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Abstract: This paper proposes two deep-learning (DL)-based approaches to a physical tamper attack
detection problem in orthogonal frequency division multiplexing (OFDM) systems with multiple
receiver antennas based on channel state information (CSI) estimates. The physical tamper attack is
considered as the unwanted change of antenna orientation at the transmitter or receiver. Approaching
the tamper attack scenario as a semi-supervised anomaly detection problem, the algorithms are
trained solely based on tamper-attack-free measurements, while operating in general scenarios that
may include physical tamper attacks. Two major challenges in the algorithm design are environmental
changes, e.g., moving persons, that are not due to an attack and evaluating the trade-off between
detection performance and complexity. Our experimental results from two different environments,
comprising an office and a hall, show the proper detection performances of the proposed methods
with different complexity levels. The optimal proposed method achieves a 93.32% true positive rate
and a 10% false positive rate with a suitable level of complexity.

Keywords: physical tamper attack; OFDM; CSI; deep learning; anomaly detection

1. Introduction

Wireless networks in critical infrastructures require a high level of security. Therefore,
different network security threats need to be considered in such applications. Among
them, physical tampering with a device is one that is missing in many applications. As
discussed by [1], a possible physical tamper attack is the altering of the orientation of
surveillance cameras that monitor a critical infrastructure. Radio-frequency (RF) fingerprint-
based localization systems using physical (PHY) layer measurements (e.g., received signal
strength indication (RSSI) [2], channel impulse response (CIR) [3], channel state information
(CSI) [4], etc.) comprise another example in which physical tampering can significantly
distort the system function (e.g., by changing antenna characteristics). According to the
European Union Agency for Cybersecurity (ENISA) [5], physical tamper attacks within
IoT applications are one of the main threats faced by healthcare organizations as well. An
assumption in all these cases is that the transceivers must not be tampered for the system to
work correctly. Thus, the functionality of the systems is destroyed with high probability, if
the transceivers are tampered. In order to recognize such attacks, a physical tamper attack
detection mechanism is required.

To address this issue, radio channel characteristics, which are observed by measure-
ments [1,3,6,7], can help us to detect the tamper attack. Such measurements are the CIR [3],
CSI [1,6,7], and received packet features [8,9]. However, the characteristics are not solely
influenced by the tamper attack, but also by regular environmental changes. As one of
the first works, the proposed CIR method in [3] was only tested in environments with
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few dynamic elements and, thus, experienced high misdetection rates in dynamic environ-
ments. Reference [7] also investigated the feasibility of using a commercial off-the-shelf
(COTS) Wi-Fi device as the physical tamper detector based on CSI collection in an almost
static environment. To achieve resilience to regular environmental changes, Reference [1]
proposed to increase space diversity by using multiple antennas at the receiver. How-
ever, others proposed to make use of machine learning (ML) approaches to tackle this
issue. Reference [6] showed that a semi-supervised deep learning (DL) algorithm with a
postprocessing unit can extract the characteristics of environments and outperforms the
approach by [1]. References [8,9] also showed that their ML approaches for the detection
of removal/addition of sensors within IoT applications perform with high accuracy in a
dynamic environment. The summary of the aforementioned works can be seen in Table 1.

Table 1. A comparison of the relevant literature.

Reference-Year System Data Environment Remark

[3]-2007 DSSS CIR few dynamic elements high misdetection rate in dynamic environments

[1]-2015 802.11n Wi-Fi CSI dynamic using multiple receivers

[8]-2018 IoT sensor data dynamic supervised ML algorithm

[6]-2021 OFDM-based CSI dynamic semi-supervised DL algorithm

[7]-2021 COTS Wi-Fi CSI static using a COTS Wi-Fi device as a detector

[9]-2021 IoT packet length dynamic unsupervised ML algorithm

DSSS: direct sequence spread spectrum; in this table, the term “IoT” is used to indicate that the corresponding
works utilized data from different networks such as WiFi, Zigbee, and Bluetooth.

To perform physical tamper attack detection, three main strategies have been applied
in the literature. These are: (i) distance computation between previous measurements
and new measurements either with hypothesis testing for CIR values in [3] or with direct
threshold detection for the CSI in [1]; (ii) distance computation to a lower-dimensional
signal representation obtained in a DL framework in [6]; and (iii) a direct detection using
the ML algorithms in [7–9].

The most recent methods, namely (ii) and (iii), outperform previous methods in terms
of the attack detection accuracy. However, it is a cumbersome task to directly compare the
aforementioned methods due to their different communication systems. Therefore, since
currently, orthogonal frequency division multiplexing (OFDM) is one of the most common
transmission technologies [10], we followed [1,6,7] and based our proposed physical tamper
attack detection methods on the estimated CSI in an OFDM-based wireless system.

To detect physical tamper attacks in an OFDM-based system, Reference [1] proposed
to use multiple antennas at the receiver and calculate the distances between tamper-free
CSI in the offline and online phases. This approach was based on the assumption that
environmental variations will not affect all CSI received from different antennas at the
receiver. In [6], a mixed DL approach, including a deep convolutional autoencoder (DCAE)
and a postprocessing, was applied. The DCAE tried to reconstruct the measured CSI with
lower-dimensional features. The reconstructed version was then compared to the measure-
ment and used (after robust postprocessing) for attack detection. The disadvantages of [6]
were the time delay introduced by the necessary postprocessing unit, no possibility for
using multiple CSI estimates at the receiver(s), and the high number of parameters that
have to be adjusted manually. In [7], a fully DL approach (cf. [6]) was applied, where a
deep neural network with two hidden layers was used. The network used the CSI as the
input and output the probability of a tamper attack at predetermined reference positions.
While the computational complexity of the method was low, it aimed to identify 1 of N
authorized positions, which is a different problem compared to the problem described
in [1,6]. Therefore, the method in [7] could not be applied to the problem and was not
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compared with the proposed methods. (In this work, the performance comparison was
made with [1,6] in the Experimental Section.)

