
Citation: Valenzuela, W.;

Saavedra, A.; Zarkesh-Ha, P.;

Figueroa, M. Motion-Based Object

Location on a Smart Image Sensor

Using On-Pixel Memory. Sensors

2022, 22, 6538. https://doi.org/

10.3390/s22176538

Academic Editors: Christophe Bobda,

Marilyn Wolf, Saibal Mukhopadhyay

and Jiayi Ma

Received: 19 June 2022

Accepted: 24 August 2022

Published: 30 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Motion-Based Object Location on a Smart Image Sensor Using
On-Pixel Memory
Wladimir Valenzuela 1 , Antonio Saavedra 2 , Payman Zarkesh-Ha 3 and Miguel Figueroa 1,*

1 Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción,
Concepción 4070386, Chile

2 Embedded Systems Architecture Group, Institute of Computer Engineering and Microelectronics,
Electrical Engineering and Computer Science Faculty, Technische Universität Berlin, 10623 Berlin, Germany

3 Department of Electrical and Computer Engineering (ECE), School of Engineering, University of New Mexico,
Albuquerque, NM 87131-1070, USA

* Correspondence: miguel.figueroa@udec.cl

Abstract: Object location is a crucial computer vision method often used as a previous stage to
object classification. Object-location algorithms require high computational and memory resources,
which poses a difficult challenge for portable and low-power devices, even when the algorithm
is implemented using dedicated digital hardware. Moving part of the computation to the imager
may reduce the memory requirements of the digital post-processor and exploit the parallelism
available in the algorithm. This paper presents the architecture of a Smart Imaging Sensor (SIS)
that performs object location using pixel-level parallelism. The SIS is based on a custom smart
pixel, capable of computing frame differences in the analog domain, and a digital coprocessor that
performs morphological operations and connected components to determine the bounding boxes of
the detected objects. The smart-pixel array implements on-pixel temporal difference computation
using analog memories to detect motion between consecutive frames. Our SIS can operate in two
modes: (1) as a conventional image sensor and (2) as a smart sensor which delivers a binary image
that highlights the pixels in which movement is detected between consecutive frames and the object
bounding boxes. In this paper, we present the design of the smart pixel and evaluate its performance
using post-parasitic extraction on a 0.35 µm mixed-signal CMOS process. With a pixel-pitch of 32 µm
× 32 µm, we achieved a fill factor of 28%. To evaluate the scalability of the design, we ported the
layout to a 0.18 µm process, achieving a fill factor of 74%. On an array of 320× 240 smart pixels, the
circuit operates at a maximum frame rate of 3846 frames per second. The digital coprocessor was
implemented and validated on a Xilinx Artix-7 XC7A35T field-programmable gate array that runs at
125 MHz, locates objects in a video frame in 0.614 µs, and has a power consumption of 58 mW.

Keywords: smart image sensor; smart pixel; vision chip; intelligent sensor; object detection; object
location; motion-based; frame difference; field-programmable gate array; very large scale integration

1. Introduction

Computer vision is a discipline that has gained an important place in data analysis on
scientific and industrial applications. Among the applications of computer vision are obsta-
cle detection [1] and position and speed estimation for accident avoidance [2] in driverless
cars, pedestrian detection using infrared cameras for surveillance [3,4], autonomous under-
water monitoring for detecting life on the seabed [5], improvement in the food industry
using real-time smart machines and predictable models [6], and real-time pupil localization
for driver safety improvements [7,8], among others.

From the point of view of engineering applications, one of the fundamental tasks of
computer vision is object detection [9,10]. Object detection has the goal of determining the
positions of objects in an image (object location) and determining the semantic categories of

Sensors 2022, 22, 6538. https://doi.org/10.3390/s22176538 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176538
https://doi.org/10.3390/s22176538
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6751-3773
https://orcid.org/0000-0001-8222-6000
https://orcid.org/0000-0002-0571-9212
https://orcid.org/0000-0002-5033-432X
https://doi.org/10.3390/s22176538
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176538?type=check_update&version=1

Sensors 2022, 22, 6538 2 of 24

each object (classification) [11]. Object detection is not limited to applications in the visible-
light range, which can underperform in low-light environments. It is also applicable in the
thermal infrared (IR) spectrum, which can increase the robustness of the algorithms under
harsh conditions [12,13]. Object detection helps to improve the results of other computer
vision methods, and in some cases, it is a necessary step. Some of these methods are face
and object recognition [14], recognition of pedestrians in autonomous and assisted driving,
object tracking [15], and intruder detection for surveillance and security [16], among others.

Recent works in the literature have shown a growing interest in image and video
processing on mobile devices [17], including a variety of approaches for mobile object
detection [18–20]. One of the key factors of mobile devices in general is portability, mainly
supported by a small form factor and a low energy consumption to extend the device’s
battery life [21]. Computer vision typically requires a large amount of computation power
to be capable of delivering highly precise and fast results and relies on ever-increasing com-
putational requirements for improved accuracy [22,23]. This increment in computational
requirements is counterproductive when the goal is to implement computer vision appli-
cations on resource-constrained platforms, such as mobile devices or Internet of Things
(IoT) endpoints, as the high computational capabilities affect the form factor and power
consumption, requiring major efforts to achieve high-performance mobile solutions [24].
Thus, it is important to take into account different considerations when selecting suitable
hardware accelerators for computer vision tasks [22].

An important area of interest is the design and use of custom-hardware devices for
computer vision to operate in real time [25]. These devices are designed to specifically
perform only a few particular computer vision methods [26]. Custom hardware improves
energy autonomy, reduces power consumption, and increases hardware integration, which
allows small form factors, all this while maintaining competitive performance. These
conditions make custom-hardware solutions an attractive approach for mobile computer-
vision designs [26].

In the area of custom hardware devices, Smart Image Sensors (SIS) have gained signif-
icant attention [27]. SISs are dedicated circuits that combine conventional image sensors,
such as CMOS Image Sensors (CIS), with additional processing hardware on the same
chip [27], typically at the pixel or column level. When a pixel integrates image acquisition
and processing hardware, it is typically referred to as a smart pixel. A smart pixel can
perform mathematical operations on the pixel values using digital or analog circuits [28].
Smart pixels enable fine-grained parallelism because they can simultaneously operate on all
the image data on the focal plane array (FPA) [27]. The goal of this integration is to have, on a
single device, the hardware to capture images and run computer vision algorithms on them,
either totally or partially, by executing part of their associated operations. The literature
shows several SISs that implement computer vision methods on the visible light spectrum,
such as feature extraction [29–32], edge detection [33,34], face recognition [35–37], object de-
tection and tracking [34,38], convolutional neural networks [39], and object detection based
on Histogram-of-Oriented-Gradients (HOG) [40]. Other SISs have been designed to operate
in the IR spectrum to implement non-uniformity correction and compensation [41,42] and
face recognition [43]. Therefore, it is feasible to continue this area of study to expand the
available custom-hardware designs.

In this paper, we design and evaluate a novel intelligent Readout-Integrated Circuit
(iROIC) and its complete SIS architecture for motion-based object location. The proposed SIS
is composed of a smart-pixel architecture based on a Capacitive Transimpedance Amplifier
(CTIA) integrator, widely used on thermal IR image sensors. Therefore, the iROIC is
suitable for motion-based object location in thermal IR images. As demonstrated in previous
work [43], by adding a few extra transistors to the standard CTIA integrator, we can achieve
pixel-level image processing that enables low-power, motion-based object location.

We show that a smart pixel can use analog circuits to process video frames during
image acquisition. Our results show that motion-based object location can be partially
implemented on the pixel, thus avoiding the use of off-chip memory buffers to store the

Sensors 2022, 22, 6538 3 of 24

data from the previous frame. As a result, the design computes the frame difference for all
the pixels in the imager in parallel during the integration time used to acquire the pixel data.
The proposed SIS consists of a heterogeneous architecture composed of an analog stage and
a digital stage. On the analog stage, the SIS calculates the difference between consecutive
frames, which is the first step of motion-based object location, on the bidimensional smart-
pixel array. On the digital stage, the SIS includes a digital coprocessor that computes
morphological transformations on the output image and uses a connected-components
algorithm to label the objects in the image.

Using a 32 µm × 32 µm pixel, the extra capacitor and switches added to the CTIA to
compute frame differences reduce the fill factor (the fraction of the die area dedicated to the
photodetector) from 47.6% to 28.1% in a 0.35 µm TSMC process. To evaluate the scalability
of our design, we implemented the smart pixel on a 0.18 µm process, achieving a fill factor
of 74%, compared to 86.1% for a traditional pixel that uses a conventional CTIA. Using an
array of 320× 240 pixels, the SIS acquires and computes frame difference at 60 frames per
second (fps). Running at 125 MHz, the digital coprocessor uses the frame differences to
detect objects in the image in 0.614 µs and consumes 58 mW of power.

The rest of the paper is organized as follows. Section 2 introduces and discusses
previous works related to our smart image sensor. We describe the object location algo-
rithm implemented in our SIS in Section 3. In Section 4, we describe the architecture of
the smart pixel and the proposed SIS and the architecture of the digital coprocessor. Sec-
tion 5 describes the resulting area of the smart pixel, the resource utilization of the digital
coprocessor, and the simulation results. Finally, Section 6 concludes the paper.

2. Related Work

Object-location and classification algorithms are usually implemented on high-
performance, high-power hardware platforms such as General-Purpose Processors (CPUs)
or Graphics Processors (GPUs) [44,45]. This can be acceptable in a wide variety of so-
lutions but is normally inadequate for low-power applications on embedded or mobile
devices. In these cases, special-purpose processing systems on dedicated hardware can
achieve high speed and portability with low power. These designs are normally imple-
mented on Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated
Circuits (ASICs).

In recent years, many FPGA-based Convolutional Neural Network (CNN) archi-
tectures have been proposed for object location and classification [46–50]. A common
disadvantage of these solutions is the limited capacity of on-chip FPGA memory, which is
insufficient to store the large number of parameters required by the CNN. Storing these
parameters in external memory reduces the throughput of the implementation, therefore
limiting the application of FPGAs for small form-factor object detection in real time. This
issue was addressed by Long et al. [51], who implemented an FPGA-based object detection
algorithm based on multi-frame information fusion. Their algorithm uses a reduced num-
ber of parameters for HOG-based object location and Support Vector Machines (SVMs) for
classification, and achieves a throughput of up to 10,000 fps. Nakahara et al. [52] presented
an object detection algorithm based on a multiscale sliding-window location search, which
binarizes the CNN parameters to reduce their memory requirements, and enables the im-
plementation of the complete network using only on-chip memory. Despite the throughput
improvement achieved by using on-chip parameters, all the solutions described above read
the image pixels as a serial stream from the image sensor. This has the effect of increasing
the latency and limiting the data parallelism available to the algorithm, compared to having
access to all the pixels simultaneously. Moreover, algorithms that access the image data
serially require line buffers or even entire frame buffers, further increasing the memory
requirements of the hardware platform.

