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Abstract: In real industrial scenarios, intelligent fault diagnosis based on data-driven methods has
been widely researched in the past decade. However, data scarcity is widespread in fault diagnosis
tasks owning to the difficulties in collecting adequate data. As a result, there is an increasing demand
for both researchers and engineers for fault identification with scarce data. To address this issue,
an innovative domain-adaptive prototype-recalibrated network (DAPRN) based on a transductive
learning paradigm and prototype recalibration strategy (PRS) is proposed, which has the potential
to promote the generalization ability from the source domain to target domain in a few-shot fault
diagnosis. Within this scheme, the DAPRN is composed of a feature extractor, a domain discriminator,
and a label predictor. Concretely, the feature extractor is jointly optimized by the minimization of
few-shot classification loss and the maximization of domain-discriminative loss. The cosine similarity-
based label predictor, which is promoted by the PRS, is exploited to avoid the bias of naïve prototypes
in the metric space and recognize the health conditions of machinery in the meta-testing process. The
efficacy and advantage of DAPRN are validated by extensive experiments on bearing and gearbox
datasets compared with seven popular and well-established few-shot fault diagnosis methods. In
practical application, the proposed DAPRN is expected to solve more challenging few-shot fault
diagnosis scenarios and facilitate practical fault identification problems in modern manufacturing.

Keywords: intelligent fault diagnosis; transductive domain adaptation; prototype recalibration
strategy; limited data conditions

1. Introduction

With the advancement of the Industrial Internet of Things (IIoT), modern manufactur-
ing based on the complex industrial system is progressing towards high-level precision
and speed, accompanied by high demand for reliability and health management [1]. In
engineering practice, any unexpected failure of large industrial mechanical equipment may
lead to serious casualties and economic losses [2,3]. Hence, accurate fault diagnosis, which
is of great importance for equipment health management, has received more and more
attention from both academia and industry.

Recently, a lot of intelligent fault diagnosis methods based on deep learning (DL)
models which can automatically recognize health conditions of machinery in an end-to-end
manner have made major advances, such as sparse auto-encoder (SAE) [4], convolutional
neural network (CNN) [5,6], generative adversarial network (GAN) [7,8], graph neural
network (GNN) [9], long short-term memory network (LSTM) [10], and deep belief network
(DBN) [11]. In general, DL-based fault diagnosis models directly learn the mapping between
the training dataset with available labels and recognize the unseen health conditions
in the testing dataset, and the training and testing datasets are implicitly in the same
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distribution. To solve the cross-domain fault identification, transfer learning (TL), which
leverages learned diagnostic knowledge from similar and relative tasks in the source
domain and identifies the health conditions of the target domain, has been developed
in recent years [12–18]. In the TL scheme, the health conditions of source and target
domains are generally the same, except for some partial TL methods [19–22] and open
set TL methods [23,24]. Moreover, the TL scheme is also data-greedy, similar to the DL
scheme. Based on the above analysis, both traditional DL and TL have been successfully
implemented in data-intensive applications but they are usually hampered when data are
limited. In the field of fault diagnosis, the original data are collected and classified by
faulty types and operating conditions. In modern production, it is apparent that machinery
does not always work under high load and speed, except in emergencies. Additionally,
the fault identification and health management system does not allow machines to work
in faulty states; only limited original data with supervised labels are collected in practice.
Unfortunately, these diagnostic tasks with data-scarce cases are common in real-world
modern machinery. Consequently, intelligent fault diagnosis with scarce data is a scenario
with ever-increasing demand in practical engineering.

Few-shot learning (FSL) [16] is a promising tool to solve the above challenge, which
aims to train a classifier to diagnose unseen health conditions during the training process
with limited labeled data. Motivated by strong generalization ability of humans to perform
even one-shot classification, FSL is widely explored in several fields [17], for instance, image
classification [18], intrusion detection [19], disease prediction [20], and fault diagnosis [21].
To recognize the health conditions of bearings, Zhang et al. [22] proposed a few-shot
diagnosis model based on the Siamese neural network (SiameseNet), which learns the
similarity-based information in feature space by inputting sample pairs of the same or dif-
ferent classes. Ren et al. [1] presented a novel few-shot model composed of an auto-encoder
and capsule network, which shows high performance on few-show fault diagnosis tasks.
Inspired by the model-agnostic meta-learning (MAML), a few-shot learning framework
whose fault classifier is trained with limited target data is proposed for bearing fault diag-
nosis [23], the MAML-based framework is further validated by recognizing new bearing
damages of a public dataset. Combined with supervised domain adaptation and prototype
learning, a Siamese architecture is proposed to learn the domain-invariant space for bearing
fault identification with limited data [24]. As a variation of the metric-based meta-learning
method, Wang et al. [25] presented a reinforced relation network for rolling element bearing
fault identification with few-shot samples. Based on the deep metric of relation network
(RelationNet) [26], Wu et al. [27] proposed a unified convolutional neural network for
few-shot diagnosis tasks for machinery. Further, a metric-based meta-learning model with
global supervised training and episodic training in feature space, which is extended from
the matching network (MatchingNet) [28] and prototypical network (ProtoNet) [29], is
proposed for fault diagnosis of machinery under various limited data conditions [21].

Through the systematic literature review, it can be concluded that these existing net-
works with few-shot generalization ability have made great progress in fault diagnosis with
limited data in real industrial scenarios. Two main branches of the FSL, i.e., optimization-
based meta-learning [23,30] and metric-based meta-learning [21,24], have been applied
in the intelligent fault diagnosis of machinery. Moreover, the metric-based meta-learning
methods show great potential in the field of few-shot fault diagnosis. Despite the various
design of network architecture in metric-based meta-learning methods, these methods are
composed of a network-based feature extractor for high-level representation extraction
and a similarity-based classifier for fault diagnosis with unseen health conditions. During
the meta-learning phase, the episodic training method is applied to randomly sample
mini-batches as episodes to mimic the few-shot tasks in the source dataset with base classes
and generalize the diagnostic knowledge to facilitate few-shot fault diagnosis tasks in
the target dataset with novel classes. Nonetheless, there are still two drawbacks to these
aforementioned studies. (1) Note that most existing few-shot diagnosis methods make the
implicit hypothesis that the source and target data are from the same distribution. However,
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this hypothesis is not valid due to the huge difference in the working conditions of machin-
ery in real-industrial scenarios. (2) Metric-based meta-learning methods require identifying
faults of machinery with limited labeled samples in practical engineering. However, the
narrow-size target distribution, which relies heavily on scarce data from the target domain,
tends to train a biased similarity-based classifier.

To solve the above-mentioned issues, a novel FSL method named domain-adaptive
prototype-recalibrated network (DAPRN) with transductive learning paradigm and proto-
type recalibration strategy (PRS) is proposed for intelligent fault diagnosis of machinery
under various limited data conditions. The proposed DAPRN, which is inspired by the
idea of ProtoNet, is composed of a feature extractor, a domain discriminator, and a cosine
similarity-based label predictor. Integrating the domain adaptation into the meta-training
process, the feature extractor of DAPRN learns a domain-invariant representation space be-
tween the source and target domains through joint optimization of minimizing the few-shot
classification loss and maximizing the domain-discriminative loss. The prototypes, which
denote the representations of health conditions in the latent metric space, are recalibrated
by the PRS to reduce the bias of naïve prototypes and promote few-shot fault diagnosis.
Hence, the trained feature extractor and label predictor are capable of identifying the health
condition of machinery in the meta-testing process.