As almost all modern wireless communication systems support multiple-input multiple-
output (MIMO), we were motivated to extend the proposed methods in [6] for the case
that multiple CSI estimates at the receiver(s) are available (multi-CSI estimates can be
available from either a single receiver with multiple antennas or multiple receivers, each
with a single antenna). In this work, we thus expanded the framework of [6] to multi-CSI
estimates at the receiver(s). Moreover, the drawback of [6] motivated us to propose using a
fully DL approach to detect the physical tamper attack. As shown in [6], a DL approach for
dimensionality reduction followed by a postprocessing unit detects the physical tamper
attack with a high time delay due to using the postprocessing unit. To solve that, we
proposed to use a fully DL approach to simultaneously reduce the dimensionality of the
input data along with the anomaly detection task. As stated in [11], support vector data
description (SVDD) [12] is one of the popular approaches for anomaly detection. We
show that a well-tuned version of the proposed method in [13], namely the Deep SVDD,
can be used for physical tamper attack detection. In order to fairly evaluate the physical
tamper attack detection methods, both the detection performance and the efficiency (e.g.,
the time delay due to computational complexity in [6]) were taken into account, which
was neglected in previous works. The proposed methods offer different characteristics in
detection performance, time complexity, and database space budget.

In summary, this paper extends the aforementioned works in two ways: (i) simultane-
ous with the detection performance analysis, we evaluate efficiency by means of time delay
and database space budget; (ii) centralized or decentralized detectors are considered in the
design of the proposed methods. In detail, the contributions of the paper are as follows:

• Extending the framework for physical tamper attack detection presented in [6] for
the case that multiple CSI estimates at the receiver (s) are available: We suggest two
distinct approaches, i.e., centralized and decentralized processing. We show that
centralized processing has better detection performance and requires lower database
space, while having higher time complexity.

• Proposing the Deep SVDD framework to overcome complexity and latency limitations:
We apply Deep SVDD to the physical tamper attack detection problem and show that
it has significantly lower complexity compared to the DCAE approach, while having
only slightly decreased detection performance.

• Complexity analysis: We characterize the algorithmic complexity by the number of
mathematical operations and required database space to compare all investigated
methods. We show that there is a trade-off between detection performance and
complexity in the proposed methods.

• We evaluate all methods on experimental data from a measurement campaign in a
university building.

The rest of this paper is organized as follows: Section 2 introduces the tamper attack
detection framework. The tamper attack detection methods will be presented in Section 3.
The experimental results are discussed in Section 4. Finally, Section 5 concludes the paper.

2. Tamper Attack Detection Framework
2.1. Problem Statement

As illustrated in Figure 1, considering an OFDM system with one transmitter and R
antennas in the receiver(s), the transmitter sends regular messages containing pre-defined
preambles. Based on the preamble of the ith packet, the CSI estimate from the rth antenna
Ĥi

r ∈ C1×S with S being the number of subcarriers is obtained. Meanwhile, an attacker
intends to physically manipulate the transmitter by relocating and/or reorienting the
transmitter. This physical tamper attack has to be detected using the magnitude of CSI
values ∣Ĥi

r ∣, r = 1,. . . , R. (According to [14], we took only the magnitude values as the input
to our algorithm and neglected the phase.) Undoubtedly, several challenges have to be
addressed to solve this problem.
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RXR
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Figure 1. Problem statement.

The transmitted signal is altered by the mobile radio channel. The propagation of the
electromagnetic waves from transmitter to receiver(s), as determined by the surrounding
environment, determines the mobile radio channel. Any change in the environment also
changes the mobile radio channel. As a consequence, the main challenge in detecting a
physical tamper attack based on the CSI is to distinguish between changes induced by the
physical tamper attack and changes caused by modifications in the surrounding such as
people passing by.

Other challenges are time and space constraints during the test phase in applications
in which fast system reaction within a restricted database space budget is required. There-
fore, time and space complexities have to be taken into account in the evaluation of the
proposed methods.

2.2. Detection Framework

We formulated the problem of detecting the physical tamper attack as a data-driven
semi-supervised anomaly detection problem. Semi-supervised anomaly detection, accord-
ing to [15], refers to the problem of finding patterns in data that do not correspond to the
expected behavior, i.e., finding if the latest measured ∣Ĥi

r ∣ relates to the attack-free training
or not.

The proposed algorithms consist of two phases, i.e., training (offline) and testing
(online). According to the structure of the receiver(s), the algorithms are applied on either
a centralized or decentralized unit. Collections of tamper-free CSI estimates based on
different time and environmental conditions are used for training during the offline phase.

Data are collected in the offline phase for N☆
Off packets, HOff,r, and in the online phase

for NOn packets, HOn,r as below:

∀r ∈ {1, . . . , R} ∶

HOff,r ≜ [∣Ĥ1
Off,r∣, ∣Ĥ

2
Off,r∣, . . . , ∣ĤN☆Off

Off,r∣]
T ∈ RN☆Off×S

HOn,r ≜ [∣Ĥ1
On,r∣, ∣Ĥ

2
On,r∣, . . . , ∣ĤNOn

On,r∣]
T ∈ RNOn×S .

(1)

For training, the total number of training samples is split into batches with batch size
NOff, such that N☆

Off is an integer multiple of NOff.
The proposed detection framework is illustrated in Figure 2 in which the CSI is

estimated from multiple antennas. Based on the structure of the systems, multiple receivers,
each with one antenna or a receiver with multiple antennas, we propose the following
detection methods: (i) decentralized processing and the combination of anomaly scores;
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(ii) centralized processing with multi-channel extension of the detection algorithms. The
blocks in Figure 2 termed “deep” represent either mixed or fully deep approaches.

CentralizedDecentralized

deep
1

deep
2

deep
R

Combine

H2H1 HR

η1 η2 ηR

η

deep
∗

Combine

H2H1 HR

η

Detection Framework

Figure 2. Proposed detection framework.

3. Tamper Attack Detection Methods

In this section, we start with the reformulation of the relevant work [1] in Section 3.1 for
the sake of clarity. Afterwards, an extended framework of [6] for multiple antennas at the
receiver(s) is proposed in Section 3.2. Finally, a fully DL approach is proposed in Section 3.3
to detect the tamper attack. The proposed methods are compared with respect to detection
performance, time complexity, and required database space in the subsequent sections.