As discussed in Section 1, SISs are special-purpose image sensors that combine con-
ventional imagers with additional circuitry to process pixel data on the same chip. When an
SIS is designed with computational circuits in every pixel (smart pixels), it can exploit the

Sensors 2022, 22, 6538 4 of 24

pixel-level parallelism available in the image-processing algorithm. This shortens latency,
increases throughput, and reduces the memory requirements of the solution [30,31,43,53].
To further reduce power and area, SISs typically use analog circuits to store and process
the data [30,40]. For example, Lee et al. [40] presented an SIS with embedded object de-
tection that uses a reconfigurable pixel array capable of computing frame differences and
spatial gradients. The SIS uses a capacitor in every pixel that acts as an analog mem-
ory to compute frame differences. Choi et al [30] use a similar approach to implement
motion-triggered object detection. To reduce circuit area and improve fill factor, they use
the same capacitor for two horizontally adjacent pixels and alternate its use between odd
and even frames, thus trading motion-detection horizontal resolution for fill factor. An
alternative technique to improve fill factor is to perform computation during photocurrent
integration using an intelligent Readout Circuit (iROIC) [54]. For example, the SIS pre-
sented by Gottardi et al. [55] computes local gradients using this technique to implement a
lightweight version of local-binary patterns (LBP). Our own previous work [43] also uses
an iROIC to compute face recognition in visible-range and IR image sensors using an array
of smart pixels based on a configurable CTIA, reducing precision by only 1% compared to
a fully digital implementation.

Implementing most of the computation at the pixel level using smart pixels reduces
the die area available for the photodector in each pixel, thus reducing the fill factor of the
imager. To mitigate this effect, several SISs implement part of the computation at the column
level, thus improving fill factor at the cost of reducing parallelism and increasing memory
requirements. For example, Jin et al. [33] designed an SIS that computes edge detection
using column-level circuits and static memory. Young et al. [56] presented an SIS for object
detection that combines pixel- and column-level processing to compute image features
based on HOG. Their SIS eliminates redundant illumination data during readout, thus
compressing the HOG feature descriptors by up to 25 times compared to a conventional
8-bit readout. Kim et al. [37] detect and recognize faces by combining, on a single chip,
a standard imager architecture and a mixed-signal CNN that implements its first layer
in the analog domain. Computing part of the operations of the algorithm using analog
circuits degrades the accuracy by 1.3%, but it also reduces the power consumption by
15.7% because Analog-to-Digital Converters (ADCs) are one of the most power-consuming
elements in standard CIS [57]. The SIS presented by Zhong et al. [29] computes edge
detection and omnidirectional LBP using column-level circuits and array of capacitors
capable of storing two rows of the image. Our own previous work [43] computes LBP using
a combination on-pixel and column-level processing. An array of smart pixels performs
the comparisons between adjacent pixels and outputs a binary value, which is used by
column-level circuits to construct the LBP features. The single-bit output of the smart
pixel allows us to reduce the memory required by the line buffers and the time to read the
data from the pixel array and improves the fill factor by moving a significant part of the
computation to the column-level circuit.

The discussion above shows that SISs are a viable alternative to digital processors
to achieve the low power and high performance required by computer vision on mobile
devices, while achieving comparable precision [37,43]. An SIS can exploit the pixel-level
parallelism of the algorithm, but the area used by the processing circuits limits the fill
factor of the SIS. This can be mitigated by performing part of the computation during
photocurrent integration and by moving computation to column-level circuits. The design
presented in this paper uses both techniques to build a two-mode imager that operates as a
conventional sensor and computes object location, using a configurable CTIA suitable for
the thermal IR range.

3. Object-Location Algorithm

Our SIS performs object location using a multi-frame approach, which considers the
information of consecutive video frames to locate moving objects [58,59]. Algorithm 1
summarizes the motion-based object location algorithm implemented by the SIS. It first

Sensors 2022, 22, 6538 5 of 24

computes the frame difference between pixels in consecutive video frames and compares
this difference to a threshold to discriminate object pixels from the background. Then, the
algorithm applies morphological operations to remove motion-detection artifacts. Finally,
a connected-components algorithm computes the object bounding boxes from the motion
pixel data. Figure 1 illustrates the operation of the algorithm, showing an input image and
the output of each stage.

Algorithm 1: Motion-based object location
input : Input frame imk,m×n, previous input frame imk−1,m×n, threshold THR
output :Output frame of highlighted object-pixels and bounding boxes.

begin
for i← 1 to n do

for j← 1 to m do
Absolute difference imdi f f (i, j)← |imk(i, j)− imk−1(i, j)|;

Threshold-image imthr ← imdi f f > THR;
for i← 1 to n do

for j← 1 to m do
Eroded image imerd(i, j)← ERD(imthr) using Equation (1);

for i← 1 to n do
for j← 1 to m do

Dilated image imdlt(i, j)← DIL(imthr) using Equation (2);

for i← 1 to n do
for j← 1 to m do

Label pixel imlb(i, j)← CC(imdil) using Equation (3);
Update bounding boxes;

return Image with highlighted objects imdlt, labeled objects imlb and bounding boxes

Figure 1. Results of the steps of motion-based object location: (a) input image, (b) result of the
frame difference, (c) thresholding the frame difference, (d) applying the image-open morphological
transformation, and (e) bounding boxes.

The frame-difference stage of the algorithm uses the same approach presented by Bir
Bhanu et al. [60]. This algorithm detects pixels that belong to moving objects by comparing
their value in consecutive frames. When the difference between the pixel value between
two consecutive frames is higher than a predefined threshold, the algorithm assumes that
the pixel belongs a moving object. This threshold is an application-dependent sensibility
parameter that can be adjusted manually by the user. As shown by Yin et al. [61], an
adequate threshold value can be determined by training the algorithm using a set of image
data from the application environment.

The first stage of the algorithm computes the absolute frame-difference: it computes
the absolute difference between corresponding pixels in two consecutive video frames.
The next stage compares each pixel difference to an application-defined threshold: if the
absolute frame difference is greater than the threshold, we identify it as a movement pixel
and assign it a logic label of value 1. Otherwise, the pixel is labeled as 0. Figure 1c illustrates
the output of the threshold stage. The figure shows that this method can produce isolated
labels due to abrupt changes in pixel values. To compensate for this, it is common to add
a morphological operation stage. We apply an image opening operation, which consists

Sensors 2022, 22, 6538 6 of 24

of image erosion followed by dilation. Figure 1d shows that this considerably reduces the
number of isolated labels. Finally, Figure 1e shows, using different colors and bounding
boxes, the output of the connected components algorithm, which labels the objects found in
the image. From this point, it is possible to further extend image analysis to process shapes,
single objects, and more.

To perform erosion and dilation, we used 3× 3-pixel kernels. Since these morpholog-
ical operations use single-bit pixels, the computation is reduced to simple logical AND
and OR operations. Image erosion replaces the center pixel in a 3× 3 window with the
minimum value in the window. With binary images, erosion replaces the pixel with logical
0 if there is at least one pixel equal to 0 in the window (AND), as described in Equation (1):

imerd = ERD(imin) =

{
0 if at least one pixel is 0
1 if all pixels in kernel are 1

(1)

Image dilation replaces the center pixel in a 3× 3 window with the maximum value
in the window. With binary images, dilation replaces the pixel with logical 1 if there is at
least one 1 pixel in the window (OR), as described in Equation (2):

imdil = DIL(imin) =

{
0 if all pixels in kernel are 0
1 if at least one pixel is 1

(2)

The third stage of the algorithm computes the bounding boxes for the objects located
in the image in a single pass using a raster-scan connected components algorithm [62].
Figure 2 illustrates the operation of the algorithm. For each movement pixel in the image,
the algorithm looks at its north, northwest, and west neighbors. If none of them are also
a movement pixel, the algorithm assigns a new object label to the pixel, as shown in
Figure 2a,b. Otherwise, if the neighboring movement pixels are part of the same connected
component, the algorithm assigns the same object label to the new pixel, thus adding
it to the connected component (Figure 2c). If the neighbor movement pixels belongs to
different connected components, the algorithm assigns one of the labels to the new pixel
and merges the connected components by adding a new entry into the equivalence table
(Figure 2d). The base procedure of the algorithm is described as the priority-OR operation
in Equation (3):

imlb = CC(imin) =



L0 if ps is 0, or
Li+1 if only central pixel is 1
Lnw if central and north-west pixels are 1
Ln if central and north pixels are 1
Lw if central and west pixels are 1

(3)

where L0 is the label for no-object pixels, and Lw, Lnw, and Ln are labels of the west,
northwest, and north pixels, respectively.

Every time the algorithm creates a new connected component or adds a pixel to an
existing component, it updates the coordinates of its bounding box in a table. When the
algorithm merges two connected components, it updates the bounding box.

Sensors 2022, 22, 6538 7 of 24

(a) 0 0

0 11

0

11 11

1 1

Input Label Equivalence table

Label Equivalence

1 1

2 2

Label Equivalence

1 1

2 2

Label Equivalence

1 1

2 2

Label Equivalence

1 1

2 2 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(b) 0 0

0 11

0

11 11

1 1

2

(c) 0 0

0 11

0

11 11

1
2 2

1

(d) 0 0

0 11

0

11 11

1 1

122

0 0 0 0
0 0 0

0 0 0 0
0 0 0

0

0 0 0 0

0 0 0
0

0 0 0 0

0 0 0
0

Figure 2. Graphic example of the connected components algorithm.

4. SIS Architecture

Figure 3 shows the architecture our proposed SIS. The SIS supports two operation
modes: standard imager and motion-based object location. The core blocks are an array
of smart pixels with local computational resources, an analog comparator (A-THR), and
a digital coprocessor. In the standard mode, the pixel array acquires image data as a
conventional image sensor, row- and column-select circuits sequentially read the pixel
data, and an ADC produces digital values as a pixel stream. In object location mode, the
SIS configures smart pixels to compute the frame difference, uses the A-THR to evaluate
motion on each pixel and uses the digital coprocessor to determine the objects in the scene.