The contributions of the work can be summarized as follows.

(1). To address fault diagnosis with limited data, an innovative end-to-end DAPRN which
is made up of a feature extractor, a domain discriminator, and a label predictor is
presented. In the training process, the feature extractor learns a representation space by
a hybrid training strategy combined with the minimization of few-shot classification
loss and the maximization of domain-discriminative loss. In the testing process, the
label predictor with recalibrated prototypes can recognize the health conditions of
target samples using the generalized meta-knowledge of source diagnostic tasks.

(2). The structure of the feature extractor is appropriately discussed. In addition, to
explore whether and how the data capacity and category richness of the source
dataset regulate the performance of few-shot fault diagnosis, a series of experiments
are designed and carried out. The details of experimental results are analyzed and
discussed thoroughly.

(3). To test the validity and superiority of the DAPRN, extensive few-shot fault diagnosis
tasks of rolling element bearings and planetary gearboxes under various limited data
conditions are conducted. Compared with existing popular FSL methods, in-depth
quantitative and qualitative analysis convincingly demonstrates that the proposed
method significantly improves the performance of the few-shot fault diagnosis. In ad-
dition, ablation studies are implemented to further verify the advance of the proposed
method.

The rest of this paper is structured as follows. The background knowledge, including
few-shot learning for fault diagnosis, prototypical network based on deep metric learn-
ing, and transductive few-shot learning paradigm, is provided in Section 2. Detailed
descriptions of the proposed DAPGN are given in Section 3. Section 4 provides an in-
depth discussion on multiple few-shot tasks. Finally, Section 5 concludes this research and
proposes prospects for future work.

2. Background Knowledge
2.1. Few-Shot Learning for Fault Diagnosis

The workflows of traditional DL, TL, and FSL are demonstrated in Figure 1. Shown in
Figure 1a, a supervised fault diagnosis task usually is composed of a training set (source
domain) with labeled data for training the traditional DL models and a testing dataset
(target domain) for model evaluation. It should be pointed out that the training and
testing datasets are drawn from one probability distribution. Shown in Figure 1b, a
cross-domain fault diagnosis task consists of a source dataset with labeled data and a
target dataset with unlabeled data, and these two datasets are collected from different
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probability distributions. The TL models, which are trained on the source and target
domains employing unsupervised domain adaptation, can correctly recognize samples
of the unlabeled target domains. Shown in Figure 1c, the traditional fault diagnosis
task is termed a few-shot task when the training dataset contains limited samples with
supervised labels. Unlike traditional DL and TL, the source dataset of FSL, whose label
space is disjointed from that of the target domain, is named base or auxiliary set with a
large amount of labeled data. Note that the training dataset (i.e., support set) with scarce
annotated data and testing dataset (i.e., query set) are sampled from the target domain and
share the same label space. For clarity, the differences between the above three methods are
summarized in Table 1.

Figure 1. Visualization of (a) traditional DL, (b) TL, (c) FSL.

Table 1. The differences between the three methods (i.e., traditional DL, TL, and FSL).

Methods Domains Source and Target
Task Source Label Target Label

Traditional DL Same Same Available Available
TL Different Same or related Available Unavailable
FSL Same or different Different Available Limited labels

Referring to the few-shot classification in computer vision [25,26], the detailed defini-
tion of few-shot fault diagnosis is shown as follows. Meta-learning, which is motivated by
the learning process of humans and is also known as “learning to learn”, aims to obtain
the ability to learn meta-knowledge on higher-level tasks by episodic training. Specifically,
there are three datasets in the few-shot fault diagnosis problem: a base set (denoted as
B), a support set (denoted as S), and a query set (denoted as Q). For an NT-way K-shot
M-test few-shot fault diagnosis task (denoted as T T) from target domain, the support
set ST consists of K samples per class, and the query set QT consists of M unlabeled
examples per class. Note that the support set ST is composed of MT labeled samples{(

xT
1 , y1

)
, . . . ,

(
xT

MT , yMT

)}
where each xT

i ∈ RD is the D-dimensional representation

vector of the original vibration signals and yi ∈
{

1, 2, . . . , NT} is the corresponding health
condition, and MT is equal to NT × K. The base set B consists of MS labeled samples{(

xS
1 , y1

)
, . . . ,

(
xS

MS , yMS

)}
in the source domain where each xS

i ∈ RD is raw vibration

signal and yi ∈
{

1, 2, . . . , NS} is the corresponding health condition. It should be pointed
out that the NS is equal or greater than NT in practice. During the meta-training phase,
the FSL models randomly sample several similar source tasks T Ss by imitating the target
task T T . The glamor of episodic meta-learning is to tackle the few-shot fault diagnosis
by generalizing from T S based on a known source domain to T T on the target domain.
During the meta-testing phase, a trained metric-based model is capable of recognizing the
health conditions of the query set QT .
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2.2. Prototypical Network Based on Metric Learning

The prototypical network (ProtoNet) [27], proposed by Snell et al. in 2017, is becoming
one of the most typical and popular metric-based meta-learning methods for FSL applica-
tions in various fields. Employing metric learning, ProtoNet can learn a proper metric space
in which recognition is conducted by distance measurement between learned prototypes of
each class and samples.

Metric learning, also termed distance metric learning, aims to learn a metric function
to measure the similarity among samples automatically. Generally, the metric learning
methods usually learn a linear metric function that transforms the samples into repre-
sentations in a shallow feature space. Owing to the limited ability of metric learning to
process complex and massive data, DL-based deep metric learning, one main branch of
metric learning, exploits deep architecture to obtain embedded representations for the
measurement of similarity [28]. In ProtoNet, the process of deep metric learning is shown
in Figure 2. The original data, such as two-dimensional (2D) images and one-dimensional
(1D) signals, are fed into one deep decoding network to obtain the representation of the
original data in feature space. Then, a metric (e.g., Euclidean, Cosine, Mahalanobis, and
Kullback–Leibler) is utilized to make the embeddings per class closer to each other in
metric space as the training continues.

Figure 2. Deep metric learning.

As shown in Figure 3, the scheme of ProtoNet consists of two main stages: prototype
generation and distance measurement. As the key element of ProtoNet, representation
averaging is conducted to generate prototypes for each class. The similarity between
query samples and learned prototypes is measured, and the query samples can be correctly
classified into a certain category.

Figure 3. The scheme of ProtoNet.

2.3. Transductive Few-Shot Learning Paradigm

With the rapid advance in DL algorithms and computational power, inductive learning-
based methods have achieved unprecedented success in traditional supervised tasks [29].
According to the inductive learning paradigm, a machine learning model, which was
trained on a training dataset to generalize rules, is applied to predict a testing dataset.
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In contrast to inductive learning, transductive learning-based methods encountered both
training and testing datasets during the training process [30].