3.1. Conventional Threshold Detection

The algorithm presented in [1] is a simple and straightforward approach to detect
tamper attacks. Distance values Di,j,r between NOn successive CSI estimates in the online
phase and N☆

Off recorded values from the offline phase for all R receivers are computed as

Di,j,r ≜ Distance(∣Ĥi
Off,r∣, ∣Ĥ

j
On,r∣) (2)

where i = 1, . . . , N☆
Off, j = 1, . . . , NOn, r = 1, . . . , R and then compared to a threshold (Different

threshold selection methods are available in the literature. However, threshold selection
methods are out of the scope of this work.) value according to

1
N☆

Off NOn R

N☆Off

∑
i=1

NOn

∑
j=1

R
∑
r=1

Di,j,r

Tamper Free
≶

Tampering
Threshold . (3)

As in [1], Distance in (2) refers to a distance metric (e.g., normalized Euclidean distance).
The distance metric quantifies the distance between two CSI vectors. Afterwards, in (3), the
mean value of the distance over all data is considered to make the decision. This makes the
method quite complex since (2) has to be computed for the entire training data set. In this
work, Threshold was set based on a given performance detection (i.e., false positive rate
(FPR)). In Section 4.6.1, we compare the proposed method at FPR = 10%).

To distinguish between conventional environmental changes and a tamper attack,
Reference [1] relies on diversity introduced by multiple receiver antennas. This follows the
assumption that, e.g., a moving person will impact the CSI only on a subset of the receivers,
while the tamper attack impacts the CSI at all receivers. Consequently, the attack detection
performance is poor for a single-receiver system. In this work, this approach is referred to
as Threshold Detection.
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3.2. Mixed Deep Approaches: DCAE with PDF Estimator

As an extension of the work in [6], during the offline phase, DCAEr (see Figure 3)
learns a low-dimensional representation of the tamper-free CSI, ∣Hi

Off,r∣, for i = 1, . . . , N☆
Off

and r = 1, . . . , R. From this representation, the CSI is reconstructed (referred to as ∣Ĥi
r∣rec)

and the reconstruction error ei
r is computed. After training the network, the Euclidean

norm of the reconstruction error is used as the anomaly score ar as:

ar = [∥ e1
r ∥2,∥ e2

r ∥2, . . . ,∥ e
N☆Off
r ∥2]TεRN☆Off . (4)

The overall scheme for the r-th receiver is depicted in Figures 3 and 4, for the offline
and online phases, respectively. For training, the offline CSI estimates in the r-th receiver
(denoted by HOff,r in Figure 3) are tamper-free under different environmental conditions
including the movement of people and static environments at different times. Then, the
trained DCAEr (denoted as DCAE*

r (the asterisk superscripts indicate the trained versions
of DCAE)) is used for calculating the anomaly score ar of the r-th receiver.

+

−

ei
r

Σ

Trained
DCAEr
weights

Database

Hi
Off,r

∣Ĥi
r∣rec

MSE

Norm
ar

DCAEr

Training
data

Training

After training

pdf est.
(N)

f̂Yr,Off
[a]

Figure 3. Schematic view of the offline phase of decentralized processing: In the offline phase of the
r-th receiver, DCAEr is trained. Then, the pdf approximation of the anomaly score ( f̂Yr,Off

[a]) and the
weights of the trained network (DCAE*

r) are stored in the database.

f̂Yr,On [a]

New
Measurement

+

−

er

Σ

Database

pdf est.
(N)

Similarity
evaluation

Tamper
Detector

HOn,r

∣Ĥr∣rec

Norm

ar

DCAE*
r

Robust Anomaly
Measurement

ηr

f̂Yr,Off
[a]

Figure 4. Schematic view of the online phase of decentralized processing: In the online phase of the
r-th receiver, DCAE*

r is used to calculate the anomaly score and the pdf approximation of the anomaly
score ( f̂Yr,On[a]).
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To increase the robustness of physical tamper attack detection, a pdf estimation is
applied to the reconstruction error to capture the statistics of the variation in the tamper-free
scenario. A straightforward pdf estimation approach is non-parametric kernel density

estimation [16]. Let ar
∆= (a(1)

r , a(2)
r , . . . , a(N)

r ) be independent and identically distributed
samples drawn from some univariate distribution with an unknown density f [a] at any
given point a. Thus, the kernel density estimator is:

f̂ [a] = 1
Nh

N
∑
i=1

K
⎡⎢⎢⎢⎢⎣

a − a(i)
r

h

⎤⎥⎥⎥⎥⎦
, (5)

where h is a smoothing parameter referred to as the bandwidth and K[.] is the kernel
function. In this work, h is calculated using Silverman's rule of thumb [17] as:

h = 0.9 min(σ̂,
IQR
1.34

)N− 1
5 , (6)

where σ̂ is the standard deviation of the samples, IQR is the interquartile range, and N is
the sample size. Herein, we make use of the Gaussian kernel function to estimate the pdfs.

To evaluate the anomaly score for R receiver antennas, a decentralized and a central-
ized approach are considered. Obviously, data processing at each receiver is preferred in
cases in which multi-CSI estimates are available from multiple receivers, whereas central-
ized data processing is preferred in cases in which multi-CSI estimates are available from a
single receiver with multiple antennas.