C
ol

um
n

se
le

ct

Smart pixel array

Controller

A
D

C

A
-T

H
R

C
o
n
ve
n
ti
o
n
al

o
u
tp
u
t

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Smart
Pixel

Row select

S
am

p
le

/h
ol

d
ba

nk
s

B
ou
nd
in
g

bo
xe
s

H
ig
hl
ig
ht
ed

ob
je
ct
s

D
ig

ita
l

co
pr

oc
es

so
r

Figure 3. Architecture of the proposed SIS. An array of smart pixels outputs either the pixel value
or the frame difference. The A-THR module determines whether the absolute value of the frame
differences exceeds an application-defined threshold. The digital coprocessor computes image
opening to improve the object location and uses a connected components algorithm to detect objects
in the image and compute their bounding boxes. The digital coprocessor can be configured to output
the original image or the binary image and the bounding boxes for the objects.

Sensors 2022, 22, 6538 8 of 24

Figure 4 shows a block diagram of our object location algorithm and the hardware
modules of the proposed SIS that perform each step of the algorithm. In the center, the
figure shows the three core blocks of the SIS, which are the smart pixel array, an analog
comparator (A-THR) core, and the digital coprocessor. The first step of the algorithm
is the temporal shift calculation implemented in the smart-pixel array. The second step
is motion estimation, implemented on a custom analog-threshold circuit. The following
steps correspond to the binary-image erosion and dilation and the connected components
implemented on a digital coprocessor. With this configuration, the SIS computes the frame
difference simultaneously along the array. In object location mode, the array acquires and
stores the image data for the current frame and computes the difference between the current
frame and the stored data for the previous frame. Then, the row- and column-select circuits
sequentially read the frame differences and send them to the A-THR, which determines if
the absolute difference of each pixel in the image is greater than the application-defined
threshold. The output of the A-THR is a single bit for each pixel that serves as input to
the digital coprocessor. The coprocessor computes the binary erosion and dilation, the
connected components, and outputs the bounding boxes and binary image.

On-pixel
temporal shift S

m
ar

t
pi

xe
l

ar
ra

y
A

-T
H

R Motion
estimation

Binary image
formation

 Binary-image
erosion

D
ig

ita
l c

op
ro

ce
so

r

 Binary-image
dilation

Image opening:
cleaner objects

Proposed hardware
accelerator

Connected
components

Connected
components

Previous frame Current frame

Proposed motion-based
object detection method

Object pixels and
their bouding boxes

Figure 4. Illustration of the motion-based object location algorithm and proposed hardware accelerator.

4.1. Smart Pixel

Figure 5 shows a block diagram of our smart pixel composed of a photodetector,
switches for input enable and row-select, and a programmable CTIA. The input of the CTIA
is connected to a photodetector. The CTIA uses the signals NegInt, PosInt, and BuffSL to
integrate the photodetector current. The resulting voltage represents the value of the pixel
in a frame or the difference between the pixel values in the current and past frames.

Sensors 2022, 22, 6538 9 of 24

NegInt
PosInt
BuffSL
Vbias

Row control

Input-enable
switch

Detector Custom CTIACustom CTIA Row-select
switch

InEn

C
ol

um
n

ou
tp

ut

Figure 5. Architecture of the smart pixel. Negtin, PostInt, BuffSL, and Vbias are global bias and control
signals. Row control is shared by all the pixels in a row and Column output is shared by all the pixels in
the same column.

A schematic view of the smart pixel is shown in Figure 6. The smart pixel is based on a
conventional CTIA used for photodetector current integration, where we replace the single
integration capacitor with two identical capacitors that act as a double buffer and six CMOS
switches that select the active buffer and control the integration direction. The switches
are controlled by three configuration signals that allow our custom CTIA to compute the
difference between the pixel values in two consecutive frames during integration.

VCTIA

Sp1
PD1

Vbias Srow

Custom CTIA

Row select-

+

Column
output

Input
enable

S1

S1

sw
2

S2

S2

S2

S2

sw
4

S1

S1

S3
sw5 sw6
S3 S3S3

Cint1 Cint2

sw
1

sw
3

S1

S1

sw
2

S2

S2

S2

S2

sw
4

S1

S1

S3
sw5 sw6
S3 S3S3

Cint1 Cint2

sw
1

sw
3

Figure 6. Configurable CTIA. The output voltage of the CTIA represents either the pixel value or the
difference between the pixels in the current and past frame. Our configurable CTIA includes two
integration capacitors of equal size, Cint1 and Cint2, which are used as double buffers to integrate and
compute the frame difference.

As described in [63–66], the CTIA is a preferred approach in two scenarios: environ-
ments with low light and IR cameras. Among the various types of circuits available in the
literature, the CTIA configuration uses more area than many others for readout. However,
as we described in our previous work [43], the CTIA has the following advantages: (1)
low input impedance for good injection efficiency with weak photodiode currents, (2) less
frame-to-frame latency, (3) wider linear output voltage range [67], (4) and reduced noise
through better control of the photodiode bias [68].

The operation in conventional mode of our smart pixel is shown in Figure 7a, also
referred to as direct mode. In conventional modem the operation of the smart pixel is
equivalent to the conventional CTIA. For this operation, the smart pixel sets the bias
voltage to 0V, and the CTIA integrates the input current on the capacitor Cint1. As shown
in Figure 7b, in direct mode the smart pixel works as a conventional CTIA, where it sets

Sensors 2022, 22, 6538 10 of 24

the switches sw1, sw4, and sw5 as closed and sw2, sw3, and sw6 as opened. Equation (4)
describes the output value at the end of the integration time:

V = I∆t/Cint1, (4)

where V is the voltage at the output of the smart pixel, I is current from photodetector PD1,
∆t is the amount of time that takes to integrate, and Cint1 is the capacitor value.

PD1

0 [V]

-

+

Input
enable

C
in

t1

C
in

t2

Configurable CTIA

VCTIA

(a) Switch states and signals.

PD1

0 [V]

-

+

Cint1

Configurable CTIA

(b) Equivalent circuit.
Figure 7. Smart pixel in conventional mode: the input-enable switch passes the current from the
photodiode PD1, sw1, sw4, and sw5 are closed to integrate the current using Cint1, and sw2, sw3, and
sw6 stay open.

The operation of the smart pixel when computing the frame difference in the pixel
is shown in Figure 8. The smart pixel sets the global bias input at the midpoint of the
operation voltage. During a single video frame, the circuit operates in two stages: store
and subtract, assigning one half of the integration time to each. During the store stage,
the circuit integrates the input current into one of the capacitors, which will be used in
the next video frame. During the subtract phase, the CTIA subtracts the input current
from the second capacitor, which stores the pixel value of the previous frame. These stages
operate in a slightly different way during odd and even frames because capacitors Cint1
and Cint2 operate as a double buffer: Cint1 is used to store pixel data (store phase) during
an odd frame and to subtract the current pixel value (subtract phase) during an even frame.
Conversely, Cint2 stores pixel data during an even frame and subtract the current pixel
value during an odd frame.

Figure 8a,b show the equivalent circuits during an odd video frame. Here, the store
and subtract phases integrate the input current in the positive direction in both capacitors:
sw2 and sw3 are closed, and sw1 and sw4 are open. During the store phase, shown in
Figure 8a, sw5 is closed and sw6 is open to integrate the input current on Cint1. During the
subtract phase, shown in Figure 8b, sw6 is open and sw5 is closed to integrate (subtract) the
input current on Cint2, which contains the pixel value acquired in the previous frame value.
At the end of the frame time, the voltage across Cint1 represents the current pixel value to
be used in the next frame, and the voltage across Cint2 is the frame-difference between the
current and previous frames.

Sensors 2022, 22, 6538 11 of 24

PD1

Vdd/2

-

+

Input
enable

C
in
t1

C
in
t2

Configurable CTIA

sw1

sw4

sw2

sw3

sw
5

sw
6

VCTIA

(a) Odd frame: Store phase in Cint1.

PD1

Vdd/2

-

+

Input
enable

C
in
t1

C
in
t2

Configurable CTIA

sw1

sw4

sw2

sw3

sw
5

sw
6

VCTIA

(b) Odd frame: Subtract phase in Cint2.

PD1

Vdd/2

-

+

Input
enable

C
in
t1

C
in
t2

Configurable CTIA

sw1

sw4

sw2

sw3

sw
5

sw
6

VCTIA

(c) Even frame: Store phase in Cint2.

PD1

Vdd/2

-

+

Input
enable

C
in
t1

C
in
t2

Configurable CTIA

sw1

sw4

sw2

sw3

sw
5

sw
6

VCTIA

(d) Even frame: Subtract phase in Cint1.

Figure 8. Simplified view of the CTIA in frame-difference mode during odd and even frames. During
an odd frame, sw2 and sw3 are closed while sw1 and sw4 are open. During the store phase, sw5 is
open and sw6 is closed, and during the subtract phase, the states off sw5 and sw6 are reversed. At the
end of the frame, the voltage across Cint1 represents the frame-difference between the current and the
previous frame. During even frames, the state of all switches is the complement of the odd frames,
and the frame-difference is represented by the voltage across Cint2.

Figure 8c,d shows the equivalent circuits during an even video frame, which integrate
the input current in the negative direction of both capacitors. The store phase integrates on
Cint2 and the subtraction phase uses Cint1. The state of switches sw1–sw6 is the complement
of the odd frames.

At the end of the integration time, the CTIA outputs the voltage across capacitor Cint2
for odd frames and Cint1 for even frames, which represents the frame-difference value. The
voltage across the capacitors at the end of the integration time is shown in Equation (5):

Vc = (Ik∆ts − Ik−1∆ts)/Cint, (5)

where Vc is the output voltage, k is the current frame index, Ik is the input current during
frame k, Ik−1 is the current during the previous frame k − 1, ∆ts is the integration time
where ∆ts =

∆t
2 , and Cint is the capacitance of Cint1 and Cint2. After the frame-difference

values are read by the A-THR core, the circuit resets the capacitor that holds the frame-
difference value.

Note that because we store and subtract in different directions during odd and even
frames, the frame-difference in Vc has a different sign in consecutive frames. This does not
affects the results of the algorithm because the next stage uses the absolute value of the
difference. Alternating the sign of the frame differences allows us to configure the CTIA
using only three control signals. Moreover, sw1–sw6 switch only once per frame instead of
once per phase, which reduces charge injection and power consumption.