Recently, a large body of research has exploited transductive inference in few-shot
applications [31–33]. In the transductive few-shot learning paradigm, the FSL models
will use both the unlabeled samples in the query set and labeled samples in the support
set during the meta-training phase, instead of training on support samples in inductive
learning-based methods. For instance, Dhillion et al. proposed a transductive few-shot
baseline that improves the few-shot classification performance by minimizing the entropy
on the predictions of query samples during the meta-training phase [32]. Further, the
transductive relation-propagation network fully exploits the relations between the support
set and query set by relation propagation [34]. There is a great deal of research indicating
that transductive learning-based methods, which serve as an increasingly appealing method
to solve few-shot tasks, outperform inductive learning-based methods in many few-shot
classification scenarios [29,35].

3. Proposed Method
3.1. The Architecture of Proposed DAPRN

In this work, intelligent fault diagnosis, in which a model trained on a support set S
(i.e., training set) with limited labeled data is utilized to predict the health conditions of an
unlabeled query set Q (i.e., testing set), is discussed. Paradoxically, a model trained on the
support set S with scarce data is usually overfitting and not conducive to effective fault
diagnosis on the query set Q in practical engineering. Given the commonality in machine
fault diagnosis tasks, such as comparable rolling element bearings installed in different
positions or the same position under various operating conditions, it is expected that a
somewhat complex few-shot fault diagnosis task can be accomplished if a related labeled
dataset with relatively sufficient data, also known as base set B, is available.

The architecture of the proposed end-to-end DAPRN for a few-shot fault diagnosis of
machinery is shown in Figure 4. For the fault diagnosis tasks with limited data, the DAPRN
is fed with original 1D vibration signals and trained by the episodic training method. It must
be noticed that the DAPRN, which is extended from the naïve ProtoNet, is a transductive
metric-based meta-learning method. As illustrated in Figure 4, the DAPRN is composed
of three main parts, including a feature extractor fFE, a domain discriminator fD, and a
prototype-based label predictor fLP. Given the dimension of original vibration signals, the
feature extractor fFE is designed as a 1D CNN with powerful feature extraction ability
from sequential data. Following [36,37], the feature extractor fFE consists of multiple 1D
convolutional and maxpooling layers. More specifically, the convolution operation extracts
local temporal features from original vibration signals and the max-pooling operation
recognizes the most important features from the output of the last convolutional layer. The
domain discriminator fD, which is connected with the feature extractor fFE, is designed
with two fully-connected layers. During the training phase, the flattened representation
vectors of source and target domains are input into the fD. Due to transductive domain
adaptation, the learned metric space of the feature extractor fFE is adapted to enhance
the ability of generating more effective task-specific representations in the target domain
during the beta-testing phase. The prototype-based label predictor fLP is a module based
on cosine distance and prototype recalibration without trainable parameters. It is noted
that the refined predictor is the trained predictor fLP with prototype recalibration during
the training phase.
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Figure 4. The proposed DAPRN.

3.2. Optimization Objective Function

As illustrated in Figure 4, there are two optimization objectives in the training proce-
dure of DAPRN. (1) For the feature extractor fFE with trainable parameters θFE, minimizing
the few-shot classification error LC of the source support-query data guides the fFE to learn
an effective metric space for few-shot fault diagnosis tasks. (2) For the domain discriminator
fD with trainable parameters θD, maximizing the domain-discriminative loss LD of data
of both domains is capable of achieving marginal distribution alignment, thus further
benefiting the task-specific representation extraction in the target domain.

For an N-way K-shot fault diangosis task T T , the base set B is composed of a series of
annotated subsets DS

n
(
n = 1, . . . , NS)(NS ≥ N

)
. At the beginning of each training epoch,

N out of NS categories are randomly selected to mimic the T T , and each selected subset

DS
n for category n is chosen with K samples as support set SS

n =
{(

xS
S,i, yS,i

)}K

i=1
randomly

and the rest of the subset is the query set with Mtrain samples QS
n =

{(
xS

Q,i, yQ,i

)}Mtrain

i=1
.

Hence, several analogous data-structure few-shot tasks T Ss are obtained in the source
domain for the whole training procedure. For convenience, the XS with MS samples and
XT with MT samples represent all chosen samples in source and target domains during
one training epoch, respectively.
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The proposed DAPRN obtains a prototype in the same way as the naïve ProtoNet.
Each prototype Pn, which is an average vector of the embedded representations obtained
by the feature extractor fFE : RD → RH , is defined as follows:

Pn =
1
K ∑

xS
S,i∈SS

n

fFE

(
xS

S,i

)
(1)

Different from the naïve ProtoNet using Euclidean distance for metric learning, cosine
similarity has gained popularity in few-shot fault diagnosis of machinery [37]. Given
a cosine similarity function dcos : RH ×RH → [0, 1] , the label predictor fLP generates a
softmax-based probability p over all categories for a sample xS

Q,i of query set QS in the
embedding metric space as follows:

p
(

y = n | xS
Q,i

)
= fLP

(
fFE

(
xS

Q,i

))
=

exp
(

dcos

(
fFE

(
xS

Q,i

)
, Pn

))
∑N

n=1 exp
(

dcos

(
fFE

(
xS

Q,i

)
, Pn

)) (2)

Based on the probability pm,n of the mth sample for category n in an episode, the
standard cross-entropy loss is adopted to minimize the one episodic classification loss LC
as follows:

LC =
M

∑
m=1

N

∑
n=1

(−yilog(pm,n)− (1− yi)log(1− pm,n)) (3)

As shown in Figure 4, the domain discriminator fD is fed with the embedded rep-
resentations fFE(x) with the input being x ∈ XS ∪ XT . In this work, the source-domain
and target-domain labels are set to 0 and 1, respectively. The output probability pd of the
domain discriminator fD is calculated by a softmax layer in the binary cross-entropy loss
as follows:

pd(y = i | x) =
exp( fD( fFE(x)))

∑1
i=0 exp( fD( fFE(x)))

(4)

As a result, the domain-discriminative loss can be computed as follows:

LD = − 1
MS

MS

∑
i=1

logpd

(
y = 0 | x ∈ XS

)
− 1

MT

MT

∑
i=1

logpd

(
y = 1 | x ∈ XT

)
(5)

In the training process, the LC is minimized to obtain a metric space for few-shot fault
diagnosis, and the LD is maximized for making two task spaces as similar as possible. To
make the training process feasible, a gradient reversal layer (GRL) [38], which is an identity
mapping during the forward propagation process and reverses the gradient by multiplying
−1 during the backpropagation process, is implemented to connect the feature extractor
fFE to the domain discriminator fD. Taken altogether, the two optimization objectives of
the DAPRN could be summarized as follows:

L = LC − µLD (6)

During the training process, the feature extractor fFE is updated by minimizing the
few-shot classification loss LC and maximizing the domain-discriminative loss LD concur-
rently. Meanwhile, the domain discriminator fD is optimized by minimizing the domain-
discriminative loss LD. Consequently, the optimization process seeks relatively optimal
parameters θ̂FE, θ̂D that deliver a saddle point of the overall objective L as follows:

θ̂FE = arg
{

min
θFE
LC(θFE), max

θFE
LD
(
θFE, θ̂D

)}
(7)

θ̂D = argmin
θD
LD
(
θ̂FE, θD

)
(8)
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Accordingly, the trainable parameters θ̂FE and θ̂D of the DAPRN can be optimized
during each training epoch as follows:

θFE → θFE − `

(
∂LC
∂θFE

− µ
∂LD
∂θFE

)
(9)

θD → θD − `
∂LD
∂θD

(10)

where ` is the learning rate.
When the training procedure is finished, the prototype-based class predictor fLP is

capable of recognizing the unlabeled samples in the target domain with a target task-specific
metric space generated by the trained feature extractor fFE.