3.2.1. Decentralized Processing with Multiple DCAEs

If decentralized processing is chosen, a single DCAE is applied at each receiver. As
shown in the subsequent sections, the size of the input data for this approach is [NOff, 1, S].
The weights of DCAE*

r and its pdf estimation f̂Yr,Off
[a] are stored in the database for further

actions in the online phase.
For each receiver, we used the overlapping index approach [18] to measure the distance

of the online-phase pdf f̂Yr,On[a] to the offline-phase pdf (see Figure 4). The overlapping
index distance measure for the r-th receiver, ηr ∶ Rn × Rn → [0, 1], is defined as:

∀r ∈ {1, . . . , R} ∶

ηr( f̂Yr,Off
[a], f̂Yr,On[a]) =

n
∑
i=1

min{ f̂Yr,Off
[ai], f̂Yr,On[ai]}

(7)

where f̂Yr,Off
[a] and f̂Yr,On[a] are the pdf approximations of the anomaly score in the offline

and online phase of the r-th receiver, respectively. The anomaly score is averaged across
the R receivers and compared to a threshold to decide about an attack, i.e.,

1
R

R
∑
r=1

ηr
Tamper Free

≶
Tampering

Threshold . (8)

In this work, two different approaches were considered: (i) Using DCAE without pdf
estimator unit: The approach is the same as in Figures 3 and 4, but the pdf estimator unit
is exchanged with a unit that calculates the mean value of its inputs. This approach is
referred to as DCAE-D (D for decentralized). (ii) Using DCAE with the pdf estimator unit:
The approach is depicted in Figures 3 and 4, which is referred to as DCAE-DP (DP for
decentralized and postprocessing).

3.2.2. Centralized Processing with a Single Multi-Channel DCAE

Here, we propose to use a single DCAE, which is capable of learning the combination
of input data from all R receiver antennas. As shown in the subsequent sections, the size
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of the input for this structure is [NOff, R, S]. This approach is also enhanced in terms of
detection performance by utilizing a pdf estimator. In the offline phase (see Figure 5), the
weights of DCAE* and its pdf estimation of the anomaly scores are stored in the database.

−

ei
r

Σ

Trained
DCAE

weights

Database

Hi
Off,R

MSE

Norm
a

DCAE

Training
data

Training

After training

pdf est.
(N)

f̂YOff
[a]

Hi
Off,1

⋮

∣Ĥi
R∣rec

∣Ĥi
1∣rec

⋮

+

+

Figure 5. Schematic view of the offline phase of centralized processing: In the offline phase, DCAE is
trained. Then, the pdf approximation of the anomaly score ( f̂YOff

[a]) and the weights of the trained
network (DCAE*) are stored in the database.

In the online phase, DCAE* is used to calculate the anomaly score of newly received
CSI estimates. Afterward, its pdf approximation is compared with the pdf stored in
the database (see Figure 6). The overlapping index distance measure for this approach,
η ∶ Rn × Rn → [0, 1], is defined as:

η( f̂YOff
[a], f̂YOn[a]) =

n
∑
i=1

min{ f̂YOff
[ai], f̂YOn[ai]} (9)

where f̂YOff
[a] and f̂YOn[a] are the pdf approximations of the anomaly score in the offline

and online phase, respectively. The anomaly score is compared to a threshold to decide
about an attack, i.e.,

η
Tamper Free

≶
Tampering

Threshold . (10)

As will be shown in Section 4.6.2, by utilizing one DCAE instead of multiple DCAEs, the
computational complexity is significantly reduced.

In this work, the approach that utilizes the multi-channel DCAE without a pdf esti-
mator is considered as DCAE-C (C for centralized) and the one with a pdf estimator is
regarded as DCAE-CP (CP for centralized and postprocessing).

3.3. A Fully Deep Approach: Deep SVDD

In this subsection, we exploit Deep SVDD, a novel method proposed by [13], for
solving the physical tamper attack detection problem. Deep SVDD is a method that is
usually utilized for one-class classification problems in image processing applications.
It is a fully deep approach for anomaly detection, which maps the input space into an
output space (i.e., a hypersphere of minimum volume) with a neural network (see Figure 7).
Feature representations of the data, as well as the one-class classification objective are
learned by the neural network. Similar to the previous methods, two different approaches
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were considered for multi-receiver operation: either using a neural network for each
receiver or using a neural network that accepts multiple inputs. We first reformulated
the notation of the method of Deep SVDD [13] to be suitable for the problem at hand.
Afterwards, we discuss the details of each approach.

f̂YOn [a]

New
Measurement

e

Σ

Database

pdf est.
(N)

Similarity
evaluation

Tamper
Detector

Norm

a

DCAE*

Robust Anomaly
Measurement

η

−

HOn,R

HOn,1

⋮

⋮

+

+

∣Ĥ1∣rec

∣ĤR∣rec

Figure 6. Schematic view of the online phase of centralized processing: In the online phase, DCAE* is
used to calculate its anomaly score and the pdf approximation of the anomaly score ( f̂YOn[a]).

Let φ(.;W) ∶ χ → F be a neural network with L ∈ N hidden layers and a set of weights
W = {W1, . . . ,WL}, whereW l are the weights of layer l ∈ {1, . . . , L} for some input space
χ ⊆ RS and output space F ⊆ RP. The feature representation of ∣Ĥ∣ ∈ χ is φ(∣Ĥ∣;W), i.e.,
the network φ with the weightsW . Then, the objective is to learn the network weightsW
while minimizing the volume of a data-enclosing hypersphere in output space F , which is
defined by radius R and center c. Given the training data DN☆Off

= {∣Ĥ∣1, . . . , ∣Ĥ∣N☆Off
} on χ,

the objective function is defined as:

min
W

1
N☆

Off

N☆Off

∑
i=1
∥ φ(∣Ĥ∣i;W)− c ∥2 +λ

2

L
∑
l=1
∥W l ∥2

F . (11)

The first term in (11) considers the distance of each network representation φ(∣Ĥ∣i;W) to
c ∈ F . The second term is a network weight decay regularizer with hyperparameter λ to
reduce overfitting of the DL model, where ∥ . ∥F refers to the Frobenius norm. According
to [13], c ∈ F is any fixed hypersphere center.

In the offline phase, the Deep SVDD network is trained using tamper-free CSI esti-
mates (i.e., training data DN☆Off

) from different environmental conditions, such as static
environments and the movement of people at different times with a batch size of NOff.
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After training the Deep SVDD network, the weights of the trained networkW∗ and the
hypersphere in output space F , which is defined by radius R∗ and center c∗, are stored in
the database for the following use in the online phase.