Because the operation of the smart pixel divides the integration time into two stages
of equal duration (store and subtract), it effectively reduces the integration time to 50% of
the conventional mode. This decreases the signal-to-noise ratio of the imager but allows it
to compute the frame-differences of all the pixels in the image in parallel.

Sensors 2022, 22, 6538 12 of 24

4.2. A-THR

The A-THR core determines whether the absolute value of the frame difference com-
puted by the smart pixel exceeds an application-defined threshold. Figure 9 shows the
A-THR circuit. A row- and column-select circuit scans the smart pixel array, reading the
output voltage of each CTIA connecting it to the input Vpixel of the A-THR module. Because
the frame-difference output of the smart pixel has a different sign for even and odd frames,
the A-THR core uses two comparators, OA1 and OA2. The reference voltages V+

THR and
V−THR are used to compare the absolute vale of the frame-difference voltage to the threshold
voltage Vth, such that V+

THR = Vbias + Vth and V−THR = Vbias −Vth, where Vbias = Vdd/2 is
the bias voltage of the CTIA in frame-difference mode.

Vpixel

-

+

Vth+

Vth-

Vdd

Gnd

-

+

Vdd

Gnd

Binary data to
digital coprocessor

1 if Vpixel > Vth+

1 if Vpixel < Vth-

or

OA1

OA2

imdiff
or

Figure 9. Architecture of the A-THR. An input comparator compares the frame difference for each
pixel to two reference voltages. The comparator OA1 outputs a logical 1 when Vpixel > V+

th , and the
comparator OA2 outputs a logical 1 when Vpixel < V−th . A logical OR outputs a logical 1 if one of the
two conditions is met.

The comparator OA1 outputs a logical 1 when Vpixel > V+
th and 0 otherwise, while

OA2 outputs a logical 1 when Vpixel < V−th and 0 otherwise. These two comparators
independently indicate when Vpixel is greater than V+

th or less than Vpixel . An OR gate
outputs a logical 1 when either OA1 or OA2 outputs a 1, thus indicating that the frame-
difference is greater than the supplied threshold. These logic values are generated for all
the columns of the array in parallel and stored in a shift register. While the A-THR blocks
process the next row, the shift register serially outputs the values from the previous row to
the digital coprocessor.

4.3. Digital Coprocessor

The coprocessor adds programmability to the SIS by processing the output in frame-
difference mode using reconfigurable digital logic. In our current implementation, the
coprocessor implements the morphological opening operation and a connected components
algorithm that detects objects and computes their bounding boxes.

Figure 10 shows the architecture of the object location coprocessor. The data flow of
the digital coprocessor is as follows: the object location coprocessor receives a 1-bit pixel
stream from the A-THR module. Then, the coprocessor computes morphological erosion
and dilation operations in a 3× 3-pixel window and outputs the resulting binary image.
The image pixels are also processed by a connected components module, which identifies
the objects in the image using connected pixels in a single pass and computes the bounding
boxes of the objects.

Sensors 2022, 22, 6538 13 of 24

Binary image from
A-THR

imdiff

Binary-image
erosion

Morphological operations

Binary-image
dilation

Connected
components

Bounding boxes

Highlighted objects
in the image

Figure 10. Architecture of the digital coprocessor. The coprocessor receives a stream of movement
pixels, applies morphological opening operation (erosion+dilation), and computes the connected
components of the resulting binary image and their bounding boxes.

The digital implementation of the 1-bit image erosion, defined in Equation (1), is
shown in Figure 11. We erode with a 3× 3 window by calculating the logical AND between
all pixels in the window. We implemented the sliding window using two line buffers and
a 2× 3 array of Flip-Flops (FFs). Figure 12 shows the implementation of the 1-bit image
dilation, defined in Equation (2). Dilation’s methodology is similar to erosion, which uses
the same architecture but replaces the logical operations with OR gates.

1-bit line buffer

1-bit line buffer

and

and

and

and

imdiff

B
in

ar
y

im
ag

e
fr

om
A

-T
H

R

E
ro

de
d

bi
na

ry
 im

ag
e

imerd

Figure 11. Image erosion. The module uses two line buffers and six registers to define a 3× 3-pixel
window from the output of the smart pixel array, and performs image erosion by computing a logical
AND operation between them.

1-bit line buffer

1-bit line buffer

orimerd

E
ro

de
d

im
ag

e
fr

om
B

in
ar

y-
im

ag
e

er
os

io
n

D
ila

te
d

bi
na

ry
 im

ag
e

imdlt

or

oror

Figure 12. Image dilation. The module uses two line buffers and six registers to define a 3× 3-pixel
window from the output of the image erosion module and performs image dilation by computing a
logical OR operation between the pixels.

Figure 13 shows the architecture of the connected components module. The Neigh-
borhood Context block uses a line buffer to define a 2× 2-pixel window that contains the
current pixel and its north, northwest, and west neighbors. The block output indicates
whether the current pixel is an isolated movement pixel, to which of its neighbors it is
connected, or whether it is not a movement pixel. The Label Selector block assigns a new
or existing label to the current pixel based on its neighboring labels, using a line buffer
with label information. Because new pixels can join disconnected regions, the module uses
an equivalence table to merge connected components. The Label Management block up-
dates the equivalence table using the information from the neighborhood context. As new
pixels are added to the existing connected components, the coordinates of their bounding
boxes are updated using the contents of the equivalence table to consolidate regions as
they merge.

Sensors 2022, 22, 6538 14 of 24

Neighborhood
context

1-
bi

t
M

ov
em

en
t p

ix
el

s

Label
selector

Label
management

Bounding
boxes

Equivalence
table

Ln(pc)
cond

pw

Consolidation
of the

bouding boxes

T
ru

e
bo

un
di

ng
bo

xe
s

Figure 13. Architecture of the connected components module. First, it analyzes the current pixel
and its north, northwest, and west neighbors, determining which movement pixels are connected.
The module assigns a label to the current pixel and maintains an equivalence table to merge con-
nected components in the image. The module also computes the bounding boxes for all connected
components and merges them using the equivalence table.

5. Results
5.1. Smart Pixel and A-THR Implementation

To implement the smart pixel shown in Figure 6, we used minimum-size transistors to
implement switches sw0–sw6. Switch sw0 uses an NMOS transistor, and switches sw1–sw6
are full transmission gates. The OPAMP in the custom CTIA and the comparators in the
A-THR (Figure 9) use the design that we presented in [69]. The OR gate is a standard
CMOS logic circuit.

Figure 14 shows the physical layout for the smart-pixel as described above. This
design uses a 0.35 µm mixed-signal process, 950 aF/µm2 poly1-poly2 capacitors, and a
supply voltage of 3.3 V. The post-layout simulations with parasitic extraction presented
in Section 5.2 were obtained using this process, for which we have access to the necessary
technology files. The integration time of our smart pixel is 20 µs, and the maximum current
that the photodetector delivers is 8 nA. With this, the two integration capacitors have an
equal capacitance of 50 fF with a size of 7.7 µm × 7.7 µm. The area of the entire smart-pixel
circuit of is 32 µm× 23 µm, which achieves a fill factor of 28% in a standard 32 µm× 32 µm
pixel [40]. In comparison, a conventional CTIA circuit designed on the same process has a
fill factor of 47.6%.

Figure 14. Diagram of the smart-pixel layout. We used the design shown in Figure 6, implemented
on the TMSC 0.35 µm mixed-signal process. The Opamp and integration capacitors are implemented
using two poly layers.

In order to assess the impact of technology scaling on the fill factor of the smart pixel,
we redesigned the pixel using a 0.18 µm TMSC process, a technology commonly used
in the literature [29,31,40]. For this technology, we used a supply voltage of 1.8 V and
metal capacitors of 2 fF/µm2 capacitance. The size of the circuit is 14 µm × 19 µm, which
achieves a fill factor of 74% in the same 32 µm × 32 µm pixel, compared to 86.3% with the
conventional CTIA.

Sensors 2022, 22, 6538 15 of 24

5.2. Simulation Results

To validate our smart pixel circuit, we simulated and tested it using a post-layout
simulation of the circuit in Figure 14 using the 0.35 µm mixed-signal process. The simulation
plot shown in Figure 15 depicts the main control signals NegInt, PosInt, and BuffSL (shown
in Figure 5) and the voltage across the capacitors Cint1 and Cint2 during two consecutive
video frames, while the SIS is operating in frame-difference mode. During the odd frame,
NegInt and PosInt are set to 1 and 0, respectively, to configure the CTIA to operate as
in Figure 8a,b. During the even frame, the circuit operates as in Figure 8c,d by setting
NegInt and PosInt to 0 and 1. Within a frame, BuffSL switches the operation of the CTIA
between the store and subtract mode. During the store phase of an odd frame, the capacitor
voltage VCint1 stars at zero and increases linearly with the photodetector current, while the
voltage VCint2 stores the pixel value of the previous frame. During the subtract phase, VCint1
stays constant, and VCint2 decreases linearly with the photodetector current. At the end
of the phase, the output voltage of the CTIA is VCTIA = VCint2 + Vbias, which represents
the difference between the pixel value in the odd frame and the previous even frame.
During the next even frame, the role of the capacitors is reversed, and the circuit output
is VCTIA = VCint1 + Vbias, which represents the difference between the pixel in the current
frame and the previous odd frame.

0.0 5 10 15 20 270 275

Store phase Subtract phase

Odd frame Even frame

285 290280

VCint1

VCint2

NegInt
PosInt
BuffSL

V
ol

ta
ge

 [V
]

Store phase Subtract phase

-0.5

-1.0

0

0.5

1.0

Time [μs]

Figure 15. Post-layout simulation of a pixel in the SIS operating in frame-difference mode. The graph
shows the voltage across the two integration capacitors of the CTIA during two consecutive frames.

Figure 15 shows that when BuffSL switches the capacitors Cint1 and Cint2 in the CTIA,
the capacitor voltages show the effects of charge injection. This effect can be compensated
in the A-THR block at each column by adjusting the threshold voltages V+

THR and V−THR.
The plot in Figure 16 shows a post-layout simulation of the A-THR comparator shown

in Figure 9. As described above in Section 4.1, after computing the frame difference during
the subtract phase, all pixels contain their respective frame-difference value. Figure 16
shows the input voltage of the A-THR in one column, and its outputs voltage while
reading pixel values in 10 consecutive rows. During the readout and comparison phase,
the controller sequentially reads the CTIA outputs of each row in the column. The column
voltage is labeled Vcolumn in Figure 9. In this experiment, we sampled each row for 1 µs
and circled in red the value of the pixels in each row. If Vcolumn is outside the threshold
window, i.e., Vcolumn > V+

THR or Vcolumn < V−THR, the A-THR outputs a logic 1. Otherwise,
it outputs a logic 0. The shift register that captures the outputs of the A-THRs in each
column operates at 320 MHz. The maximum frame rate achieved by the smart pixel array
is given by the time to compute the frame-difference in the array (20 µs), plus the time to
read 240 rows in parallel 240 µs. Therefore, the array can achieve a maximum frame rate of
3846 fps. At this frame rate, the smart pixel has a power consumption of 8.15 µW.