3.3. Prototype Recalibration Strategy

During the meta-testing procedure, the unlabeled samples of target query set QT ={
xT

Q,i

}N×M

i=1
, where M indicates the number of query samples per category, can be identified

by finding the most similar prototype based on the trained feature extractor fFE previously
and label predictor fLP. However, the naïve prototype, which is determined by such a
limited-data regime, is not the one we expected to find in practice. To alleviate the prototype
bias caused by the narrow-size target distribution, a PRS is introduced to improve the
few-shot fault diagnosis in the meta-testing phase.

Given a target support set ST
n =

{(
xT

S,i, yS,i

)}K

i=1
with K samples for category n, the

PRS obtains the naïve prototype Pn as follows:

Pn =
1
K ∑

xT
S,i∈ST

n

fFE

(
xT

S,i

)
(11)

A pseudo-labeling approach, which adds provisional labels for query samples accord-
ing to prediction confidence, is utilized to obtain a recalibrated prototype in a high-data
regime to decrease the bias of naïve prototypes. However, a simple averaging of repre-
sentation generated from the support set and labeled query set might lead to a worse bias
in practice. Therefore, a weighted strategy is carried out to reassign the contribution of
the sample from the enhanced support set to the recalibrated prototypes. In detail, top
Z samples with the pseudo label being category n are chosen from the query set, then a
pseudo-labeled query subset QT

pn is obtained. Specifically, the wi,n represents the contribu-
tion of the ith sample from the enhanced support set ST

n ∪QT
pn to the recalibrated prototype

Pr
n. Then, the recalibrated prototype Pr

n of category n is computed with reassigned weights
wi,n as follows:

Pr
n =

1
K + Z ∑

xT
i ∈ST

n∪QT
pn

fFE

(
xT

i

)
× wi,n (12)

where xT
i indicates a sample from the dataset ST

n ∪QT
pn. Notably, the weight wi,n is defined

by a softmax operation and cosine distance dcos as follows:

wi,n =
exp
(
dcos
(

fFE
(
xT

i
)
, Pn
))

∑Z
i=1 exp

(
dcos
(

fFE
(
xT

i
)
, Pn
))(xT

i ∈ QT
pn

)
(13)

In contrast to the naive prototype, the recalibrated prototype, which is determined in
a high-data regime, is closer to the optimal prototype in practice.

3.4. Transductive Training and Testing Method

For a vanilla metric-based meta-learning method for fault diagnosis, standard episodic
training is capable of training a generalized model to novel health conditions in practical
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engineering. However, this conventional training method is insufficient for the proposed
DAPRN. In particular, the training process of the proposed DAPRN is composed of a
conventional meta-training procedure and a transductive domain adaptation, whereas
the testing process is a PRS-based meta-testing approach. In the training process, the
unsupervised domain adaptation via maximization of domain-discriminative loss LD
is integrated into the minimization of the few-shot classification loss LC. The penalty
term of domain-discriminative loss LC is dynamically changed from 1 to 0 and set to
µ = 2− 2/(1 + exp(−10× tp)), and tp denotes the training progress which increases from
0 to 1 gradually. It is worth noting that the domain adaptation using source-domain and
target-domain data makes the training procedure a transductive process. In the testing
process, a PRS is introduced to solve the basis of the naïve prototype and generate a
recalibrated prototype for few-shot fault diagnosis problems.

The Algorithm 1, which includes a transductive training procedure and a few-shot
fault diagnosis process based on PRS, is demonstrated as follows.

Algorithm 1 DAPRN for few-shot fault diagnosis

Transductive training procedure
Input: For a N-way K-shot fault diagnosis task, base set B in source domain is spilled as a labeled

subset DS
n =

(
n = 1, . . . , NS)(NS ≥ N

)
. A target-labeled support set ST

n =
{(

xT
S,i, yS,i

)}K

i=1
, a

target-unlabeled query set QT
n =

{
xT

Q,i

}M

i=1
, number of epoch nE, number of episodes ne, learning

rate `, penalty term µ

Output: trained feature extractor fFE
1. Randomly initialize the parameters of fFE, and fD
2. For epoch = 1 to nE

3. Randomly select N out of NS in DS
n , then obtain SS

n =
{(

xS
S,i, yS,i

)}K

i=1
and

QS
n =

{(
xS

Q,i, yQ,i

)}M

i=1
4. For episode = 1 to ne
5. Sample few-shot tasks T Ss from SS

n and QS
n, then fed them into fFE and fLP

6. Calculate few-shot classification loss LC
7. Sample few-shot tasks T Ts from ST

n and QT
n , and fed them into fFE

8. Input representation vectors of source and target domain to fDD
9. Compute the training progress tp = epoch/nE
10. Calculate domain-discriminative loss LD
11. Backpropagation with µ for LD
12. Optimize the parameters of θFE and θD as follows

θFE → θFE − `
(

∂LC
∂θFE
− µ ∂LD

∂θFE

)
and θD → θD − ` ∂LD

∂θD

13. End
14. End

Few-shot fault diagnosis based on PRS

Input: A target-labeled support set ST
n =

{(
xT

S,i, yS,i

)}K

i=1
, a target-unlabeled query set

QT
n =

{
xT

Q,i

}M

i=1
, number of episodes ne, number of Z, and trained feature extractor fFE

Output: Prediction results and average accuracy
1. For epoch = 1 to ne
2. Sample few-shot tasks T Ts from ST

n and QT
n , and fed them into fFE

3. Recalibrate naïve prototypes by PRS as follow Pr
n → PRS

(
QT

n , Pn, Z
)

4. Obtain health conditions of QT
n by refined fLP with Pr

n
5. End
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4. Experimental Validation
4.1. Dataset Description and Experimental Setup
4.1.1. Bearing Dataset

To verify the effectiveness and superiority of the proposed DAPRN, the raw vibration
signature of bearings, which is collected by the bearing center of Case Western Reserve
University (CWRU), is used [39]. As illustrated in Figure 5, the CWRU bearing test rig
is composed of three main parts called the induction motor, the torque transducer, and
the load motor. Specifically, an accelerometer which is placed at the 12 o’clock position of
the driving end bearing of the induction motor is applied to obtain the signature with a
sampling frequency of 12 kHz. During experiments, three types of common bearing faults,
outer race fault, inner race fault, and ball fault, are simulated by electrical discharge ma-
chining. According to the length of artificial damage, three levels of faults (i.e., 0.007 inches,
0.014 inches, and 0.021 inches) were, respectively, seeded on the test bearings. Hence,
there are ten health conditions or categories in the CWRU bearings dataset, including one
normal health condition and nine types of faults. After that, four different working loads
(i.e., 0 hp, 1 hp, 2 hp, and 3 hp) are provided by the load motor to stimulate various work-
ing conditions in real industrial scenarios. In our few-shot fault diagnosis, each category
contains 200 samples and each sample is a raw vibration signature with 1024 data points.
Specifically, the data samples of both normal and faulty conditions are displayed in Figure 6.
In addition, the more experimental details of the bearing dataset setting are summarized in
Table 2.