φ(.;W)

χ

F

c
R

Figure 7. Deep SVDD maps most of the input data into a hypersphere specified by center c and
radius R of a minimum volume using a neural network φ(.;W) with weightsW .

In the online phase, the anomaly score of each new estimate, ∣ĤOn∣ ∈ χ, is calculated
by the distance of ∣ĤOn∣ to the center of the hypersphere, i.e.,

s(∣ĤOn∣) =∥ φ(∣ĤOn∣;W∗)− c∗ ∥2 . (12)

As stated, two different approaches are considered for multi-receiver operation. There-
fore, the decision is made based on the following approaches in the online phase.

3.3.1. Multiple Neural Networks in Decentralized Mode

For using R SVDD-based detectors in decentralized mode, each is trained according
to the objective function:

min
Wr

1
N☆

Off

N☆Off

∑
i=1
∥ φr(∣Ĥr∣i;Wr)− cr ∥2 +λ

2

L
∑
l=1
∥Wr

l ∥2
F , (13)
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for r = 1, . . . , R. In the online phase, the attack detection follows the threshold detection:

1
R

R
∑
r=1
∥ φr(∣Ĥr∣;W∗

r )− c∗r ∥2
Tamper Free

≶
Tampering

R∗ , (14)

i.e., the average of the distance between the mapped inputs and the stored hypersphere
centers c∗r is compared with the stored radius R∗. (In this work, R∗ was set based on a
given performance detection (i.e., FPR)).

3.3.2. Multi-Channel Single Neural Network

In this approach, a single neural network is utilized, which is capable of learning all
data from R receivers simultaneously. Therefore, its objective function is:

min
W

1
N☆

Off R

R
∑
r=1

N☆Off

∑
i=1
∥ φ(∣Ĥ∣i,r;W)− c ∥2 +λ

2

L
∑
l=1
∥W l ∥2

F . (15)

The decision is made based on the following equation:

∥ φ(∣Ĥ∣;W∗)− c∗ ∥2
Tamper Free

≶
Tampering

R∗ . (16)

It is worth noting that the network weightsW∗
r , R∗ and c∗r , for r = 1, . . . , R, in the decen-

tralized approach (see (14)), and the network weightsW∗, R∗, and c∗ in the centralized
approach (see (16)) are sufficient to characterize the multiple Deep SVDD models and the
multi-channel Deep SVDD model, respectively. No further data need to be stored in the
database for physical tamper attack detection. In contrast, for the DCAE-based approaches,
not only the weights of the trained network(s), but also a representation of the offline
anomaly scores (i.e., the trained pdf) and the threshold have to be stored. As a result,
it is expected that Deep SVDD has a lower database space requirement, which leads to
faster testing and lower time delay in the online phase. Moreover, the pdf estimator in
the DCAE-based methods relies on NOn successive CSI estimates in the online phase (i.e.,
referred to as the online batch). In contrast to the DCAE-based methods, the value of NOn
in the tamper attack decision for Deep-SVDD-based methods does not significantly affect
the detection performance (shown in Section 4.5.3).

In this work, the decentralized and centralized Deep SVDD approaches are referred to
as SVDD-D (D for decentralized) and SVDD-C (C for centralized), respectively.

4. Experimental Results

The presented methods were evaluated and compared in a setup in which two re-
ceivers, each equipped with a single antenna, should detect a tamper attack performed at
the transmitter, also equipped with a single antenna. As the tamper attack, we considered a
rotation of the transmitter compared to its default orientation. The tamper attack detection
is based on CSI estimates acquired with a software-defined radio and the Gnuradio OFDM
project [19]. The parameters were selected as described in the following. (Note that the
underlying OFDM estimates are identical to those in our previous work in [6]).

4.1. OFDM System

The transmitter and receiver nodes were composed of a host computer connected to a
USRP X310 equipped with a directional antenna [20]. In the system, data were exchanged
among nodes with a frame structure. Each frame consisted of nine data OFDM symbols
and three preamble symbols. In the frequency domain, each symbol contained 200 data
subcarriers, 48 null subcarriers, and 8 pilot subcarriers for a channel bandwidth of 25 MHz.
Each OFDM symbol duration consisted of a 10.24 µs IFFT period followed by a 1.25 µs
guard interval. The carrier frequency was set to 2.55 GHz. The channel was estimated
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based on one preamble symbol with a least-squares approach. The channel estimation (i.e.,
denoted by Ĥ) was used in the aforementioned physical tamper attack detection methods.

4.2. Environment

As seen in Figure 8, we evaluated the tamper attack detection methods in two distinct
environments: an office and a hall. The transmitter (indicated by TX) and two receivers
(indicated by RX1 and RX2) were placed on the top of shelves with a 230 cm elevation in the
office and desks with a 140 cm elevation in the hall environment. To have physical tamper
attacks and tamper-free scenarios in the estimates, we took into account eight different
antenna orientations, including the tamper-free default orientation and rotations r1, r2,. . .
r7 (cf. Figure 8).

Since discriminating between environmental changes and physical tamper attacks is
the key challenge in this attack detection problem, we considered eight scenarios for the
tamper-free default orientation (see Table 2). In these eight scenarios, typical situations in
an office and a hall were considered in which small-scale (scenarios A and B) and large-scale
(scenarios C to H) movements of persons appear, which introduce variations in the CSI.
These CSI variations due to the movement of people (i.e., environmental changes) need to
be learned for our proposed methods to be able to distinguish them from the CSI changes
due to physical tamper attacks.

Window

r7 r6 r5
Default
r4
r3

r2r1

TX

Desk
Chair

RX1

RX2

Elevator

Perspective
of View

Perspective
of View RX1RX2

Desk

Chair

r1
r2r3r4

r5
Default

r6
r7

TX Shelves

4 m

6 m

12 m

7 m

Figure 8. Measurement environments: (top) office (4 m × 6 m) and (bottom) hall (7 m × 12 m), depicted
with photos and the layout. The transmitter (indicated by TX) and two receivers (indicated by RX1
and RX2) are denoted. Orientations r1, r2, . . . , r7 are considered as physical tamper attacks.

