
Citation: Hitimana, E.; Bajpai, G.;

Musabe, R.; Sibomana, L.; Jayavel, K.

Containerized Architecture

Performance Analysis for IoT

Framework Based on Enhanced Fire

Prevention Case Study: Rwanda.

Sensors 2022, 22, 6462. https://

doi.org/10.3390/s22176462

Academic Editor: Antonio Puliafito

Received: 5 June 2022

Accepted: 28 June 2022

Published: 27 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Containerized Architecture Performance Analysis for IoT
Framework Based on Enhanced Fire Prevention Case
Study: Rwanda
Eric Hitimana 1,* , Gaurav Bajpai 1,2 , Richard Musabe 1,2, Louis Sibomana 3 and Kayavizhi Jayavel 1,4

1 African Centre of Excellence in the Internet of Things, University of Rwanda, Kigali P.O. Box 3900, Rwanda
2 Department of Computer and Software Engineering, University of Rwanda, Kigali P.O. Box 3900, Rwanda
3 National Council for Science and Technology, Kigali P.O. Box 2285, Rwanda
4 Department of Networking and Communications, School of Computing, SRM Institute of Science

and Technology, Kattankulathur 603203, Tamil Nadu, India
* Correspondence: e.hitimana@ur.ac.rw; Tel.: +250-788814175

Abstract: Nowadays, building infrastructures are pushed to become smarter in response to desires
for the environmental comforts of living. Enhanced safety upgrades have begun taking advantage of
new, evolving technologies. Normally, buildings are configured to respond to the safety concerns of
the occupants. However, advanced Internet of Things (IoT) techniques, in combination with edge
computing with lightweight virtualization technology, is being used to improve users’ comfort in their
homes. It improves resource management and service isolation without affecting the deployment
of heterogeneous hardware. In this research, a containerized architectural framework for support
of multiple concurrent deployed IoT applications for smart buildings was proposed. The prototype
developed used sensor networks as well as containerized microservices, centrally featuring the
DevOps paradigm. The research proposed an occupant counting algorithm used to check occupants
in and out. The proposed framework was tested in different academic buildings for data acquisition
over three months. Different deployment architectures were tested to ensure the best cases based
on efficiency and resource utilization. The acquired data was used for prediction purposes to aid
occupant prediction for safety measures as considered by policymakers.

Keywords: containers; DevOps; performance analysis; IoT; Raspberry Pi; fire prevention

1. Introduction

Software development challenges have arisen due to increases in IoT device-as-a-
service, IoT infrastructure-as-a-service, and edge infrastructure-as-a-service [1]. In IoT,
smart sensing and actuating objects are coupled with information and communication
technologies (ICT). They are embedded in digital environments to produce huge volumes
of data. These data need to be extracted, processed, and analyzed efficiently to arrive at
meaningful information to support IoT applications.

The implementations are done using different platforms as services. The applicability
levels of these platforms are challenged on their efficiency, performance, and variating
scalabilities. This occurs in case of a system escalation, along with data analytics and
resource consumption—commonly characteristics of monolithic applications [2]. A mono-
lithic application is defined as a single-tiered software application that integrates users’
interfaces and data access codes as a single program within the same platform.

Nowadays, IoT devices contain embedded networking stacks, connecting directly to
both publisher and subscriber service providers. The health and fire prevention domains are
particularly related to the IoT reference architectures, focusing on sensors, network aspects,
applications, and presentation aspects, including data analytics. IoT analytics are evolving
with newer technologies, tools, and data processing, along with analytic methods. This has

Sensors 2022, 22, 6462. https://doi.org/10.3390/s22176462 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176462
https://doi.org/10.3390/s22176462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5667-2082
https://orcid.org/0000-0001-9998-4123
https://orcid.org/0000-0002-6160-1374
https://doi.org/10.3390/s22176462
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176462?type=check_update&version=1

Sensors 2022, 22, 6462 2 of 29

led to enhancements in the development of environments, with increased productivity and
improved efficiency.