Figure 5. The CWRU bearing test rig.

Figure 6. Data sample of bearing under one normal and nine faulty conditions.
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Table 2. Bearing dataset settings under four working loads (0 hp, 1 hp, 2 hp, and 3 hp).

Bearing Health Condition Fault Diameter (in.) The Number of Samples Category Abbreviation

Normal / 200 N

Inner race fault
0.007 200 I1
0.014 200 I2
0.021 200 I3

Ball fault
0.007 200 B1
0.014 200 B2
0.021 200 B3

Outer race fault
0.007 200 O1
0.014 200 O2
0.021 200 O3

4.1.2. Gearbox Dataset

Considering that the gearboxes play an important role similar to bearings in modern
manufacture, another industrial-use gearbox dataset collected from a two-stage planetary
gearbox is utilized to further verify the proposed method on few-shot fault diagnosis tasks.
As demonstrated in Figure 7, this gearbox testbed is composed of a variable-speed servo
driving motor, a torque transducer, a two-stage planetary gearbox, an assistant planetary
gearbox, and a brake. As shown in Figure 7, the accelerometer is placed in the horizontal
direction of the second-stage surface of the test gearbox housing to continuously acquire an
external vibration signature with a sampling rate of 25.6 kHz. Before experiments, three
types of faults with the faulty diameter being 1 mm are simulated on the second stage of the
test gearbox, and these faults, including sun gear fault (SF), planetary gear fault (PF), and
ring gear fault (RF), are displayed in Figure 8. In this gearbox test rig, each experiment was
carried out under three different working conditions. Concretely, the working loads varied
between 50 Nm, 150 Nm, and 150 Nm, with a constant rotating speed being 1500 rpm.
Similar to the above bearing dataset, each category of the gearbox dataset consisted of
200 samples with 1024 data points. In particular, this dataset’s settings are outlined in
Table 3.

Figure 7. The gearbox test rig.

Figure 8. The faults of the gearbox.
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Table 3. Gearbox dataset settings under three working loads (50 Nm, 150 Nm, and 250 Nm).

Gearbox Health Condition Fault Diameter (mm) The Number of Samples Category Abbreviation

Normal / 200 Nor
Sun gear fault 1 200 SF

Planet gear fault 1 200 PF
Ring gear fault 1 200 RF

4.1.3. Implementation Details

As the indispensable components of mechanical equipment in the production of mod-
ern industry, bearings and planetary gearboxes are prone to experience damage accidents
in operation. To achieve a few-shot fault diagnosis of the above two key components,
the detailed network structures of the feature extractor and domain discriminator for the
proposed DAPGN are, respectively, shown in Tables 4 and 5. It needs to be pointed out
that #Param means the number of trainable parameters to the corresponding layer. As
demonstrated in Table 4, the feature extractor is composed of one input layer, four 1D
convolution-max-pooling blocks (ConvB), and one flattened output layer. Batch normal-
ization (BN) [40], which is used to reduce the internal covariate shift and speed up the
network training, is embedded into the proposed network. Furthermore, rectified linear
unit (ReLU), one of the most commonly used activation functions, is applied to introduce
the nonlinear transformation into the model. Note that the Conv1D, BN-ReLU, and Max-
Pool1D denote a 1D convolutional layer, a combination of the BN and ReLU, and a 1D
max-pooling layer, respectively. In the feature extractor, the stacked four ConvBs play a
role in obtaining feature representation from the original vibration signals layer by layer.
For instance, in the ConvB1, raw vibration signals whose size is [1 × 1024] are fed into the
proposed network. Concretely, the raw vibration signals are input into the Conv1D whose
kernel size is 16 × 1 with stride being 2 before the BN layer and ReLU, and the output
whose size is [8 × 252] is obtained by the MaxPool1d with kernel size being 2 and stride
being 2. In addition, the domain discriminator consists of two FC layers and an ReLU, as
shown in Table 5.

Table 4. Structure of the feature extractor.

Symbol Layer Output Size Parameter #Param

Input Input [1 × 1024] / /

Layer1 (ConvB1)
Conv1D [8 × 505] kernel size = 16,

stride = 2 136
BN-ReLU [8 × 505] / 16

MaxPool1D [8 × 252] kernel size = 2,
stride = 2 /

Layer2 (ConvB2)
Conv1D [16 × 125] kernel size = 3,

stride = 2 400
BN-ReLU [16 × 125] / 32

MaxPool1D [16 × 62] kernel size = 2,
stride = 2 /

Layer3 (ConvB3)
Conv1D [32 × 30] kernel size = 3,

stride = 2 1568
BN-ReLU [32 × 30] / 64

MaxPool1D [32 × 15] kernel size = 2,
stride = 2 /

Layer4 (ConvB4)
Conv1D [64 × 7] kernel size = 3,

stride = 2 6208
BN-ReLU [64 × 7] / 128

MaxPool1D [64 × 3] kernel size = 2,
stride = 2 /

Output Flatten 192 / /
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Table 5. Structure of the domain discriminator.

Symbol Layer Output Size Parameter #Param

Layer1 FC1 64 In_features = 192,
out_features = 64 12,352

Layer2 ReLU 64 / /

Layer3 FC2 2 In_features = 64,
out_features = 2 130

Concerning the implementation details of model training, the Adam optimizer [41]
with the backpropagation algorithm is adopted to update all trainable parameters of the
proposed DAPRN model. During the training procedure, the number of epochs is set to 50.
In model training, a decaying learning rate strategy is implemented with the initial learning
rate being 0.001 and the decay rate being 0.1. What needs to be pointed out is that the
decay epochs are set as 15 and 30, respectively. For the training and testing of the DAPRN
model, four commonly used shots in fault diagnosis [42,43], i.e., 1, 3, 5, and 10 shots, are,
respectively, set to evaluate the performance of few-shot fault identification, the number of
query samples is equal to 200, and the number of episodes, also known as tasks, sampled
for training and testing per epoch is set to 100. In the PRS of the meta-testing procedure,
the value of Z is set to 20. For clarity, all detailed parameters of the transductive training
procedure and meta-testing procedure are summarized in Table 6.

Table 6. Parameter settings of the transductive training method.

Parameters Value Parameters Value

Learning rate 0.001 Support samples per category (K) 1, 3, 5, or 10
Decay rate 0.1 Query samples per category (M) 200

Maximum epochs 50 Episodes of source and target tasks 100
Decay epoch 15, 30 Z of PRS 20

4.1.4. Comparative Methods

To illustrate the efficacy and advantage of the proposed DAPRN, seven popular few-
shot learning methods are compared. Notably, all contrastive methods whose feature
extractor is built are the same as the feature extractor of the proposed DAPRN for a fair
comparison experiment. All details of contrastive methods are illustrated as follows:

1. Baseline [25]: A two-stage Baseline model consists of pretraining on the base set
and fine-tuning on the support set. In the pre-training stage, the Baseline model is
composed of a feature extractor and a base class classifier. The novel class classifier
composed of stacked FC layers is used to replace the base class classifier during the
fine-tuning stage.

2. BaselinePlus [25]: The BaselinePlus model is the same as the Baseline model except
for the novel classifier. In detail, the classifier, which explicitly reduces the intraclass
variations by using a cosine-similarity classification structure, is designed to recognize
the health conditions of machinery.