Sensors 2022, 22, 6538 16 of 24

0.0

1.0

2..0

3..0

No motion (0)

Motion (1)

Motion (1)

1

0

Vthr+

Vthr-

120 2 4 6 8 10

1

0 0 0 0

1 1 1 1

Row1

Row2

Row3

Row4

Vcolumn
VA-THR

Row5

Row6

Row7

Row8

Row9

Row10

V
ol

ta
ge

 [V
]

Time [us]

Figure 16. Post-layout simulation of the A-THR block while reading multiple pixels in frame-
difference mode. The plot shows the subtract phase for two pixels A and B, in the same column
during an odd frame. In the readout phase, the comparator consecutively samples all pixels in each
column, comparing their value to the application-defined thresholds, and outputs a logic 1 when the
movement in the pixel exceeds the threshold. Pixel values are sampled every 50 ns.

5.3. FPGA Implementation of the Digital Coprocessor

We used the SystemVerilog Hardware Description Language (HDL) at the Register-
Transfer Level (RTL) to implement and validate the architecture of the digital coprocessor
using the Xilinx Vivado 2020.1 development platform. In order to showcase the reduction
in digital hardware resources enabled by the SIS, we targeted the low-cost entry-tier
Xilinx Artix-7 XC7A35T FPGA. We compare our results to an FPGA-based Fully Digital
Implementation (FDI) of the algorithm that uses a conventional image sensor. The FDI
operates on 8-bit gray-scale pixels. All implementations use 5-bit labels and a 32-entry
equivalence table in the connected components module. We consider two tests scenarios
with different input image resolutions: 320× 240 and 640× 480 pixels.

Table 1 shows the resource utilization of both implementations for both image resolu-
tions. Our proposed coprocessor architecture using the SIS requires 5930 and 3929 Lookup
Tables (LUTs) for the 640× 480- and 320× 240-pixel implementations, respectively. This
represents 28.5% and 18.8% of the LUTs available on the XC7A35T FPGA. Our implementa-
tions also utilize 12% and 7.7% of the available FFs. No on-chip Memory Blocks (BRAMs)
are required in our SIS-based architecture. When compared with the SIS approach, the FDI
needs a frame buffer to compute the temporal differences between pixels in consecutive
frames, which is implemented with BRAM to avoid using an external memory chip, which
would limit the performance of the algorithm and increase the overall cost of the system.
Indeed, the 320× 240-pixel FDI requires only a small increase in the utilization of LUTs and
FFs but uses 38% of the available BRAM. Moreover, the 640× 480-pixel FDI requires more
BRAM resources than those available on the FPGA, and thus could not be implemented on
the selected device. The small hardware utilization of our SIS-based coprocessor leaves
ample resources available, even on an entry-level device such as the XC7A35T FPGA. These
resources could be used to implement the additional image-processing algorithm on the
output produced by the SIS.

Table 1. Resource utilization of the digital coprocessor on a Xilinx Artix-7 XC7A35T FPGA.

SIS 640 × 480 FDI 640 × 480 SIS 320 × 240 FDI 320 × 240

Used % Used % Used % Used %

LUT 5930 28.5 6493 31.2 3929 18.8 4051 19.4

FF 5021 12.0 5107 12.2 3239 7.7 3270 7.8

BRAM 0 0 75 150 0 0 19 38

Sensors 2022, 22, 6538 17 of 24

Table 2 shows the power consumption of the coprocessor estimated by Xilinx Vivado.
Operating with the 20 MHz clock frequency imposed by the sampling rate of the SIS, the
power consumption of our coprocessor is 27 mW and 34 mW for the 320× 240- and 640×
480-pixel inputs, respectively. The coprocessor can operate at up to 125 MHz, which enables
it to operate at up to 1627 fps on 320× 240-pixel images while consuming 58 mW and at
up to 406 fps on 640× 480-pixel images while consuming 61 mW. In comparison, the FDI
with 320× 240-pixel input consumes 39 mW at 20 MHz, and 97 mW at its maximum clock
frequency of 104 MHz. Here, the power consumption of the frame buffer, implemented as
on-chip memory, is nearly 50% of the total dynamic power. At this frequency, the FDI can
operate at up to 1354 fps.

Table 2. Power consumption of the digital coprocessor on a Xilinx Artix-7 XC7A35T FPGA, estimated
by Vivado. All implementations consume 20 mW of static power, which are added to the dynamic
power to compute the total. The 640× 480-pixel FDI can not be implemented on the XC7A35T device.

Dynamic Power (mW) Total
Dynamic

(mW)
Total (mW)

Dilation Erosion Connected Frame
Components Buffer

SIS 320 × 240
(20 MHz) 2 2 3 0 7 27

SIS 320 × 240
(125 MHz) 9 9 20 0 38 58

SIS 640 × 480
(20 MHz) 4 3 7 0 14 34

SIS 640 × 480
(125 MHz) 12 12 17 0 41 61

FDI 320 × 240
(20 MHz) 2 2 3 12 19 39

FDI 320 × 240
(104 MHz) 12 14 17 34 77 97

5.4. SIS Object Location Performance

To test the performance of the motion-based object-location algorithm on our SIS,
we used the OSU Thermal Pedestrian [70] and the Terravic Motion IR [71] datasets. Both
contain video sequences in the thermal IR range. Table 3 summarizes the image size in
pixels, the number of video sequences, and the total number of images.

Table 3. Datasets used to test the performance of the proposed algorithm.

Dataset Spectrum Image Size Number of
Sequences

Total Number
of Images

OSU Thermal
pedestrian dataset [70] Thermal IR 360× 240 10 284

Terravic Motion
IR dataset [71] Thermal IR 320× 240 18 23,355

To evaluate the object location performance of the SIS on each dataset, we used
a simulation of the complete SIS circuit with post-parasitic extraction and the FPGA-
based coprocessor described in Section 5.1. We developed a software implementation
of the algorithm using floating-point arithmetic and used it as a baseline to evaluate the
performance of the algorithm on the SIS.

Figure 17 shows a visual comparison of the intermediate stages of the algorithm on
the software and the analog section of the SIS. Figure 17a shows the image input, taken
from IR security footage in the OSU dataset, which shows two pedestrians crossing the

Sensors 2022, 22, 6538 18 of 24

street. Figure 17b,c show the absolute frame-difference and thresholding computed by
the software, and Figure 17d,e show the same stages of the algorithm output by the smart
pixel array and A-THR module in the SIS. The figure shows that both implementations
produce visually similar results, although the SIS output loses resolution, mainly due to
the reduction in integration time.

Frame-difference on software implementation

Frame-difference on the analog section of the SIS

Input frame

(b) (c)

(d) (e)

(a)

Figure 17. Visual comparison of the intermediate stages of the algorithm on the software and analog
section of the SIS: (a) input frame, (b) frame-difference computed by the software, (c) software output
after thresholding, (d) smart-pixel array output in frame-difference mode, and (e) A-THR output in
the SIS.

Figure 18 shows a visual comparison of the intermediate stages of the algorithm
on the software baseline implementation and the digital coprocessor. Because the two
implementations receive a single-bit pixel image as input and the algorithm uses integer
arithmetic only, they can produce identical results from the same images. However, the
software and hardware implementations receive different inputs, as shown in Figure 17c,e.
As a result, there are small differences in the image opening output (Figure 18a,c), which
leads to differences in the bounding boxes (Figure 18b,d). Figure 18e overlaps the bounding
boxes produced by the two implementations on the input image of Figure 17a.

Image opening and connected componentson software implementation

Image opening and connected components on the digital coprocessor

Output: bouding boxes

(a) (b)

(c) (d)

(e)

Figure 18. Visual comparison of the intermediate stages of the software and digital coprocessor: (a)
image opening computed by the software, (b) bounding boxes in the software, (c) image opening
computed by the digital coprocessor, (d) bounding boxes output by the digital coprocessor, and (e)
comparison between the outputs of the two implementations.

Sensors 2022, 22, 6538 19 of 24

We quantified the performance of the object location algorithm in the SIS implementa-
tion using the software implementation as a baseline. We used the Intersection over Union
(IoU) index to estimate the accuracy of each bounding box output [72] and the average
precision (AP), which measures the fraction of the objects in the image that are correctly
located by the algorithm [72].

The IoU is defined in Equation (6) as:

IoU =
area(SW ∩ HW)

area(SW ∪ HW)
, (6)

where SW is the ground truth given by the bounding box computed by the software imple-
mentation, and HW is the same bounding box computed by our SIS hardware implementa-
tion. The IoU equals zero when the bounding boxes computed by two implementations
have no overlap, and it equals one when the bounding boxes completely match. To compute
the AP, we define a set of IoU threshold values THRIoU , such that the location result of the
ith object in the image is defined as a true positive (TP) when IoUi ≥ THRIoU , and a false
negative (FN) when IoUi < THRIoU . For each selected value of THRIoU , the precision is
computed as the ratio between the number of TP and the total number of objects (TP+ FN)
in the image. Finally, the AP of the algorithm is computed as the average between the
precision values for each THRIoU in the image, for all images in the dataset.

Using the OSU dataset, we computed a total of 1050 bounding boxes from the 284 input
images. The average value of the IoU for all boxes is 0.94. With the Terravic dataset, we
obtained a total of 65,394 bounding boxes from the 23,355 images, for an average IoU
value of 0.9. To compute the AP, we used THRIoU values in the range [0.85, 0.95] with 0.01
increments. Our SIS implementation of the algorithm obtained an AP of 0.92 on the OSU
dataset and 0.87 on the Terravic dataset.

5.5. Comparison to Related Work

Table 4 compares the smart pixel array proposed in this work to other designs reported
in the literature, discussed in Section 2, that implement object detection on an SIS [30,40,56].
We also include our own previous SIS designed for face recognition [43], which also uses
an iROIC to implement pixel-level operations.

Table 4. Comparison of our smart-pixel design to other circuits in the literature.