However, there is no ownership in data management, and services escalate out of
control if service charges are not clear. The other issue is the implementation of an IoT
information system, which requires a high-level holistic approach. That approach must mix
traditional data collection from vendor-specific cloud back ends with embedded hardware
and mobile devices in real-time.

IoT systems provide important, sometimes critical services, requiring uninterrupted
operation or high levels of availability. Additionally, their complexity makes them dif-
ficult to integrate, while also complicating in-depth monitoring to prevent anomalies
and failures [3].

The DevOps methodology maintains system characteristics, such as availability, scal-
ability, and fault tolerance, on a live system [4–8]. The continuously rapid integration of
new devices with feedback acquisition to instrument maintenance and updates leads to
job accumulation. This methodology requires a multidisciplinary collaboration between
development and operations teams to facilitate customer satisfaction. The collaborative
team must test the platform in production, and build new releases to deploy them [9].
DevOps is a solution to facilitate that collaboration by accelerating and improving the
cycles of maintenance [10–12].

The motivation of this research was to contribute to the improvement of building
safety prevention (specifically, from fire outbreaks) using IoT technologies. The main
question was how to integrate various IoT sensor nodes with scalable characteristics to
provide a sound IoT system that provided real-time communication to the stakeholders
(fire brigades) in case of a fire outbreak. The idea arose due to various challenges, such
as IoT applications’ scalability, updatability, integration, and maintainability that affect
performance and efficiency.

This research was aimed at designing and implementing an IoT framework architec-
ture that supported multiple concurrent deployed IoT applications in a smart building.
The main objective was to develop a containerized architecture performance analysis for
the IoT framework based on enhanced fire prevention, tested in Rwanda. The contribu-
tions of this research were (1) the investigation of a detailed, state-of-the-art integration
of recent techniques in the IoT implementation domain; (2) the proposal of layered IoT
architecture to provide central and efficient management of connected sensor nodes, data,
and intervening applications, while meeting final requirements needed; (3) the application
of different software engineering paradigms, including microservices and container-based
virtualizations in the implementation; (4) validation of the proposed framework in a smart
building scenario in which the main concern was to improve security; (5) a performance
evaluation, carried out to guarantee a scalable platform.

The rest of this paper was organized in the following order: Section 2 details related
works, and Section 3 describes the materials and methods. Section 4 describes the pro-
posed architecture. Section 5 highlights the design of the case study. Section 6 shows the
implementation results with discussions. Section 7 discusses the performance evaluation
of the proposed solution through the selected case study. Section 8 concludes the paper
and details future works.

2. Related Works

The three-layer classic IoT reference architecture was extended by applying context-
aware, serverless, microservices-based [13] cloud-centric techniques for IoT and people
applications. Here, the focus was on frameworks that offered a high separation of concern
degrees by splitting the application layer into different sub layers based on their responsi-
bilities. It also traced atomic components to serverless microservices in order to facilitate
the design, development, and deployment of applications in the healthcare domain.

Sensors 2022, 22, 6462 3 of 29

2.1. Usage of DevOps Methodology

The three-tiered DevOps model was used to build an information system capable of
providing real-time analytics [14]. Management within a smart city project was proposed to
support the heterogeneous environment. However, the data visualization was conducted
on an existing open-source platform, namely KIBANA from Elastic-search. The integration
of DevOps into the design of IoT frameworks [5] presented an ongoing effort toward
provision, with validation of solution security and privacy, along with the quality of
complex software systems. The solutions were built on top of an established ENACT IoT
DevOps concept and framework.

The development of a service model structure consisted of several functions within
its services. The defined hardware compatibilities [15] tested an automation system in
a building for emergency evacuation services. However, the concerns of continuous
integration using DevOps techniques were not considered. The development of service
contracts for IoT microservices from DevOps perspectives was considered to address the
diversity of service contracts using common languages for IoT data and programming [16].

2.2. Application of Microservices

Rapidly developing technologies enable ubiquitous connectivity. This has resulted
in the continuous growth of connected devices. On the other hand, it has also revealed
challenges related to the development and architecture of information systems. The wide
variety of proposed solutions enabled by interacting with devices makes it practically
impossible to accurately manage the predicted ratio of data traffic patterns.

