency of the roadmap. The key road points of the planned path were extracted as discrete control
points of the Bessel curve, and the paths were smoothed to make the generated paths more consistent
with the driving conditions of vehicles. The correctness of the modified PRM was verified and
analyzed using MATLAB and ROS to build a test platform. Compared with the basic PRM algorithm,
the modified PRM algorithm has advantages related to speed in constructing the roadmap, path
planning, and path length.

Keywords: smart vehicle; probabilistic roadmap algorithm; pseudo-random sampling; collision
detection; path smoothing

1. Introduction

In recent years, smart vehicles have received more attention with the development
of emerging technologies such as cloud computing, big data, and the full-scale launch of
5G construction [1,2]. Smart vehicles have significant effects in relieving driving pressure,
avoiding traffic jams, and reducing environmental pollution [3] Path planning and motion
control are significant and complex navigation tasks in smart vehicles. Path planning
technology is the basis of smart vehicles to make motion decisions and navigate position-
ing [4,5]. To achieve successful path planning and motion control to be able to reach a target
safely, smart vehicles must be provided with the ability to perceive and detect obstacles to
be avoided [6]. Many sensors are installed on the body of smart vehicles, which ensure that
they can perceive and interpret information gathered from the environment to determine
position, direction to the target, position of obstacles, and navigation in both structured or
unstructured environments [7].A smart vehicle is expected to perform these tasks with the
safest and shortest path, reaching the target in the shortest time, and ultimately performing
the specified task without the intervention of humans. Path planning in smart vehicles
refers to determining how the smart vehicle reaches its target point safely to ensure obstacle
avoidance. Smart vehicle path planning is described as a multi-objective optimization prob-
lem as it requires the generation of appropriate trajectories as well as obstacle avoidance in
the environment [8].

The methods of smart vehicle path planning can be classified in different ways.
Ayawli et al. [7] categorized them into nature-inspired computation methods, traditional
methods, and hybrid methods. Methods and strategies that imitate natural phenomena
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are described as nature-inspired computation methods. Meanwhile those that have noth-
ing to do with imitating nature phenomena are described as the conventional method.
Approaches that combine two or more strategies are described as hybrid methods. Nature-
inspired computing consists of a metaheuristic algorithm that simulates, based on nature
phenomena given by natural science [9]. A number of researchers have attempted to solve
the problem of mobile robotics path planning by using nature-inspired algorithms including
genetic algorithms (GA) [10,11], artificial neural networks (ANN) [12,13], simulated anneal-
ing (SA) [14], ant colony optimization (ACO) [15], particle swarm optimization (PSO) [16],
and artificial bee colonies (ABC) [17].In order to take advantage of the strengths of some
methods while reducing the effects of their disadvantages, some researchers combine two
or more methods to provide an efficient hybrid path planning method for controlling
smart vehicles. These approaches include APF combined with GA [18], APF combined
with PSO [19], and fuzzy logic combined with Kalman filtering [20,21]. Conventional path
planning methods have been used for many years. These methods mainly rely on distance
information from the object to the smart vehicles, repulsive force and attractive force clus-
tering, or graphical map calculations to determine the path planning of smart vehicles.
Even though conventional methods of path planning are computationally expensive, they
are easy to implement. Conventional methods mainly consist of the rapidly-exploring
random tree (RRT) algorithm [22], probabilistic roadmap algorithm (PRM) [23], artificial
potential field (APF) [24,25], sliding mode control (SMC) [11,26], A * algorithm [27], D *
algorithm [28,29], and simultaneous localization and mapping (SLAM) [30].