This Work [40] [30] [56] [43]

Technology (µm) 0.35 0.18 0.18 0.18 0.13 0.35 0.18

Array size (pixels) 320× 240 320× 240 256× 256 256× 256 320× 240 150× 80 150× 80

Pixel pitch (µm) 32 × 32 32 × 32 31 × 31 5.9 × 5.9 5 × 5 32 × 32 32 × 32

Fill Factor (%) 28 74 19 30 60 34 76

Power (µw) 8.25 (pixel) - 2.18 (array) 51.1 (array) 229 (array) - -

Type of
integrator CTIA CTIA OTA + 2

CAP 5T + 1 CAP 4T CTIA CTIA

Tested spectrum IR IR Visible Visible Visible Visible
IR/NIR

Visible
IR/NIR

AP 0.87–0.92 - 0.84 0.94 0.7–0.87 - -

SIS fps 3846 - 30 30 15 (207 max) 556 -

The SIS presented in [40] detects objects using pixel-level processing to compute HOG
features in an 8× 8-pixel window. The processing circuits reduce the fill factor to 19%. The
rest of the object detection algorithm is performed in a digital coprocessor and achieves an
AP of 0.84. To improve the fill factor, the SISs in [30,56] move most or all the computation
to the column level or to a coprocessor external to the imager. The SIS presented in [30]

Sensors 2022, 22, 6538 20 of 24

implements motion detection only to activate the digital coprocessor that performs object
detection. The SIS combines pixel- and column-level processing to implement motion
detection, and achieves a fill factor of 30% despite sharing capacitors between horizontally
adjacent pixels. The coprocessor achieves an AP of 0.94. The SIS presented in [56] uses
a digital coprocessor that operates at the column level, using an ADC for each column.
Although it adds no additional circuitry at the pixel level, the die area used by the ADCs
and coprocessors limits the fill factor to 60%. The digital coprocessor achieves an AP
between 0.7 and 0.87, depending on the type of object detected.

Compared to works discussed above, our SIS achieves a frame rate that is significantly
higher that those reported in the literature. This is mainly due to the parallelism exploited
by our design at the pixel level and the fact that our column-level circuits have a single-bit
digital output, which improves the readout time. Table 4 also shows that our fill factor is
higher than those reported in the related work when using comparable CMOS processes.
The main reason for this is that our SIS uses iROICs at the pixel level to compute the
frame differences, which only add a capacitor and six extra switches to the conventional
integration circuit. Finally, it is important to note that our design uses a CTIA to perform
integration, which allow us to operate in the IR spectrum and low-light environments. The
works reported in [30,40,56] only operate in the visible spectrum, but this allows them to
use simpler pixel architectures with smaller die area.

The final column of Table 4 reports our own previous SIS [43] designed for face
recognition, which uses an iROIC approach similar to this work. In consequence, the design
achieves a similar fill factor, with slightly less area overhead because it uses only four
switches and one capacitor per pixel. However, its maximum frame rate is significantly
lower because it requires multiple reads per pixel to compute the features of the image at
the column level.

Finally, we estimated a power consumption of 7.5 µW per pixel at 3846 fps for our
design, which is higher than the power per pixel reported for other works in Table 4,
although at a higher frame rate. The static power in the OPAMP of the CTIA is the main
source of power dissipation and could be reduced by temporally powering down the CTIA
when the array operates at a lower frame rate.

6. Conclusions

In this paper, we have presented the architecture and hardware implementation of an
SIS for motion-based object location. The SIS uses a smart-pixel array with local memory
to compute frame differences in the analog domain during pixel-current integration with
high parallelism. It also uses an analog comparator and a digital coprocessor to compute
image opening and connected components to detect objects from the frame-difference
output of the smart-pixel array. We designed the smart pixel array and comparator at
the layout level using the TSMC 0.35 µm and 0.18 µm mixed-signal CMOS processes and
the digital coprocessor at the RTL level using SystemVerilog. We validated the design
using post-layout simulations of the analog section and FPGA-based implementation of
the coprocessor using a Xilinx XC7A35T FPGA.

Our results show that, using a 32 µm × 32 µm pixel, our design reduces the fill factor
from 47.6% to 28% on the 0.35 µm process and from 86.3% to 74% on the 0.18 µm process,
compared to a traditional imager. Because the integration time is reduced by 50% in frame-
difference mode, the pixel resolution is decreased. However, the circuit can still detect
objects with a mean IoU of 0.92 and an AP of 0.9 averaged over two thermal IR datasets,
using a software implementation as a baseline.

Computing the frame differences on the smart-pixel array eliminates the need for a
frame buffer in the digital coprocessor. Indeed, our results show that the FPGA coprocessor
in our SIS does not use on-chip memory blocks, while a fully digital implementation of
the algorithm requires 19 memory blocks for 320× 240-pixel images and 75 blocks for a
640× 480-pixel input. The latter cannot be implemented on the entry-level XC7A35T FPGA,
which features only 50 memory blocks. The digital coprocessor attached to the SIS also

Sensors 2022, 22, 6538 21 of 24

achieves a higher maximum clock frequency, and therefore a higher frame rate, than the
digital implementation of the algorithm.

When we use integration capacitors as double-buffer memory to compute frame
differences, we reduce the penalty on the fill factor compared to circuits that operate with
readout-circuit output. Furthermore, although our smart pixel effectively uses half of the
integration time, which could reduce the signal-to-noise ratio, our results are comparable
to a software implementation of the motion-based object location algorithm.

The on-imager computation of our SIS is convenient in contexts where privacy is
required, where it eliminates the need to continuously transmit video information over a
communication channel. Instead, the SIS can deliver an alarm only when objects in motion
are detected. Another example is the use of our SIS paired with a high-resolution camera
where the SIS could detect objects based on motion and send the bounding boxes to an
external controller, which could use them to activate the capture of that portion of the
high-resolution image.

Author Contributions: Conceptualization, W.V., A.S., P.Z.-H. and M.F.; methodology, W.V., A.S.,
P.Z.-H. and M.F.; software, W.V. and A.S.; supervision, M.F.; writing—original draft, W.V., A.S. and
M.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Agency for Research and Development (ANID)
through graduate scholarship folio 21161616 and FONDECYT Regular Grant No 1220960.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable.

Data Availability Statement: This study uses the following publicly available datasets: OSU Ther-
mal Pedestrian Database http://vcipl-okstate.org/pbvs/bench/Data/01/download.html, and Ter-
ravic Motion Infrared Database http://vcipl-okstate.org/pbvs/bench/Data/05/download.html. All
datasets were last accessed on May 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sanil, N.; Venkat, P.A.N.; Rakesh, V.; Mallapur, R.; Ahmed, M.R. Deep Learning Techniques for Obstacle Detection and Avoidance

in Driverless Cars. In Proceedings of the 2020 International Conference on Artificial Intelligence and Signal Processing (AISP),
Amaravati, India, 10–12 January 2020; pp. 1–4. [CrossRef]

2. Thakurdesai, H.M.; Aghav, J.V. Computer Vision Based Position and Speed Estimation for Accident Avoidance in Driverless
Cars. In ICT Systems and Sustainability; Tuba, M., Akashe, S., Joshi, A., Eds.; Springer: Singapore, 2020; Volume 1077; pp. 435–443.
[CrossRef]

3. Zhu, Y.; Yang, J.; Deng, X.; Xiao, C.; An, W. Infrared Pedestrian Detection Based on Attention Mechanism. J. Phys. Conf. Ser. 2020,
1634, 12032. [CrossRef]

4. Kwon, H.J.; Lee, S.H. Visible and Near-Infrared Image Acquisition and Fusion for Night Surveillance. Chemosensors 2021, 9, 75.
[CrossRef]

5. Salhaoui, M.; Molina-Molina, J.C.; Guerrero-González, A.; Arioua, M.; Ortiz, F.J. Autonomous Underwater Monitoring System
for Detecting Life on the Seabed by Means of Computer Vision Cloud Services. Remote Sens. 2020, 12, 1981. [CrossRef]

6. Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A critical review on computer vision and artificial intelligence in
food industry. J. Agric. Food Res. 2020, 2, 100033. [CrossRef]

7. Khan, W.; Hussain, A.; Kuru, K.; Al-askar, H. Pupil Localisation and Eye Centre Estimation Using Machine Learning and
Computer Vision. Sensors 2020, 20, 3785. [CrossRef]

8. Sikander, G.; Anwar, S. Driver Fatigue Detection Systems: A Review. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2339–2352.
[CrossRef]

9. Arnold, E.; Al-Jarrah, O.Y.; Dianati, M.; Fallah, S.; Oxtoby, D.; Mouzakitis, A. A Survey on 3D Object Detection Methods for
Autonomous Driving Applications. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3782–3795. [CrossRef]

10. Wang, Y.; Fathi, A.; Kundu, A.; Ross, D.A.; Pantofaru, C.; Funkhouser, T.; Solomon, J. Pillar-Based Object Detection for
Autonomous Driving. In Computer Vision—ECCV 2020; Lecture Notes in Computer Science; Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12367; pp. 18–34. [CrossRef]

11. Zhiqiang, W.; Jun, L. A review of object detection based on convolutional neural network. In Proceedings of the 2017 36th
Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 11104–11109. [CrossRef]

http://vcipl-okstate.org/pbvs/bench/Data/01/download.html
http://vcipl-okstate.org/pbvs/bench/Data/05/download.html
http://dx.doi.org/10.1109/AISP48273.2020.9073155
http://dx.doi.org/10.1007/978-981-15-0936-0_47
http://dx.doi.org/10.1088/1742-6596/1634/1/012032
http://dx.doi.org/10.3390/chemosensors9040075
http://dx.doi.org/10.3390/rs12121981
http://dx.doi.org/10.1016/j.jafr.2020.100033
http://dx.doi.org/10.3390/s20133785
http://dx.doi.org/10.1109/TITS.2018.2868499
http://dx.doi.org/10.1109/TITS.2019.2892405
http://dx.doi.org/10.1007/978-3-030-58542-6_2
http://dx.doi.org/10.23919/ChiCC.2017.8029130

Sensors 2022, 22, 6538 22 of 24

12. Zeng, D.; Zhu, M. Multiscale Fully Convolutional Network for Foreground Object Detection in Infrared Videos. IEEE Geosci.
Remote Sens. Lett. 2018, 15, 617–621. [CrossRef]