In the management of a growing amount of delivered services [17], it is essential to
implement scalability mechanisms. Specific strategies were proposed herein to maintain
system stability and scalability by ensuring the basic scaling mechanism (such as vertical
and horizontal). Vertical scaling requires the addition of resources to a single processing
node, resulting in more work handling with additional capacities. It is, however, limited
by cost-effectiveness, physical constraints, and the availability of specialized hardware.
Horizontal scaling requires a set of design practices and planned activities, leading to an
inherent distribution within the system [18]. The horizontal scaling approach defines the
unique ability as the keystone for large-scale architecture design.

The initial concepts for software developments used monolithic architecture [19]. The
services were developed on a unique repository shared among multiple developers. In
these concepts, developer teams had to guarantee that all other services would continue
working as they did before. Another disadvantage was the presence of new updates,
ready for deployment in the production environment. Updates require that all services be
restarted, causing severe issues, from the users’ perspective. One final challenge is that
each time one part/function fails, the entire set of services gets compromised.

Due to the wide variety of scenarios created in IoT and their different challenges
(such as the heterogeneity of IoT devices, communication, and platforms supporting large
numbers of connected devices), the monolithic pattern is not recommended [20].

The microservices-based architecture proposed the distribution of the applications
in a set of services in such a way that each was independent of the others. These new
patterns have been used to solve specified issues with new features, such as scalability
and reusability [21]. The use of an IoT agnostic architecture, highlighting the role of the
IoT platform used a system with a broader ecosystem of interconnected tools, aiming at
increasing scalability, stability, interoperability, and reusability. Herein, the solution used
microservices architecture and serverless computing applied to smart solutions.

Microservices, at a high level, can be considered a black box that has been divided
into layers. Depending on the tasks to be performed, the layers can be reorganized.
Microservices communication is possible through interfaces exposed by the Microservices
themselves. Hence, each microservices offers an application programming interface (API)
to facilitate different types of connections.

Sensors 2022, 22, 6462 4 of 29

Microservices are useful for the development of IoT-based platforms. They allow
services-oriented development, which is growing in popularity due to growing interest
in parallel computation. The microservices architecture, designed and built using the
Jolie programming language, was developed to work directly with a service-oriented
paradigm [22]. Here, the prototype platform for supporting multiple concurrent applica-
tions for smart buildings was tested using an advanced sensor network, as was a distributed
microservices architecture [21].

2.3. Container Management

Most of the capabilities of containers are first executed on constrained devices with
limited and relatively inexpensive storage and computing resources, like Raspberry Pi [23],
in order to provide the capability of transversal interoperability among different net-
works, integrating devices with limited capacity. Container-based services provisioning
has demonstrated diverse benefits that allow applications to run on a diverse set of devices,
with heterogeneity in terms of hardware, software, and network. To improve the perfor-
mance of the containers in the described constrained devices within an environment, better
solutions are needed to simplify and improve their management.

At this layer of the architecture, it is necessary to ascertain the performance of container
schedulers or brokers, along with allocation among resources. Multiple containers, running
in a cluster, support management activities. A container scheduler in a cluster has multiple
goals, such as ensuring the use of resources efficiently; user access is restricted based on
work and location. Additionally, it ensures that applications are quickly scheduled to avoid
massive waiting times. It provides a high degree of balance between resources. It also
provides an error-handling mechanism that ensures the most convenient allocation, both
time-wise and power-wise [24]. The existence of diverse container schedulers for clusters
supports the notion that there is no single solution to all problem paradigms. Among
these schedulers, the following can be highlighted: Apollo Microsoft, Aurora Twitter, Borg
Google, Fuxi Alibaba, Kubernetes Google, Omega Google, Swarm Docker, and YARN
Apache, to name a few [25].

There are two key techniques used by containers to provide isolation of each con-
tainer during execution environments. Those techniques are namespace and cGroup [26].
Namespace is used for isolation between execution environments, including process trees,
networks, user IDs, and file systems of containers. cGroup allows for the management
of resources, such as CPU, memory, network, and file I/O for containers. In the case of
cGroup, resources can be controlled by assigning specific bounds to containers. It has also
been shown that a specific number of resources for a container can be allocated to prevent
resource contention between containers running concurrently.