PRM is one of the most popular sampling based planners. PRM is a space planner
that uses multiple-query planning. The key idea in PRM is to distribute the nodes across
the space and then connect these nodes using simple local planning and straight lines to
form a graph roadmap. By connecting the available space, the PRM succeeds in exploring
a faster path by reducing the search to a graph [31]. However, PRM has shortcomings,
including lack of orientation in the selection of sampling points, low reuse rate of the
roadmap, and low search efficiency. Moreover, due to the random sampling of nodes
in PRM, there exists a narrow passage problem that generates an unconnected graph.
To enhance the efficiency of sampling-based algorithms, Kantaros et al. [32] introduced
bias into the sampling process. Vasile et al. [33] maintained sparsity of generated samples.
Sparseness was also explored by Dobson and Berkis for PRM using different techniques [34].
Amato et al. [35] proposed parallelizing strategies; the PRM method has massive inherent
parallelism, which can be easily and best exploited. Berkis et al. [36] used the probabilistic
roadmap method (PRM) with bidirectional rapidly exploring random trees (BI-RRT) as the
local planner to solve multiple queries for motion planning problems with single query
planners. Kurniawait et al. [37] designed an improved PRM algorithm, which was based
on obstacle boundary sampling and evaluated the optimal feasible region to optimize the
dispersion of random sampling of the PRM algorithm. Esposito et al. [38] proposed a
processing algorithm for optimizing probabilistic roadmaps. Dealing with the format of
convex cells in free space with a number of nodes that requires a lot of computation, this
algorithm could simplify the computation required for this step by sparse decomposition.
Gao Junli et al. [39] proposed to combine the deep reinforcement learning twin-delayed
deep deterministic policy gradient algorithm with the traditional PRM algorithm as a new
path planner, and the experimental results showed that this incremental training mode
could significantly improve search efficiency. Moreover, this new path planner effectively
improved the generalization of the model. Chen Gang et al. [40] proposed an improved
PRM method. Based on a virtual force field, a new sampling strategy of PRM was proposed
to generate a configuration that is more appropriate for practical application in free space.

RAVANKAR et al. [41] proposed a method for global planning using a hierarchi-
cal hybrid PRM and the APF method, using a decomposition method of node distri-
bution that used map segmentation to generate regions of high and low potential, and
proposed a method to reduce the dispersion of sample sets during roadmap building.
Xu Zhenfan et al. [42] changed the sampling strategy so that nodes were incrementally
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added and evenly distributed in the exploration region to produce the best viewpoints
and PRM enabled the planner to quickly search for alternative paths and avoid dynamic
obstacles for safe exploration.

Aiming to improve the shortcomings of the PRM algorithm, the main innovation of
this paper is that we propose a pseudo-random sampling strategy with the main spatial
axis as the reference axis, set the distance threshold between road points, and adopt a
two-way incremental method for collision detections. We aim to find the shortest path
between the start point and target point and shorten the time of the planning path. The key
road points of the path are extracted as discrete control points of the Bessel curve. We use
Bezier curve to make the path smoother, whereas the path is more like the actual driving
condition of the smart vehicle.

2. Modified PRM Algorithm
2.1. PRM Algorithm

The PRM algorithm includes sampling and query phases.
Sampling phase: the PRM algorithm randomly samples in the planning space and

judges the reasonableness of the sampling points by the local planner. By repeating the
sampling times n to generate a collection of valid waypoints V traversing the V, the
algorithm connects all the feasible paths between the waypoints to expand to the whole
planning space and forms the waypoint graph. V = {v1, .v2, . . . , vn} denotes the set of
waypoints; E =

{
vi, vj

∣∣vi, vj ∈ V
}

denotes the set of edges between waypoints.
Query phase: the start point qinit and target point qgoal are put into the wayfinding

graph G(V, E), and the algorithm enters the path search phase. We use the graph search
algorithm in the wayfinding graph G(V, E) to find a collision-free path connecting the start
point qinit and target point qgoal .

2.2. Pseudo-Random Sampling

In the PRM algorithm, the number of sampling points generated by the random
sampling strategy increases with an increase in planning space. It is difficult to achieve a
global uniform distribution and easy to create redundancy in sampling points. There is a
considerable probability that the shortest path occurs in the area where the starting point
and target point connects. This region is regarded as a focused sampling region, referred to
as the spatial principal axis region.

To construct the spatial principal axis information, we set the coordinates of the
starting point to be S(xs, ys) and the coordinates of the target point to be G

(
xg, yg

)
. Length

L and declination of the spatial principal axis θ was denoted by:

L = ‖G− S‖2 (1)

θ =
π

2
− arctan

∣∣yg − ys
∣∣∣∣xg − xs
∣∣ (2)

We designed the spatial principal axes with the length L, and number of sampling
points n, then obtained the longitudinal sampling spacing Nd, as:

Nd =
L
n

(3)

Referring to the random sampling method, the sampling points were symmetrically
distributed in the sector area near the main axis of space, and sampling points Pi,j(x, y)
were calculated as follows:

x = xs + rd × cos(θ + φj) (4)

y = ys + rd × sin(θ + φj) (5)

rd = i× Nd, i = [1, 2, . . . , n] (6)
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where (xs, ys) indicates the starting point of the intelligent vehicle; rd indicates the sampling
radius; sampling radius is centered on the starting point; φj ∈ [−φm, φm] indicates the angle
of deflection of the sampling point and; φm indicates the maximum deflection angle. It is
used to control the angle of the sector sampling area, that is, the range of lateral sampling.