13. Baek, I.; Chen, W.; Gumparthi Venkat, A.C.; Rajkumar, R.R. Practical Object Detection Using Thermal Infrared Image Sensors.
In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), Nagoya, Japan, 11–17 July 2021;
pp. 372–379. [CrossRef]

14. Woźniak, M.; Połap, D. Object detection and recognition via clustered features. Neurocomputing 2018, 320, 76–84. [CrossRef]
15. Gao, F.; Wang, C.; Li, C. A Combined Object Detection Method With Application to Pedestrian Detection. IEEE Access 2020,

8, 194457–194465. [CrossRef]
16. Wang, H.; Wang, P.; Qian, X. MPNET: An End-to-End Deep Neural Network for Object Detection in Surveillance Video. IEEE

Access 2018, 6, 30296–30308. [CrossRef]
17. Morikawa, C.; Kobayashi, M.; Satoh, M.; Kuroda, Y.; Inomata, T.; Matsuo, H.; Miura, T.; Hilaga, M. Image and video processing

on mobile devices: a survey. Vis. Comput. 2021, 37, 2931–2949. [CrossRef] [PubMed]
18. Liu, L.; Li, H.; Gruteser, M. Edge Assisted Real-time Object Detection for Mobile Augmented Reality. In Proceedings of the 25th

Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 21–25 October 2019; pp. 1–16.
[CrossRef]

19. Wang, R.J.; Li, X.; Ling, C.X. Pelee: A Real-Time Object Detection System on Mobile Devices. In Advances in Neural Information
Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2018. [CrossRef]

20. Chen, B.; Ghiasi, G.; Liu, H.; Lin, T.Y.; Kalenichenko, D.; Adam, H.; Le, Q.V. MnasFPN: Learning Latency-Aware Pyramid
Architecture for Object Detection on Mobile Devices. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 13604–13613. [CrossRef]

21. Mayo, R.N.; Ranganathan, P. Energy Consumption in Mobile Devices: Why Future Systems Need Requirements–Aware Energy
Scale-Down. In Power-Aware Computer Systems; Falsafi, B., VijayKumar, T.N., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2005; Volume 3164; pp. 26–40. [CrossRef]

22. HajiRassouliha, A.; Taberner, A.J.; Nash, M.P.; Nielsen, P.M. Suitability of recent hardware accelerators (DSPs, FPGAs, and GPUs)
for computer vision and image processing algorithms. Signal Process. Image Commun. 2018, 68, 101–119. [CrossRef]

23. Khairy, M.; Wassal, A.G.; Zahran, M. A survey of architectural approaches for improving GPGPU performance, programmability
and heterogeneity. J. Parallel Distrib. Comput. 2019, 127, 65–88. [CrossRef]

24. Yin, X.; Chen, L.; Zhang, X.; Gao, Z. Object Detection Implementation and Optimization on Embedded GPU System. In
Proceedings of the 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia,
Spain, 6–8 June 2018; pp. 1–5. [CrossRef]

25. Feng, X.; Jiang, Y.; Yang, X.; Du, M.; Li, X. Computer vision algorithms and hardware implementations: A survey. Integration
2019, 69, 309–320. [CrossRef]

26. Zaman, K.S.; Reaz, M.B.I.; Ali, S.H.M.; Bakar, A.A.A.; Chowdhury, M.E.H. Custom Hardware Architectures for Deep Learning on
Portable Devices: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–21. [CrossRef]

27. Ohta, J. Smart CMOS Image Sensors and Applications, 2nd ed.; Optical Science and Engineering; CRC Press: Boca Raton, FL, USA,
2020.

28. Hasler, J. Analog Architecture Complexity Theory Empowering Ultra-Low Power Configurable Analog and Mixed Mode SoC
Systems. J. Low Power Electron. Appl. 2019, 9, 4. [CrossRef]

29. Zhong, X.; Yu, Q.; Bermak, A.; Tsui, C.Y.; Law, M.K. A 2pJ/pixel/direction MIMO processing based CMOS image sensor for
omnidirectional local binary pattern extraction and edge detection. In Proceedings of the 2018 IEEE Symposium on VLSI Circuits,
Honolulu, HI, USA, 18–22 June 2018; pp. 247–248.

30. Choi, J.; Park, S.; Cho, J.; Yoon, E. A 3.4-µW Object-Adaptive CMOS Image Sensor With Embedded Feature Extraction Algorithm
for Motion-Triggered Object-of-Interest Imaging. IEEE J.-Solid-State Circuits 2014, 49, 289–300. [CrossRef]

31. Hsu, T.H.; Chen, Y.R.; Liu, R.S.; Lo, C.C.; Tang, K.T.; Chang, M.F.; Hsieh, C.C. A 0.5-V Real-Time Computational CMOS Image
Sensor With Programmable Kernel for Feature Extraction. IEEE J.-Solid-State Circuits 2020, 56, 1588–1596. [CrossRef]

32. Massari, N.; Gottardi, M. A 100 dB Dynamic-Range CMOS Vision Sensor With Programmable Image Processing and Global
Feature Extraction. IEEE J.-Solid-State Circuits 2007, 42, 647–657. [CrossRef]

33. Jin, M.; Noh, H.; Song, M.; Kim, S.Y. Design of an Edge-Detection CMOS Image Sensor with Built-in Mask Circuits. Sensors 2020,
20, 3649. [CrossRef] [PubMed]

34. Yin, C.; Hsieh, C.C. A 0.5V 34.4uW 14.28kfps 105dB smart image sensor with array-level analog signal processing. In Proceedings
of the 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 11–13 November 2013; pp. 97–100. [CrossRef]

35. Kim, C.; Bong, K.; Hong, I.; Lee, K.; Choi, S.; Yoo, H.J. An ultra-low-power and mixed-mode event-driven face detection SoC
for always-on mobile applications. In Proceedings of the ESSCIRC 2017—43rd IEEE European Solid State Circuits Conference,
Leuven, Belgium, 11–14 September 2017; pp. 255–258. [CrossRef]

36. Bong, K.; Choi, S.; Kim, C.; Han, D.; Yoo, H.J. A Low-Power Convolutional Neural Network Face Recognition Processor and a
CIS Integrated With Always-on Face Detector. IEEE J.-Solid-State Circuits 2018, 53, 115–123. [CrossRef]

37. Kim, J.H.; Kim, C.; Kim, K.; Yoo, H.J. An Ultra-Low-Power Analog-Digital Hybrid CNN Face Recognition Processor Integrated
with a CIS for Always-on Mobile Devices. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems
(ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [CrossRef]

http://dx.doi.org/10.1109/LGRS.2018.2797538
http://dx.doi.org/10.1109/IVWorkshops54471.2021.9669227
http://dx.doi.org/10.1016/j.neucom.2018.09.003
http://dx.doi.org/10.1109/ACCESS.2020.3031005
http://dx.doi.org/10.1109/ACCESS.2018.2836921
http://dx.doi.org/10.1007/s00371-021-02200-8
http://www.ncbi.nlm.nih.gov/pubmed/34177023
http://dx.doi.org/10.1145/3300061.3300116
http://dx.doi.org/10.48550/ARXIV.1804.06882
http://dx.doi.org/10.1109/CVPR42600.2020.01362
http://dx.doi.org/10.1007/978-3-540-28641-7_3
http://dx.doi.org/10.1016/j.image.2018.07.007
http://dx.doi.org/10.1016/j.jpdc.2018.11.012
http://dx.doi.org/10.1109/BMSB.2018.8436848
http://dx.doi.org/10.1016/j.vlsi.2019.07.005
http://dx.doi.org/10.1109/TNNLS.2021.3082304
http://dx.doi.org/10.3390/jlpea9010004
http://dx.doi.org/10.1109/JSSC.2013.2284350
http://dx.doi.org/10.1109/JSSC.2020.3034192
http://dx.doi.org/10.1109/JSSC.2006.891454
http://dx.doi.org/10.3390/s20133649
http://www.ncbi.nlm.nih.gov/pubmed/32610632
http://dx.doi.org/10.1109/ASSCC.2013.6690991
http://dx.doi.org/10.1109/ESSCIRC.2017.8094574
http://dx.doi.org/10.1109/JSSC.2017.2767705
http://dx.doi.org/10.1109/ISCAS.2019.8702698

Sensors 2022, 22, 6538 23 of 24

38. Yang, J.; Shi, C.; Cao, Z.; Han, Y.; Liu, L.; Wu, N. Smart image sensing system. In Proceedings of the 2013 IEEE SENSORS,
Baltimore, MD, USA, 3–6 November 2013; pp. 1–4. [CrossRef]

39. Choi, J.; Lee, S.; Son, Y.; Kim, S.Y. Design of an Always-On Image Sensor Using an Analog Lightweight Convolutional Neural
Network. Sensors 2020, 20, 3101. [CrossRef] [PubMed]

40. Lee, K.; Park, S.; Park, S.Y.; Cho, J.; Yoon, E. A 272.49 pJ/pixel CMOS image sensor with embedded object detection and
bio-inspired 2D optic flow generation for nano-air-vehicle navigation. In Proceedings of the 2017 Symposium on VLSI Circuits,
Kyoto, Japan, 5–8 June 2017; pp. C294–C295.