4.3. Parameters of the DL-Based Methods

For all neural networks in this work, we used LeNet-type convolutional neural net-
works (CNNs). In the following, two structures are described in Figures 9 and 10, which
were used for the aforementioned methods.
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Table 2. Measurement scenarios for the tamper-free default orientation.

Scenario Description

A a person sits in chair 1

B same as A one hour later

C a person walks in the area randomly

D same as C one hour later

E two persons walk in the area randomly

F same as E one hour later

G three persons walk in the area randomly

H same as G one hour later

4.3.1. DCAE

The DCAE-based methods require parameter selection for the DCAE core block (re-
sponsible for representation learning) and the postprocessing unit (responsible for anomaly
detection). For the latter, the free parameter is the online batch size NOn. For the DCAE,
each convolutional module is composed of a one-dimensional convolutional layer fol-
lowed by ELU activation functions (as depicted in Figure 9 with Conv1D), BatchNorm1D,
and 2 × 1 Max-Pooling layers. The transposed convolutional modules are composed of
a one-dimensional transposed convolutional layer followed by ELU activation functions
(as depicted in Figure 9 with ConvT1D), BatchNorm1D, and 2× 1 Interpolate layers. As
depicted in Figure 9, the encoder is composed of three convolutional modules with differ-
ent numbers of filters (eight, four, and one) and a final fully dense layer of 26 units. The
mirrored structured is used for the decoder. The colors in Figure 9 show the operations
that were applied. Dark red, light red, dark blue, and light blue color tensors illustrate
that a convolutional module, BatchNorm1D followed by 2× 1 Max-Pooling, BatchNorm1D
followed by 2× 1 Interpolate layers, and a transposed convolutional module were applied
on the previous corresponding tensor, respectively. The black color tensor indicates the
compressed representation of the input. The data flow starts from the top left-hand side
and ends at the bottom left-hand side.

4.3.2. Deep SVDD

As stated in Section 3.3, representation learning and anomaly detection are simulta-
neously performed in Deep SVDD. Therefore, the structure of the encoder of DCAE is
adopted for the structure of Deep SVDD (cf. Figures 9 and 10). By this approach, the time
complexity along with the space complexity of the Deep-SVDD-based methods compared
to the DCAE-based methods are reduced. (Note that time and space complexities in the ML
context are equivalent to computational time and memory requirements in communications
engineering.)

4.4. How to Train the Networks

As Table 3 shows, for the training, validation, and testing data, different CSI estimate
datasets from the office and the hall environment were collected. To observe the genuine
performance results of the neural networks, they were trained in the default antenna
orientation in scenarios A, C, E, and G. Other scenarios and other antenna orientation were
utilized for evaluating and testing.
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Input=[200,1,208]

Conv1D(8, 25)

[200,8,208] [200,8,104] [200,4,104] [200,4,52] [200,1,52] [200,1,26]

BatchNorm1D

Max-pooling(2)
Conv1D(4, 25) BatchNorm1D

Max-pooling(2)
Conv1D(1, 25) BatchNorm1D

Max-pooling(2)

BatchNorm1D

Linear
[200,1,26]

ConvT1D(1,25)

Output=[200,1,208]

ConvT1D(8, 25)

[200,8,208] [200,8,104] [200,4,104] [200,4,52] [200,1,52] [200,1,26]
BatchNorm1D

Interpolate(2)
ConvT1D(4, 25) BatchNorm1D

Interpolate(2)
ConvT1D(1, 25)BatchNorm1D

Interpolate(2)

Encoder

Decoder

Figure 9. Structure of DCAE. The size of each tensor is depicted in the figure. This structure is used
for the proposed decentralized approaches. In the case of centralized approaches, only the size of the
input is changed (in the second dimension, 1 is replaced by R).

Input=[200,1,208]

Conv1D(8, 25)

[200,8,208] [200,8,104] [200,4,104] [200,4,52] [200,1,52] [200,1,26]

BatchNorm1D

Max-pooling(2)
Conv1D(4, 25) BatchNorm1D

Max-pooling(2)
Conv1D(1, 25)BatchNorm1D

Max-pooling(2)

BatchNorm1D

Linear

Output=[200,1,26]

Figure 10. Structure of Deep SVDD. The size of each tensor is depicted in the figure. This structure is
used for the proposed decentralized approaches. In the case of centralized approaches, only the size
of the input is changed (in the second dimension, 1 is replaced by R).

Table 3. Size of the CSI estimate datasets from the office and the hall environment.

Data Set Office Hall

Training 96,000 101,800

Validation 23,600 24,800

Testing 214,400 263,800

A variant of stochastic gradient descent (i.e., Adam [21]) was utilized to optimize the
weights for each method using backpropagation. We made use of the Keras library [22]
and implemented Deep SVDD in Pytorch [23].

With an initial learning rate of 10−5 and then 10−6, we used a two-phase learning
rate schedule (searching and fine-tuning). We trained 20 epochs with the learning rate for
searching and 5 epochs with the learning rate for fine-tuning. This was repeated 300 times
to obtain precise results. The networks were implemented on TensorFlow with Linux
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(ubuntu 18.04) running on an 8-core ARM v8.2 64-bit CPU and a 512-core NVIDIA Volta
GPU. Table 4 summarizes the parameters used to train the neural networks.

Table 4. Neuralnetwork parameters.

Description Value

Optimizer Adam

NOff 200

Weight Decay 10−1

Number of Epochs 20 + 5

Activation Function ELU

Learning Rate 10−5 → 10−6

The learning curves of the two neural networks are shown in Figure 11. We defined a
training batch size of 200. It is worth noting that DCAE-DP and DCAE-CP use the same
neural networks as DCAE-D and DCAE-C, respectively. Hence, their learning curves are
the same as the learning curves of DCAE-D and DCAE-C, respectively, and they are not
plotted in Figure 11. Moreover, in DCAE-D and SVDD-D, there are R (i.e., two in this
work) neural networks. Therefore, there are two learning curves for these methods in
Figure 11.