3. SiameseNet [44]: The SiameseNet model, which is composed of a feature extractor
and a similarity-measurement module based on a deep neural network, is trained
with input being sample pairs of the same or different health conditions of machinery.
Note that the sample pairs are randomly selected during the training process.

4. MAML [43]: The MAML model, which is both agnostic to the structure of the feature
extractor and loss function, is a bilevel learning paradigm (i.e., inner loop optimization
and outer-loop optimization) for meta-knowledge transfer. In detail, the parameters
of MAML are quickly updated by inner-loop and outer-loop optimization.

5. ProtoNet [27]: The ProtoNet model, which includes a feature extractor and a Euclidean
distance-based label predictor, identifies the health conditions of machinery by using
the naïve prototypes of the source domain.
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6. MatchingNet [45]: The MatchingNet model, in which the representations of support
and query samples are obtained by two independent feature extractors embedded
with LSTM, recognizes the health conditions by an attention-based label predictor.

7. RelationNet [46]: The RelationNet model is built on a feature extractor without the
last two max-pooling layers and a deep network for metric learning. Specifically, a
two-layer CNN is trained for learning a metric space for few-shot fault diagnosis tasks.

The Baseline and BaselinePlus methods, which are both based on a traditional super-
vised learning paradigm, are trained with original data and tested on the query set. The
rest of the few-shot methods are tested by the standard episodic training paradigm. As a
consequence, the SiameseNet, MAML, ProtoNet, MatchingNet, RelationNet, and DAPRN
report the average accuracy of all episodes during the meta-testing procedure, whereas the
Baseline and BaselinePlus report the accuracy during the testing procedure.

4.2. Case Study
4.2.1. Situation A: Transfer Learning Scenarios with Limited Data

Transfer learning fault diagnosis scenarios with limited data are widespread in real
industrial applications. Based on the few-shot setup, the one-shot fault diagnosis prob-
lem across different working conditions is addressed and analyzed by few-shot learning
methods. As shown in Table 7, six transfer learning tasks (i.e., AB1, AB2, AB3, AG1, AG2,
and AG3) on bearing and gearbox datasets are set to validate the effectiveness and supe-
riority of the proposed DAPRN. The tasks AB1, AB2, and AB3 are 10-way one-shot fault
identification of bearing, whereas the tasks AG1, AG2, and AG3 are four-way one-shot
fault identification of the planetary gearbox. Notably, each of the six tasks is a close-set
transfer learning problem with scarce data and target and source domains sharing the same
label space.

Table 7. Transfer learning scenarios of bearing and gearbox datasets.

Dataset Source Domain Target Domain Source Categories Target Categories Task Abbr.

Bearing 0 hp 1 hp All health
conditions

All health
conditions AB1

Bearing 1 hp 2 hp All health
conditions

All health
conditions AB2

Bearing 2 hp 3 hp All health
conditions

All health
conditions AB3

Gearbox 50 Nm 150 Nm All health
conditions

All health
conditions AG1

Gearbox 150 Nm 250 Nm All health
conditions

All health
conditions AG2

Gearbox 250 Nm 50 Nm All health
conditions

All health
conditions AG3

The results of the six one-shot fault diagnosis problems are summarized in Table 8, and
the bold value denotes the maximum accuracy on this task. Firstly, it can be seen that the
proposed DAPRN achieves the highest one-shot fault diagnosis on all bearing and gearbox
tasks, with 89.94% accuracy on task AB2 and 99.98% accuracy on task AG1. Secondly, the
BaselinePlus method outperforms the Baseline method on all tasks, which reveals that the
cosine similarity-based classifier is more effective in transfer learning scenarios with limited
data when compared with a network-based classifier. Thirdly, it can be observed that all
few-shot methods except for the ProtoNet show better performance on gearbox tasks AG1,
AG2, and AG3 when compared with bearing tasks AB1, AB2, and AB3, which indicates that
the four-way one-shot problem is substantially easier than the 10-way one-shot problem
in practice. A possible explanation for this phenomenon may be the difficulty degree of
identifying support-query tasks in the metric space.
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Table 8. Accuracy on one-shot fault diagnosis of transfer learning scenarios.

Methods AB1 AB2 AB3 AB4 AB5 AB6

Baseline 81.06% 81.01% 81.41% 93.72% 92.46% 90.08%
BaselinePlus 86.03% 86.43% 85.28% 96.23% 96.11% 95.98%
SiameseNet 79.71% 80.34% 79.87% 97.15% 95.71% 96.39%

MAML 78.99% 80.14% 82.37% 95.73% 95.37% 95.13%
ProtoNet 83.86% 83.11% 84.28% 82.74% 82.25% 81.61%

MatchingNet 82.64% 85.95% 84.79% 87.22% 88.17% 85.45%
RelationNet 81.95% 83.79% 83.67% 88.05% 87.12% 87.76%

DAPRN 88.16% 89.94% 89.19% 99.98% 98.94% 98.51%
The highest accuracy is highlighted in bold.

4.2.2. Situation B: Cross-Domain Few-Shot Fault Diagnosis

To further prove the validity of DAPRN, another six cross-domain few-shot fault
diagnosis tasks of bearing and gearbox datasets are set in this part, as shown in Table 9. In
tasks BB1, BB2, BB3, and BG1, the setting of few-shot fault diagnosis is the same as that of
the FSL scenarios in computer vision, which means that the label spaces of the source and
target domains are completely disjoint with each other. In addition, another two tasks, BG2
and BG3, are carried out to imitate open-set fault diagnosis scenarios with scarce data.

Table 9. Cross-domain few-shot scenarios of bearing and gearbox datasets.

Dataset Source Domain Target Domain Source Categories Target Categories Task Abbr.

Bearing 0 hp 1 hp N, I1, I2, I3, B1, B2,
B3 O1, O2, O3 BB1

Bearing 1 hp 2 hp N, I2, I3, B2, B3,
O2, O3 I1, O1, B1 BB2

Bearing 2 hp 3 hp N, I1, B1, B2, B3,
O1 I2, I3, O2, O3 BB3

Gearbox 50 Nm 150 Nm Nor, SF PF, RF BG1
Gearbox 150 Nm 250 Nm Nor, SF, PF Nor, PF, RF BG2
Gearbox 250 Nm 50 Nm Nor, SF, PF, RF SF, PF, RF BG3

Experimental results of all few-shot fault diagnosis methods are summarized in
Table 10. Similarly, the bold values in this table mean the optimal performances of fault
diagnosis on each task, and some interesting and enlightening observations can be obtained.
Firstly, compared with contrastive methods, the proposed DAPRN with transductive do-
main adaptation and PRS achieves the best few-shot fault diagnosis performance on all
tasks. For instance, the proposed method, respectively, confirms 100.00% accuracy on
bearing task BB3 and 98.65% accuracy on gearbox task BG1, which are higher than the
other contrastive few-shot approaches by a large margin. Secondly, it can be observed
that the dependency of cross-domain few-shot tasks profoundly affects the performance
of all few-shot fault diagnosis methods. Particularly, since the tasks BB1 and BB2 are both
three-way one-shot fault diagnosis tasks, most few-shot methods on task BB2 achieve
dramatically higher performance than those on BB1. These results may be explained by the
fact that the proposed DAPRN attempts to identify three outer race faults (i.e., “O1”, “O2”,
and “O3”) on task BB1, whereas the base set does not include similar fault types. Thirdly,
it is somewhat surprising that the proposed DAPRN achieves a higher accuracy on task
BG1 when compared with task BG2, while most few-shot approaches perform significantly
better on open-set fault diagnosis task BG2 rather than those on standard few-shot task
BG1. There are several likely causes for the differences but it may be related to the task
setting between open-set scenarios and few-shot scenarios.
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Table 10. Accuracy on one-shot fault diagnosis of transfer learning scenarios.