According to Figure 1a,b, the sampling points are symmetrically distributed on both
sides of the main spatial axis, and sampling range is controlled by the maximum deflection
angle φm. With the increase of φm, the sampling points spread in all directions along
the main spatial axis. To make the sampling point distribution more uniform, the lateral
sampling range is adjusted along the main axis of space, and sampling range is adjusted
in increments using ∆φ = φm/n. The distribution of sampling points after adjustment is
shown in Figure 1c,d.
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Figure 1. Sampling method based on spatial principal axis: (a) φm = 10, (b) φm = 20, (c) φm = 10,
and (d) φm = 20.

Integrating the characteristics of uniform sampling, we counted the number of sam-
pling points p in free space and the effective sampling rate of the horizontal sampling layer
is defined as R:

R =
p
N

(7)

where N indicates the total number of samples in the current sampling layer and the size
of the effective sampling rate R reflects the connectivity of the current sampling layer. The
larger R is, the better the connectivity of the sampling layer. If R is too small, this means
that most of the sampling points in the sampling layer have fallen into the obstacle space.
If the sampling layer edge subsequently has the same sampling interval, the chance of
sampling points falling into the obstacle space will increase.

In order to improve the ability of the sampling points in avoiding obstacles, we
introduced random increments ∆r to adjust the sampling interval of sampling points.
Based on Figure 1d, we adjust the size of the random increment ∆r to get Figure 2. As
the value of the random increment ∆r increases, the sampling points tend to approach
random distribution. With a decreasing value of ∆r, the sampling points tend to approach
uniform distribution.

Referring to Figure 3, hollow dots indicate the sampling points before adjusting the
sampling spacing, solid dots indicate the adjusted sampling points, red markers repre-
sent the sampling points falling into the obstacle space, and black markers represent the
sampling points in the free space. The effective sampling rate of the front sampling layer
is low (R = 0.3), the radius fluctuation rate (R = 0.8) of the subsequent sampling layer
is adjusted, and the sampling points avoid the obstacles by using the pseudo-random
sampling strategy, which improves the quality of sampling point generation.
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Figure 2. Pseudo-random-based sampling method: (a) ∆r = r, (b) ∆r = 0.5r, and (c) ∆r = 0.25r.

The sampling radius after adding random increments ∆r is shown in Equation (8):

r′d = rd + ∆r (8)
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Figure 3. Schematic of sampling point adjustment.

2.3. Bidirectional Incremental Collision Detection

Collision detection is used to determine whether the connected line segments between
the sample points intersect with the obstacle space, and the sample points are connected
to each other by collision detection to form a roadmap G(V, E). The traditional PRM
algorithm usually takes an incremental detection strategy. According to a fixed step size,
the planner selects discrete points and detects whether the point falls into the obstacle
space. To improve the efficiency of collision detection execution, we combined this incre-
mental detection method with the dichotomous method, proposing a two-way incremental
detection strategy.

First, the two-way incremental detection method judges the reasonableness of the first
and last connected sample points (Figure 4a). Then, we end the detection if the sample
points belong to the obstacle space. If the sample points belong to the self-use space, we
select the test point in both directions gradually along the first and last connected sample
points and judge the reasonableness of the test point. If the selected test point belongs
to the obstacle space, the detection is stopped to discard the path, as shown in Figure 4b.
The sample points are connected to each other by collision detection, and finally form a
roadmap G(V, E).

2.4. Neighbouring Layer Connection Strategy

In the roadmap G(V, E), the threshold distance between road points is an important
factor affecting the efficiency of roadmap construction. The path formed by connecting road
points in the same sampling layer is not conducive to shorten the global path length. Taking
the distribution characteristics of the longitudinal sampling layer into account, we set the
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connection threshold of the longitudinal sampling spacing LTH to screen the paths that met
the threshold conditions and make the connection between road points from the full con-
nection to adjacent sampling layer connection, improving roadmap construction efficiency.
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Figure 4. Schematic diagram of two-way incremental detection strategy: (a) reasonable path and
(b) illegal path.

The sampling points generated based on the pseudo-random sampling strategy
(N = 20) were selected to obtain the roadmap constructed under the drive of two con-
nection strategies, as shown in Figure 5. Figure 5a shows the wayfinding graph generated
by the full connectivity strategy, with the red solid line representing the filtered paths.
Figure 5b indicates the wayfinding graph generated by the neighbouring layer connectivity
strategy. In terms of time consumption, the composition time using these different connec-
tion strategies was 0.906 s and 0.437 s, respectively, and the latter optimized composition
efficiency by 48.2%.
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Figure 5. Comparison of road signs: (a) full connection and (b) neighbouring layer connection.