Figure 11 shows that the neural networks were appropriately trained. For an easier
interpretation, the quadratic loss functions for Deep SVDD and the other DL methods
are not normalized in the figure. Therefore, a shift between the learning curves of the
Deep-SVDD-based methods and the DCAE-based methods is observed in Figure 11.

0 5 10 15 20 25

10−6

10−4

10−2

100

102

104

106

Number of Epochs

Lo
ss

DCAE-D, Train-R1 DCAE-D, Train-R2
DCAE-D, Val.-R1 DCAE-D, Val.-R2
DCAE-C, Train DCAE-C, Val.
SVDD-D, Train-R1 SVDD-D, Train-R2
SVDD-D, Val.-R1 SVDD-D, Val.-R2
SVDD-C, Train SVDD-C, Val.

Figure 11. Learning curves of the DCAE used in DCAE-D, DCAE-DP, DCAE-C, and DCAE-CP and
the Deep SVDD used in SVDD-D and SVDD-C. The learning curves for the training dataset (denoted
as Train), the validation dataset (denoted as Val.), and two receivers, in the case of decentralized
approaches (denoted as R1 and R2), are depicted.



Sensors 2022, 22, 6547 16 of 21

4.5. Evaluation Criteria
4.5.1. AUC-ROC

The receiver operating characteristic (ROC) is a graphical representation of classifier
performance. At various threshold settings, the ROC curve plots the true positive rate
(TPR) versus the FPR. The most important evaluation metric for the performance of any
classification model is the area under the curve (AUC) of the ROC. We measured the
AUC-ROC of the different methods where an excellent one has an AUC close to one, which
means it has an almost perfect capability of separation.

4.5.2. Complexity

The complexity of an algorithm indicates the number of features or terms included in
the algorithm to execute its task. Time and space are two main complexity measures of the
efficiency of an algorithm.

Time complexity is the number of operations in an algorithm required to complete its
task with respect to the input size. It can be experimentally evaluated by measuring the
time the algorithm requires to accomplish the task. Space complexity denotes the amount of
space used by the algorithm for its task, for various input sizes. In this work, we considered
the database space the algorithm requires to accomplish its task as the space complexity. We
evaluated the time complexity experimentally by runtime measurements of the algorithms
and theoretically by the number of basic operations (multiplications and additions) for
the forward path. We evaluated the space complexity of an algorithm by the number of
floating point elements that are required. Note that time and space complexity depends
on other factors as well, including hardware, operating system, processors, other running
programs, etc. Since we established the same conditions for the aforementioned algorithms
while analyzing them, we did not consider any of these factors in their evaluation.

4.5.3. Detection Performance Alongside Complexity

An ideal tamper-detection method is achieved when the detection performance is
high and the complexity is low. However, there is usually a trade-off between the detection
performance and the complexity. To fairly evaluate the tamper attack detection methods,
the detection performance along with the complexity should be considered.

4.6. Tamper Attack Detection Performance

The aim of this subsection is to compare the performance of the proposed methods in
terms of attack detection, time complexity, and space complexity. Furthermore, environ-
mental dependency along with detection performance versus complexity are discussed.

4.6.1. ROC Evaluation

The comparison of the detection performance of the aforementioned methods is shown
in Figure 12. In this work, similar to [7], we chose the threshold in Figure 12 such that it
maximizes the TPR and minimizes the FPR in almost all methods, resulting in an FPR = 10%,
which is indicated by the dashed-dotted line. As can be seen from Figure 12, the DCAE-
based approaches have a better tamper attack detection rate compared to the Deep SVDD
approaches. This is because they spend more effort on signal processing (representing the
learned CSI and the postprocessing), which results in higher time and space complexity.
As illustrated in Figure 12, DCAE-C and DCAE-CP have the best tamper attack detection
rates. The Deep SVDD approaches have a better tamper attack detection rate compared to
the threshold detection approach, although they have lower space complexity.
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Figure 12. ROC curve of the methods with NOn = 300 in the two environments on average.

4.6.2. Time and Space Complexities

The number of basic operations (multiplications and additions) in the forward path
that each method requires is compared in Table 5. Furthermore, the time each method
required in the offline and online phases was measured and is shown in Table 6. There is a di-
rect relation between time complexity and test duration for each method (cf. Tables 5 and 6).
The amount of data each method stores in the database is another important factor, at least
in some applications. Thus, they are presented in Table 7.

Table 5. Time complexity of the methods for each sample in the online phase. NOff and S are the
training batch size and number of subcarriers, respectively.

Method No. of Multiplications No. of Additions

Threshold Detection ≈2SN☆
Off ≈4SN☆

Off

DCAE-D ≈1978.75NOffS ≈1987.95NOffS

DCAE-DP ≈(1978.75 + NOn−1
S )NOffS ≈1987.95NOffS

DCAE-C ≈1189.38NOffS ≈1193.94NOffS

DCAE-CP ≈(1189.38 + NOn−1
S )NOffS ≈1193.94NOffS

SVDD-D ≈702.00NOffS ≈702.95NOffS

SVDD-C ≈351.00NOffS ≈352.44NOffS

As stated, the drawback of the DCAE-based method proposed in [6] is its time delay.
The reason is that the pdf estimations in the online phase are time consuming. This issue is
addressed in this paper by using the Deep SVDD approach. According to Table 5 (number of
basic operations) and Table 6 (test duration), it is shown that the test duration for SVDD-D
and SVDD-C is significantly shortened compared to DCAE-D (31.5%), DCAE-DP (72.6%),
DCAE-C (39.0%), and DCAE-CP (62.8%), respectively. Note that there is a slight difference
in the training duration between the hall and office environment due to the different sizes
of their datasets (cf. Table 3).
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Table 6. Performance of the methods on the measurement data (average over online batches).

Dataset Method AUC Training Dur. Test Dur.