Methods AB1 AB2 AB3 AB4 AB5 AB6

Baseline 80.57% 96.82% 60.05% 53.27% 79.56% 88.94%
BaselinePlus 82.75% 97.65% 57.91% 52.26% 76.05% 95.64%
SiameseNet 89.37% 96.58% 88.49% 71.14% 78.80% 89.92%

MAML 93.39% 91.60% 69.28% 65.21% 66.40% 92.05%
ProtoNet 80.19% 94.64% 75.01% 56.14% 68.66% 86.15%

MatchingNet 82.84% 96.53% 70.68% 81.10% 69.29% 89.26%
RelationNet 92.16% 90.27% 85.37% 67.33% 75.80% 95.11%

DAPRN 99.80% 99.71% 94.02% 98.65% 90.19% 96.53%
The highest accuracy is highlighted in bold.

More experiments with 3, 5, and 10-shot settings on bearing task BB1 and gearbox task
BG1 are carried out for further analysis; the results are summarized in Figure 9 and some
interesting findings can be obtained. What stands out in the figure is that the diagnosis
accuracy of most contrastive methods increases with the increase of shots on tasks BB1
and BG1. Still, it can be easily observed that no significant differences in the few-shot
fault diagnosis performance of the proposed DAPRN are found between the various shots
on all tasks. Ulteriorly, the SiameseNet, MAML, ProtoNet, and DAPRN are capable of
accomplishing the fault diagnosis of task BB1 with the 10-shot setting at the same level of
accuracy. Meanwhile, on 5-shot and 10-shot BG1, the SiameseNet method confirms similar
accuracy when compared with the proposed DAPRN. In conclusion, the results in this
section indicate that the proposed DAPRN has excellent performance for few-shot fault
diagnosis with different shots owing to the transductive domain adaptation and PRS-based
meta-testing process.

Figure 9. The test accuracy of different shots using all few-shot methods.

4.3. The Structure of Feature Extractor

In a few-shot fault diagnosis problem, the representation vectors which are generated
by the feature extractor have a great impact on the fault classification performance. To illus-
trate the relationship between the feature network structure and few-shot fault diagnosis,
ten trials of the DAPRN with different feature extractors are repeated on two few-shot fault
diagnosis tasks, BB1 and BG1, respectively.
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As illustrated in Table 4, the feature extractor is composed of four ConvBs. The
depth of feature extractor to the fault diagnosis on tasks BB1 and BG1 is described in
the box in Figure 10, and the statistical characteristics of ten experiments are described
using the 95% confidence interval (CI) and standard deviation (SD). More quantitative
results and trainable parameters are summarized in Table 11. In Figure 10a, the fault
identification accuracy improves and SD reduces with successive increases in depth of the
feature extractor on three-way one-shot task BB1, which denotes that the proposed DAPRN
tends to be more effective with increasing trainable parameters of the feature extractor.
Likewise, it is easily observed that the few-shot diagnostic results on task two-way one-shot
BG1 are somewhat counterintuitive, as shown in Figure 10b and Table 11. Surprisingly,
the SD on this task is 0.94% when the depth of the feature extractor is 1, which could be
attributed to the fact that the proposed DAPRN with a trained one-layer feature extractor
misclassifies most of the query samples, including two fault types (i.e., “PF”, and “RF”),
as one category. Namely, the one-layer feature extractor with 152 learnable parameters is
incapable of performing in few-shot fault diagnosis problems. In summary, the success of
the proposed DAPRN could be related to the powerful ability of feature extraction.

Figure 10. The cross-domain fault diagnosis using the feature extractor with different depths: (a) on
the three-way one-shot task BB1; (b) on the two-way one-shot task BG1.

Table 11. The detailed one-shot cross-domain fault diagnosis result (average accuracy and standard
deviation) and #Param using the feature extractor with different depths.

Depth of Feature Extractor 1 2 3 4

Accuracy on task BB1 61.56% ± 3.47% 79.71% ± 2.13% 86.87% ± 1.36% 99.44% ± 0.79%
Accuracy on task BG1 51.00% ± 0.94% 62.68% ± 3.69% 93.35% ± 1.87% 98.09% ± 0.80%

#Param 152 584 2216 8552

4.4. Ablation and Parameter Sensitivity Analysis

The DAPRN is composed of a feature extraction module, a domain adaptation module,
and a PRS-based meta-testing module. To further illustrate the effectiveness of each module,
ablation experiments are carried out on task BB3, and all models for ablation analysis are
described as follows.

1. NoDA: This model is designed to examine whether the domain discriminator can
improve the generalization ability from the source task to the target task. Hence, a
DAPRN model without the domain discriminator is conducted for comparison.

2. NoPR: To describe the effect of the PRS-based meta-testing module, a DAPRN model
is implemented where the prototype calibration is cut off. It should be pointed out that
the NoPR model is trained the same as the DAPRN model and tested without PRS.

The detailed results of ten trials using different models are illustrated in Figure 11.
This figure shows that the proposed DAPRN has a better few-shot performance than
the NoDA and NoPR, indicating that transductive domain adaption and PRS are both
beneficial to improve fault diagnosis with limited data. Meanwhile, all NoDA models
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perform poorly compared to NoPR models, which shows that the domain discriminator
plays a more vital role in few-shot fault diagnosis problems when compared with the
prototype recalibration. For further analysis, detailed information on one trial for three
models is detailed in Figure 12. As shown in Figure 12a, the diagnostic accuracy of all
models converges to a certain degree and the DAPRN confirms the best accuracy when the
training process is over. Furthermore, it can be observed that the diagnostic performance
of DAPRN is lower than that of NoPR in the early stages of the training process and higher
than that of NoPR in the late stages of the training process, implying that the diagnostic
performance is only enhanced when the trained label predictor is sufficiently effective. The
detailed diagnostic results of one episode at the beginning and end of the transductive
training process are shown in Figure 12b, and the kernel density estimation method is
applied to fit the probability distribution of detailed results. As can be seen from Figure 12b,
the trained DAPRN is capable of outperforming other models even if the diagnostic
accuracy of the initial stage is worse than others. In addition to quantitative analysis, the t-
distributed stochastic neighbor embedding (t-SNE) [38] is employed for qualitative analysis
intuitively in Figure 13. Particularly, the outputs of the feature extractor (i.e., representation
vectors) of the NoDA and DAPRN are mapped into a two-dimensional space for clear
visualization, respectively. In this figure, the DAPRN gathers the representations of each
health condition (i.e., I2, I3, O2, and O3) better than the NoDA, which means that the
label predictor of DAPRN has more potential for few-shot fault diagnosis via transductive
domain adaptation.