3. Path Smoothing

In this paper, Bessel curves were chosen to smooth the paths planned by the modified
PRM algorithm.

The n order Bessel curve expressions were defined as:

B(t) =
n

∑
i=0

Pibi,n(t), (t ∈ [0, 1]) (9)

where Pi represents the n + 1 control point of the Bessel curve and bi,n(t) represents the
Bernstein basis function. The value of this function is shown in Equation (10):

bi,n(t) = Ci
nti(1− t)n−i =

n !
(n− i) !i !

ti(1− t)n−i , i = 0, 1, 2, . . . , n (10)
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In this paper, a 4th order Searle curve was chosen, and the formula is as follows:

B(t) = (1− t)4P0 + 4P1(1− t)3t + 6P2(1− t)2t2 + 4P3(1− t)t3 + P4t4, t ∈ [0, 1] (11)

The curvature of the Bessel curve at any point κ(t) is:

κ(t) =
|B′(t)× B′′ (t)|
|B′(t)|2

(12)

Assuming that the planning path path = {Pn} consists of a series of discrete points
(n ≥ 5), the discrete points are used as the control points Pi of the Bessel curve, and the
curvature of the Bessel curve κ(P) can be obtained according to Equation (12):

κ(P) =
P′xP′′y − P′yP′′x

(P′x2 + P′y2)3/2 (13)

The curvature of the Bessel curve at the starting point is κ(0):

κ(0) =
3|(P1 − P0)× (P2 − P1)|

4(P1 − P0)
3 (14)

In this specific implementation, the key waypoints of the path searched by the modified
PRM algorithm were extracted, discrete control points of the Bessel curve Pi were obtained
by discretizing the line between key waypoints, and the discrete points were interpolated
and fitted by Equation (9) to realize the smoothing of the path.

4. Simulation Test and Analysis

To verify the composition and path planning efficiency of the modified PRM algorithm,
MATLAB (MATLAB2018b, MathWorks. Inc., Natick, MA, USA) was used to build a
simulation experiment platform and a ROS (ROS1.0, Willow Garage. Inc., Menlo Park,
CA, USA) experimental platform was used to verify the correctness of the modified PRM
algorithm. Our computer configurations included: a Windows 10 operating system, 512 GB
hard disk, and 8 GB RAM.

4.1. Comparison of Algorithm Composition Efficiency

The planning space of the known map is shown in Figures 6 and 7. The two algorithms
kept the same total number N = m× n of sampling points in the sampling phase, where m
and n represent the number of horizontal and vertical sampling points of the algorithm,
respectively. We focused on the planning path length and roadmap construction time and
repeated the test several times (recorded 10 times). The results are shown in Table 1 in
mean values.
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Table 1. The results of algorithm comparison.

Algorithm Name Number of Sampling Points N Path Length/m Composition Time/s

PRM algorithm
30 582.1 0.958
60 602.6 3.269
90 615.4 10.393

Modified PRM algorithm
30 593.3 0.404
60 590.6 2.056
90 578.7 5.196

Taking sampling points N = 60 as an example, we analyzed the results of the roadmap
construction (Figures 6a and 7a). The sampling points were widely distributed in the PRM
algorithm and there were many redundant sampling points. On the other hand, for the
roadmap constructed by the modified PRM algorithm (Figure 7a), the location selection of
the sampling points had a certain orientation, mainly distributed along the main axis of
space, and there were fewer redundant sampling points.

In Figures 6 and 7 and Table 1, it is shown that when the number of sampling points
N is 30, the length of the planned path increases by 1.9% and composition time is reduced
by 57.8%. When the number of sampling points N is 60, the length of the planned path is
reduced by 1.9% and composition time is reduced by 37.1%. When the number of sampling
points increase to 90, the length of the planned path is reduced by 5.9% and composition
time is reduced 50%. It shows that the changes in path length according to different number
N are not consistent. Compared with the PRM algorithm, there is no great advantage
in path length for the modified PRM algorithm. However, the modified PRM algorithm
showed great advantages in decreasing the construction time of the roadmap; the efficiency
of constructing maps was significantly improved.

In Figure 8, keeping all other conditions equal, when the number of fold points of the
path increased, path smoothness gradually improved as the number of sampling points
increased. The overall trend of the path remains unchanged, indicating that the quality of
the path solution solved by the modified PRM algorithm is stable.