Office Threshold Detection 85.66% - 3.92 s

Hall Threshold Detection 83.53% - 4.76 s

Office DCAE-D 92.49% 329.50 s 16.99 s

Hall DCAE-D 92.46% 334.40 s 17.14 s

Office DCAE-DP 94.56% 337.34 s 42.08 s

Hall DCAE-DP 94.53% 342.25 s 42.46 s

Office DCAE-C 99.93% 237.65 s 12.95 s

Hall DCAE-C 91.30% 247.54 s 16.08 s

Office DCAE-CP 99.99% 244.54 s 21.33 s

Hall DCAE-CP 94.91% 261.24 s 26.24 s

Office SVDD-D 85.87% 242.63 s 11.59 s

Hall SVDD-D 85.64% 246.99 s 11.79 s

Office SVDD-C 93.00% 177.63 s 7.95 s

Hall SVDD-C 82.03% 185.22 s 9.76 s

Table 7. Space complexity of methods.

Method No. of Floating Point Elements

Threshold Detection SN☆
OffR

DCAE-D 2901R

DCAE-DP (2901 + NOn)R

DCAE-C 3301

DCAE-CP 3301 + NOnR

SVDD-D 1776R

SVDD-C 1976

4.6.3. Environmental Dependency

We can conclude that physical tamper attack detection in the hall environment is
more challenging than in the office environment. As shown in Table 6, the attack detection
performance of each method in the hall environment is poorer than the corresponding
one in the office environment in terms of the AUC. The reason is that the surrounding
environment in the hall is prone to be more time-variant compared to the office environment
since the environment is not bounded on two sides. Thus, there are more possibilities
of people moving around in the hall than in the office. As we used approximately the
same amount of training data in both environments, we could not learn the environmental
variation to the same amount as in the office environment. We expect that, with a more
extensive training, the tamper detection performance can reach similar values as in the
office environment.

4.6.4. Detection Performance vs. Complexity

According to Table 6, using DCAE-CP not only has superior detection performance
compared to the other methods, but shows also relatively fast training and testing phases.
In general, there is a trade-off among time complexity, space complexity, and detection
performance. As shown in Tables 5 and 7, SVDD-D and SVDD-C show the smallest time
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and space complexity, but as expected, their detection performance is not as high as the
others. In contrast, DCAE-D and DCAE-DP have a larger space complexity than DCAE-
CP, but achieve a lower detection performance. All in all, the aforementioned factors have
to be considered simultaneously to select the optimal method.

It is worth noting that, although the detection performances of SVDD-D and SVDD-C
are acceptable, but not as high as the performances of the other DL methods, their time and
space complexities are very low and, thus, might be suitable for certain applications.

As brought up in [6], although the time delay will be longer by increasing the online
batch size for DCAE-DP, the detection performance will be enhanced. Therefore, we
investigated the impact of the online batch size on the detection performance. Figure 13
plots the AUC-ROC over different values of NOn. Since NOn significantly influences the
performance of the pdf estimators, only the detection performances of DCAE-DP and
DCAE-CP change over different values of NOn. As expected, by increasing NOn, the
AUC-ROC improves. Note that the value of NOn in the depicted range does not affect
the performance of DCAE-CP in the office environment because the method can learn
environmental variation very well. Obviously, the detection performances of the DCAE-
based methods with postprocessing will be affected if the value of NOn is chosen too small.
According to Figure 13 and the relation between NOn and time complexity, the optimal
value of NOn for DCAE-CP in the hall environment is 200.

100 150 200 250 300 350 400
0.8

0.85

0.9

0.95

1

NOn

A
U

C

DCAE-D—Hall DCAE-D—Office
DCAE-DP—Hall DCAE-DP—Office
DCAE-C—Hall DCAE-C—Office
DCAE-CP—Hall DCAE-CP—Office
SVDD-D—Hall SVDD-D—Office
SVDD-C—Hall SVDD-C—Office

Figure 13. Impact of online batch size NOn on the AUC-ROC.

4.7. Further Discussion

The structures of DCAE-C and DCAE-CP are similar to those of DCAE-D and DCAE-
DP, respectively. Instead of using R neural networks in DCAE-D and DCAE-DP, a single
multi-channel input neural network is utilized in DCAE-C and DCAE-CP. According to
Table 7, the space complexity of each centralized method is almost R-times less than the
corresponding decentralized method. In general, the centralized methods outperform
the decentralized method in terms of the AUC and space complexity. This is because
the centralized methods consider the CSI from all receivers together in the offline phase.
However, this is not the case for the SVDD-based method in the hall environment. The
reason is the low complexity of the method and the high variation of its signal due to
the environment structure. We expect that, with a more complex neural network in the
structure of the SVDD-based method, the tamper attack detection performance can achieve
similar values as in the office environment.

As stated in [6], DCAE is a method for representation learning. Physical tamper attack
detection with DCAE-based methods is performed by the postprocessing units. With
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Deep SVDD, representation learning and physical tamper attack detection are performed
simultaneously. Therefore, increasing the complexity of the neural networks used for Deep
SVDD leads to improved detection performance. As in our work, the goal was to minimize
complexity, we restricted the number of hidden layers to four in the neural networks used
for Deep SVDD. A larger number of hidden layers could have improved the detection
performance, but would have increased thecomplexity.

From Tables 5 and 6, we found that Threshold Detection performs much faster than
the other methods; however, its tamper attack detection performance is rather low. It is
worth mentioning that there is a linear relation between the number of collected packets
in the offline phase (N☆

Off) and the time complexity for Threshold Detection (see Table 5).
However, N☆

Off does not affect the time complexity for the DL methods. This is a significant
advantage of DL methods over non-DL methods.

5. Conclusions

In this paper, we proposed and evaluated two DL-based approaches for detecting
a physical tamper attack using CSI in an OFDM-based wireless communication system
with multiple receiver antennas with respect to detection performance, time, and space
complexities. The two main challenges of this problem were to distinguish between
antenna orientation changes and communication environment changes and to achieve high
detection performance along with a low level of complexity. To achieve a robust attack
detector based on different levels of complexity, we used DCAE and Deep SVDD neural
networks in centralized and decentralized structures. With our experiment, we concluded
that there is a trade-off between detection performance and complexity in the proposed
methods. It was shown that the DCAE-based methods outperform the SVDD-based
methods in terms of detection, while the SVDD-based methods have almost two-times
lower time and space complexities.
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