Figure 11. Detailed testing accuracy of ten trials using various models on task BB3.

Figure 12. The training process of all models: (a) target accuracy during transductive training process;
(b) detailed diagnosis of one episode: left (epoch = 1), right (epoch = 50).
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Figure 13. The visualization of target representation space.

In practical engineering, the hyperparameter Z of PRS of the proposed DAPRN
will impact the few-shot fault diagnosis distinctly. For further analysis, the sensitivity
experiment on task BB3 was carried out ten times, and the box Figure 14 demonstrates
the few-shot fault diagnosis for the hyperparameter Z of PRS. In detail, it can be found
that the performance of the proposed DAPRN with Z being 10 is lower than others on task
BB3. Moreover, the performance of the DAPRN nearly reaches a plateau and confirms
around 94% accuracy when Z values of PRS are more than 20. Consequently, none of
these differences in the few-shot fault diagnosis of DAPRN are statistically significant. This
finding was unexpected and suggests that blindly increasing the samples of the query set
for PRS does not bring significant benefits for few-shot fault diagnosis tasks. A possible
explanation for this might be that the recalibrated prototypes for each health condition
are limited by the representations of the feature extractor. In other words, with successive
increases in the Z values, the enhancement gained by PRS is not capable of continuing to
increase due to the representation space with imperfect feature aggregation.

Figure 14. The sensitivity of diagnostic accuracy of the DAPRN to the Z values of PRS.

5. Conclusions

To achieve the issue of few-shot fault diagnosis in real industrial scenarios, an inno-
vative domain-adaptive prototype-recalibrated network (DAPRN) based on transductive
domain adaptation and prototype recalibration strategy (PRS) is proposed, comprising
a feature extractor, a domain discriminator, and a label predictor. Compared with popu-
lar few-shot fault diagnosis methods, the DAPRN jointly conducts source few-shot task
classification and domain adaptation across domains, and the meta-knowledge of source
diagnostic tasks is generalized to the target tasks through domain adaptation in the trans-
ductive training stage effectively. To reduce the bias of the naïve prototypes, the PRS is
implemented to promote the few-shot fault diagnosis in the meta-testing stage. Extensive
experiments on bearing and gearbox datasets demonstrate outstanding fault diagnosis
performance under omnifarious limited data conditions. The quantitative and qualitative
analysis convincingly reveals that the proposed method outperforms other few-shot fault
diagnosis methods. In terms of real industrial application, the proposed method is promis-
ing to address more challenging fault diagnosis scenarios with limited data and promote
practical fault identification problems of machinery.
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The most important limitations of this study lie in the fact that the proposed method
can only perform offline predictions. In addition, a high-quality annotated related dataset is
required. In the future, not only meta-knowledge generalization across different machines
but also few-shot fault diagnosis with an insufficient base dataset should be undertaken to
solve more fault identification tasks in real industrial scenarios.
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28. Kaya, M.; Bilge, H.Ş. Deep metric learning: A survey. Symmetry 2019, 11, 1066. [CrossRef]
29. Boudiaf, M.; Masud, Z.I.; Rony, J.; Dolz, J.; Piantanida, P.; Ayed, I.B. Transductive information maximization for few-shot learning.

arXiv 2020, arXiv:2008.11297.
30. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
31. Hou, R.; Chang, H.; Ma, B.; Shan, S.; Chen, X. Cross attention network for few-shot classification. arXiv 2019, arXiv:1910.07677.
32. Dhillon, G.S.; Chaudhari, P.; Ravichandran, A.; Soatto, S. A baseline for few-shot image classification. arXiv 2019, arXiv:1909.02729.
33. Kim, J.; Kim, T.; Kim, S.; Yoo, C.D. Edge-labeling graph neural network for few-shot learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 11–20.
34. Ma, Y.; Bai, S.; An, S.; Liu, W.; Liu, A.; Zhen, X.; Liu, X. Transductive Relation-Propagation Network for Few-shot Learning. In

Proceedings of the 2020 International Joint Conference on Artificial Intelligence, Yokohama, Japan, 11–17 July 2020; pp. 804–810.
35. Qiao, L.; Shi, Y.; Li, J.; Wang, Y.; Huang, T.; Tian, Y. Transductive episodic-wise adaptive metric for few-shot learning. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 3603–3612.
36. Hao, S.; Ge, F.-X.; Li, Y.; Jiang, J. Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term

memory networks. Measurement 2020, 159, 107802. [CrossRef]
37. Wang, D.; Zhang, M.; Xu, Y.; Lu, W.; Yang, J.; Zhang, T. Metric-based meta-learning model for few-shot fault diagnosis under

multiple limited data conditions. Mech. Syst. Signal Process. 2021, 155, 107510. [CrossRef]
38. Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the International Conference

on Machine Learning, Lille, France, 6–11 July 2015; pp. 1180–1189.
39. Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark

study. Mech. Syst. Signal Process. 2015, 64, 100–131. [CrossRef]
40. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,

arXiv:1502.03167.
41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Wu, J.; Zhao, Z.; Sun, C.; Yan, R.; Chen, X. Few-shot transfer learning for intelligent fault diagnosis of machine. Measurement 2020,

166, 108202. [CrossRef]
43. Zhang, S.; Ye, F.; Wang, B.; Habetler, T. Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning. IEEE Trans.

Ind. Appl. 2021, 57, 4754–4764. [CrossRef]
44. Zhang, A.; Li, S.; Cui, Y.; Yang, W.; Dong, R.; Hu, J. Limited data rolling bearing fault diagnosis with few-shot learning. IEEE

Access 2019, 7, 110895–110904. [CrossRef]
45. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 2016,

29, 3630–3638.
46. Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.S.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 1199–1208.

http://doi.org/10.1016/j.ymssp.2021.107618
http://doi.org/10.1016/j.compind.2021.103399
http://doi.org/10.1109/TIM.2022.3196948
http://doi.org/10.1016/j.ress.2022.108358
http://doi.org/10.1016/j.measurement.2022.111125
http://doi.org/10.3390/sym11091066
http://doi.org/10.1109/72.788640
http://doi.org/10.1016/j.measurement.2020.107802
http://doi.org/10.1016/j.ymssp.2020.107510
http://doi.org/10.1016/j.ymssp.2015.04.021
http://doi.org/10.1016/j.measurement.2020.108202
http://doi.org/10.1109/TIA.2021.3091958
http://doi.org/10.1109/ACCESS.2019.2934233

	Introduction 
	Background Knowledge 
	Few-Shot Learning for Fault Diagnosis 
	Prototypical Network Based on Metric Learning 
	Transductive Few-Shot Learning Paradigm 

	Proposed Method 
	The Architecture of Proposed DAPRN 
	Optimization Objective Function 
	Prototype Recalibration Strategy 
	Transductive Training and Testing Method 

	Experimental Validation 
	Dataset Description and Experimental Setup 
	Bearing Dataset 
	Gearbox Dataset 
	Implementation Details 
	Comparative Methods 

	Case Study 
	Situation A: Transfer Learning Scenarios with Limited Data 
	Situation B: Cross-Domain Few-Shot Fault Diagnosis 

	The Structure of Feature Extractor 
	Ablation and Parameter Sensitivity Analysis 

	Conclusions 
	References