41. Xie, S.; Prouza, A.A.; Theuwissen, A. A CMOS-Imager-Pixel-Based Temperature Sensor for Dark Current Compensation. IEEE
Trans. Circuits Syst. Ii Express Briefs 2020, 67, 255–259. [CrossRef]

42. Zhou, T.; Zhao, J.; He, Y.; Jiang, B.; Su, Y. A Readout Integrated Circuit (ROIC) employing self-adaptive background current
compensation technique for Infrared Focal Plane Array (IRFPA). Infrared Phys. Technol. 2018, 90, 122–132. [CrossRef]

43. Valenzuela, W.; Soto, J.E.; Zarkesh-Ha, P.; Figueroa, M. Face Recognition on a Smart Image Sensor Using Local Gradients. Sensors
2021, 21, 2901. [CrossRef]

44. Sanchez-Fernandez, A.J.; Romero, L.F.; Peralta, D.; Medina-Pérez, M.A.; Saeys, Y.; Herrera, F.; Tabik, S. Asynchronous Processing
for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems. IEEE Access 2020, 8, 124236–124253. [CrossRef]

45. Zhang, S.; Wang, X.; Lei, Z.; Li, S.Z. Faceboxes: A CPU real-time and accurate unconstrained face detector. Neurocomputing 2019,
364, 297–309. [CrossRef]

46. Zhao, R.; Niu, X.; Wu, Y.; Luk, W.; Liu, Q. Optimizing CNN-Based Object Detection Algorithms on Embedded FPGA Platforms.
In Applied Reconfigurable Computing; Lecture Notes in Computer Science; Wong, S., Beck, A.C., Bertels, K., Carro, L., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; Volume 10216; pp. 255–267. [CrossRef]

47. Fan, H.; Liu, S.; Ferianc, M.; Ng, H.C.; Que, Z.; Liu, S.; Niu, X.; Luk, W. A Real-Time Object Detection Accelerator with Compressed
SSDLite on FPGA. In Proceedings of the 2018 International Conference on Field-Programmable Technology (FPT), Okinawa,
Japan, 10–14 December 2018; pp. 14–21. [CrossRef]

48. Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H.J. A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN
for Object Detection. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2019, 27, 1861–1873. [CrossRef]

49. Sharma, A.; Singh, V.; Rani, A. Implementation of CNN on Zynq based FPGA for Real-time Object Detection. In Proceedings of
the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India,
6–8 July 2019; pp. 1–7. [CrossRef]

50. Zhang, N.; Wei, X.; Chen, H.; Liu, W. FPGA Implementation for CNN-Based Optical Remote Sensing Object Detection. Electronics
2021, 10, 282. [CrossRef]

51. Long, X.; Hu, S.; Hu, Y.; Gu, Q.; Ishii, I. An FPGA-Based Ultra-High-Speed Object Detection Algorithm with Multi-Frame
Information Fusion. Sensors 2019, 19, 3707. [CrossRef] [PubMed]

52. Nakahara, H.; Yonekawa, H.; Sato, S. An object detector based on multiscale sliding window search using a fully pipelined
binarized CNN on an FPGA. In Proceedings of the 2017 International Conference on Field Programmable Technology (ICFPT),
Melbourne, VIC, Canada, 11–13 December 2017; pp. 168–175. [CrossRef]

53. Hameed, R.; Qadeer, W.; Wachs, M.; Azizi, O.; Solomatnikov, A.; Lee, B.C.; Richardson, S.; Kozyrakis, C.; Horowitz, M.
Understanding sources of inefficiency in general-purpose chips. In Proceedings of the 37th Annual International Symposium on
Computer Architecture, Saint-Malo, France, 19–23 June 2010; pp. 37–47.

54. Zarkesh-Ha, P. An intelligent readout circuit for infrared multispectral remote sensing. In Proceedings of the 2014 IEEE 57th
International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, USA, 3–6 August 2014; pp. 153–156.

55. Gottardi, M.; Lecca, M. A 64× 64 Pixel Vision Sensor for Local Binary Pattern Computation. IEEE Trans. Circuits Syst. Regul. Pap.
2019, 66, 1831–1839. [CrossRef]

56. Young, C.; Omid-Zohoor, A.; Lajevardi, P.; Murmann, B. A Data-Compressive 1.5/2.75-bit Log-Gradient QVGA Image Sensor
With Multi-Scale Readout for Always-On Object Detection. IEEE J.-Solid-State Circuits 2019, 54, 2932–2946. [CrossRef]

57. Shin, M.S.; Kim, J.B.; Kim, M.K.; Jo, Y.R.; Kwon, O.K. A 1.92-megapixel CMOS image sensor with column-parallel low-power and
area-efficient SA-ADCs. IEEE Trans. Electron Dev. 2012, 59, 1693–1700. [CrossRef]

58. Keivani, A.; Tapamo, J.R.; Ghayoor, F. Motion-based moving object detection and tracking using automatic K-means. In
Proceedings of the 2017 IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 32–37. [CrossRef]

59. Zhan, C.; Duan, X.; Xu, S.; Song, Z.; Luo, M. An Improved Moving Object Detection Algorithm Based on Frame Difference and
Edge Detection. In Proceedings of the 4th International Conference on Image and Graphics (ICIG 2007), Sichuan, China, 22–24
August 2007; pp. 519–523. [CrossRef]

60. Bhanu, B.; Han, J. Kinematic-based human motion analysis in infrared sequences. In Proceedings of the 6th IEEE Workshop on
Applications of Computer Vision, 2002. (WACV 2002), Orlando, FL, USA, 3–4 December 2002; pp. 208–212. [CrossRef]

61. Yin, J.; Liu, L.; Li, H.; Liu, Q. The infrared moving object detection and security detection related algorithms based on W4 and
frame difference. Infrared Phys. Technol. 2016, 77, 302–315. [CrossRef]

62. He, L.; Ren, X.; Gao, Q.; Zhao, X.; Yao, B.; Chao, Y. The connected-component labeling problem: A review of state-of-the-art
algorithms. Pattern Recognit. 2017, 70, 25–43. [CrossRef]

http://dx.doi.org/10.1109/ICSENS.2013.6688261
http://dx.doi.org/10.3390/s20113101
http://www.ncbi.nlm.nih.gov/pubmed/32486271
http://dx.doi.org/10.1109/TCSII.2019.2914588
http://dx.doi.org/10.1016/j.infrared.2018.03.001
http://dx.doi.org/10.3390/s21092901
http://dx.doi.org/10.1109/ACCESS.2020.3005476
http://dx.doi.org/10.1016/j.neucom.2019.07.064
http://dx.doi.org/10.1007/978-3-319-56258-2_22
http://dx.doi.org/10.1109/FPT.2018.00014
http://dx.doi.org/10.1109/TVLSI.2019.2905242
http://dx.doi.org/10.1109/ICCCNT45670.2019.8944792
http://dx.doi.org/10.3390/electronics10030282
http://dx.doi.org/10.3390/s19173707
http://www.ncbi.nlm.nih.gov/pubmed/31455020
http://dx.doi.org/10.1109/FPT.2017.8280135
http://dx.doi.org/10.1109/TCSI.2018.2883792
http://dx.doi.org/10.1109/JSSC.2019.2937437
http://dx.doi.org/10.1109/TED.2012.2190936
http://dx.doi.org/10.1109/AFRCON. 2017.8095451
http://dx.doi.org/10.1109/ICIG.2007.153
http://dx.doi.org/10.1109/ACV.2002.1182183
http://dx.doi.org/10.1016/j.infrared.2016.06.004
http://dx.doi.org/10.1016/j.patcog.2017.04.018

Sensors 2022, 22, 6538 24 of 24

63. Eminoglu, S.; Isikhan, M.; Bayhan, N.; Gulden, M.A.; Incedere, O.S.; Soyer, S.T.; Kocak, S.; Yalcin, C.; Ustundag, M.C.B.; Turan,
O.; Eksi, U.; Akin, T. A 1280 × 1024-15 µm CTIA ROIC for SWIR FPAs. In Infrared Technology and Applications XLI; Andresen,
B.F., Fulop, G.F., Hanson, C.M., Norton, P.R., Eds.; SPIE: Bellingham, WA, USA; International Society for Optics and Photonics:
Bellingham, WA, USA, 2015, Volume 9451; pp. 218–230. [CrossRef]

64. Murari, K.; Etienne-Cummings, R.; Thakor, N.V.; Cauwenberghs, G. A CMOS In-Pixel CTIA High-Sensitivity Fluorescence
Imager. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 449–458. [CrossRef]

65. Berkovich, A.; Castro, A.; Islam, M.; Choa, F.; Barrows, G.; Abshire, P. Dark current reduction by an adaptive CTIA photocircuit
for room temperature SWIR sensing. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [CrossRef]

66. Zhai, Y.; Ding, R. Design of a ROIC with high dynamic range for LWIR FPAs. In Infrared, Millimeter-Wave, and Terahertz
Technologies III; Zhang, C., Zhang, X.C., Tani, M., Eds.; SPIE: Bellingham, WA, USA; International Society for Optics and Photonics:
Bellingham, WA, USA, 2011; Volume 9275; pp. 160–167. [CrossRef]

67. Borniol, E.D.; Guellec, F.; Castelein, P.; Rouvié, A.; Robo, J.A.; Reverchon, J.L. High-performance 640 x 512 pixel hybrid InGaAs
image sensor for night vision. In Infrared Technology and Applications XXXVIII; Andresen, B.F., Fulop, G.F., Norton, P.R., Eds.; SPIE:
Bellingham, WA, USA; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 8353; pp. 88–95.
[CrossRef]

68. Blerkom, D.A.V. Analysis and simulation of CTIA-based pixel reset noise. In Infrared Technology and Applications XXXVII;
Andresen, B.F., Fulop, G.F., Norton, P.R., Eds.; SPIE: Bellingham, WA, USA; International Society for Optics and Photonics:
Bellingham, WA, USA, 2011; Volume 8012; pp. 159–168. [CrossRef]

69. Soto, J.E.; Valenzuela, W.E.; Diaz, S.; Saavedra, A.; Figueroa, M.; Ghasemi, J.; Zarkesh-Ha, P. An intelligent readout integrated
circuit (iROIC) with on-chip local gradient operations. In Proceedings of the 2017 24th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), Batumi, Georgia, 5–8 December 2017; pp. 360–362. [CrossRef]

70. Meola, C., Ed. Infrared Thermography Recent Advances and Future Trends; Bentham Science Publishers: Sharjah, United Arab
Emirates, 2012. [CrossRef]

71. Bench, S.; Miezianko, R. Terravic Research Infrared Database. 2005. Available online: http://vcipl-okstate.org/pbvs/bench/
Data/05/download.html (accessed on May 2022).

72. Padilla, R.; Netto, S.L.; Da Silva, E.A. A survey on performance metrics for object-detection algorithms. In Proceedings of the 2020
International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 2–4 June 2020; pp. 237–242.

http://dx.doi.org/10.1117/12.2179537
http://dx.doi.org/10.1109/TBCAS.2011.2114660
http://dx.doi.org/10.1109/ISCAS.2017.8050414
http://dx.doi.org/10.1117/12.2071838
http://dx.doi.org/10.1117/12.921086
http://dx.doi.org/10.1117/12.886958
http://dx.doi.org/10.1109/ICECS.2017.8292082
http://dx.doi.org/10.2174/97816080514341120101
http://vcipl-okstate.org/pbvs/bench/Data/05/download.html
http://vcipl-okstate.org/pbvs/bench/Data/05/download.html

	Introduction
	Related Work
	Object-Location Algorithm
	SIS Architecture
	Smart Pixel
	A-THR
	Digital Coprocessor

	Results
	Smart Pixel and A-THR Implementation
	Simulation Results
	FPGA Implementation of the Digital Coprocessor
	SIS Object Location Performance
	Comparison to Related Work

	Conclusions
	References