To obtain Figure 9, we used the Bessel curve to deal with Figure 8b, the solid blue line
indicating the modified PRM algorithm planning path and the black hollow circle logo
representing the key road points, used as the Bessel curve control points. The path obtained
after the smoothing process (shown by the red line) was more consistent with intelligent
vehicle driving road conditions.

4.2. Comparison of Path Planning Efficiency

To verify the path planning efficiency of the modified PRM algorithm, the basic PRM
algorithm was used as the comparison algorithm for the case test, where Case A is a square
maze and Case B is a narrow channel. The success rate was measured by a ratio of the
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number of successful path searches to total search number. The results of the case test are
shown in Figures 10 and 11 and Table 2.
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Table 2. Comparison results of algorithm efficiency.

Algorithm Case Sampling Points N
Basic PRM Algorithm Modified PRM Algorithm

Path
Length/m

Running
Time/s

Success
Rate/%

Path
Length/m

Running
Time/s

Success
Rate/%

A
30 883.14 0.23 28.57 \ \ 0
60 869.63 0.89 100 839 0.62 90.91
90 861.86 2.18 100 819.91 1.12 100

B
30 \ \ 0 \ \ 0
60 812.1 0.28 9.09 735.51 0.29 45.45
90 734.53 0.43 36.36 729.45 0.73 72.73

Referring to Figure 10, in the experiment of Case A, the number of sampling points
falling into the obstacle space was comparable in both algorithms, but the sampling points in
the self-use space were widely distributed in the PRM algorithm, which caused redundancy.
In the modified PRM algorithm, the sampling points were concentrated on both sides
of the main axis of the space, which improved the utilization of sampling points. In the
experiment of Case B, most of the sampling points in the PRM algorithm fell into the
obstacle space, and there were very few sampling points in the self-use space, which
affected the quality of the path solution. In the modified PRM algorithm, the sampling
points were distributed along the main axis of the space, and the larger number of sampling
points in the self-use space provided the possibility of seeking a better path solution.

In Table 2 and Figure 11, for Case A, the modified PRM algorithm could not success-
fully plan the path when the number of sampling points was low (N = 30). When the
number of sampling points increased to 60 (N = 60), the differences between the two algo-
rithms in path length, running time, and success rate were not obvious. When the number
of sampling points increased to 90 (N = 90), the modified PRM algorithm was better than
the basic PRM algorithm in path length and running time. For Case B, when the number of
sampling points was low (N = 30), both algorithms could not successfully plan the path,
and as the number of sampling points increased, the modified PRM algorithm had a higher
success rate in path planning and the quality of the path solution was more reliable.

4.3. ROS Simulation Test

In order to further verify the implementability of the modified PRM algorithm, simu-
lation tests were designed, based on the ROS experimental platform. The composition of
the ROS trolley is shown in Figure 12.
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We mainly addressed the path planning problem of smart vehicles in a two-dimensional
environment, using the function package provided by the ROS experimental platform to
implement the LIDAR map building function. The test site is shown in Figure 13, and the
SLAM map building effect is shown in Figure 14. Based on this environmental map, we
defined the localization result of ROS itself as the starting point and specified the target
point. The modified PRM algorithm was executed and the path planning results are shown
in Figure 15.
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Figure 15. Path planning: (a) wayfinding map and (b) planning path.

From the simulation results, a road map was established in the SLAM map by the
modified PRM algorithm. Meanwhile, the modified PRM algorithm planned a path suc-
cessfully connecting the starting and target point, verifying the feasibility of the modified
PRM algorithm.
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5. Conclusions

In order to improve the overall quality of the PRM algorithm in path planning, a
pseudo-random sampling method based on uniform sampling was designed to optimize
the quality of sampling point generation. Random increments were introduced to adjust
the fluctuation range of sampling points to effectively avoid the obstacle space. Due to
the disadvantage of a low rate of roadmap construction, a two-way incremental collision
detection strategy was used to set the connection threshold between road points to reduce
the number of collision detection calls. Finally, the correctness of the modified PRM
algorithm was verified and analyzed using MATLAB and ROS test platforms. The test
results showed that the modified PRM algorithm has obvious advantages in enhancing the
stability of the roadmap, shortening the length of the planned path, and improving the
search rate of the algorithm. However, the majority of current algorithms, including the
modified PRM algorithm, are model-driven, and face many limitations. These algorithms
need to be further researched. Data-driven and cloud-network fusion technologies could
be added to these algorithms to achieve better path planning and obstacle avoidance in
smart vehicles.
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