The implementation and administration of diverse container-based applications are
rapidly developing nowadays. This development could facilitate physical or virtual host
distribution, built on top of central components, such as containers’ schedulers in general,
and Dockers containers’ schedulers.

2.4. Docker Swarm

Among container schedulers, this research used Docker Swarm to address the problem
of container management. Docker Swarm is a container management solution under the
development of Docker Organization. It provides a standard Docker API, and its framework
consists of two main components; first, a node that acts in the role of administrator executes
an image of Swarm responsible for allocation of the containers on the remote machines
(called agents, or nodes); secondly, the nodes with a remote Docker API capability are
available to the administrator after the verification of its port correctness if it is open by the
time the Docker daemon [27] starts.

Docker Swarm has different major scheduling strategies that ensure the possibility
of the scheduler selecting a node for executing a container. It includes strategy name or
direct node selection, and selection of the node with the lower set of containers in execution

Sensors 2022, 22, 6462 5 of 29

spread. Regardless of the load of each container, or binpack, the selection of the most
packaged node (lower available CPU/RAM) and the random selection of the node are also
included. In the latter case, if the previous strategies select several nodes according to the
previous criteria, the scheduler selects a target node among them randomly.

The resource allocation strategy must be determined at the time of setup by the
administrator or the spread strategy will be used by default. However, the spread method
is the most extended scheduling strategy in most applications on the Docker Swarm
Mode Cluster.

In this research, apart from microservices concepts which were used together, the
architecture had additional containerization mechanisms built on top to ease scalabil-
ity, flexibility, and transparency. This mechanism was achieved using visualization in
a container-based approach, through Docker. The proposed concept allowed for the ro-
bust development of a framework operating in a distributed way, with greater speed and
increased independence over underlying operating systems.

3. Materials and Methods

This section details the materials and methods used in the implementation of the
proposed architecture in Section 4. The materials were classified into hardware and software
components, data formats, and performance metrics.

3.1. Underlying Hardware Components

This subsection details different hardware components used during the implementa-
tion of the proposed framework architecture. The choice of criteria for each component
depended on its availability and openness.

3.1.1. Embedded Board

ARM embedded architecture uses lower-power characteristics [28]. The single Board
Computer (SBC) family Raspberry Pi (RPi) takes advantage of these characteristics. RPis
are small SBCs with 4 Advanced RISC Machine (ARM) Cortex-A53 1.2 GHz CPU and 1 GB
RAM, with Wi-Fi integrated [29].

In this research paper, easily obtainable off-the-shelf hardware was used to facilitate re-
producible results. The setup was composed of three RPi Alarm ARMv7 for Broadcom [30].

Table 1 describes the configurations of the experimental testbed. The desktop simu-
lated the fog node while the RPis acted as the edge node and gateway.

Table 1. Configuration of the experimental testbed.

Device Desktop Raspberry Pi 3 B+

CPU 4.5 GHz Intel Core TM (4 cores) Quad core Cortex-A72 (ARM v8),
1.5 GHz

Memory 4 GB DDR3 1 GB LODDR4 RAM

Storage 500 GB HDD 32 GB (microSD card)

OS Linux x86_64 Raspbian GNU/Linux (Jessie)

Installed Software
Docker Swarm, NGINX,

PostgreSQL, Redis, cAdivisor,
Prometheus, Grafana

Docker, python

3.1.2. Edge Sensor Nodes

In fire detection, prevention, and occupant detection use cases, this paper used a
couple of sensors to gather specific parameters. In a specific room, sensors were used to
detect the presence of fire temperature, humidity, CO2, and smoke. Motion sensors were
used in conjunction with obstacle sensors to detect the presence of human beings. Table 2
details the sensors used and their operating ranges based on the limits of the value of
sensitivity and distance they cover.

Sensors 2022, 22, 6462 6 of 29

Table 2. Sensor’s operation ranges.

Name Description Min Value Max_Value Min_Distance Max Distance

DHT11
Temperature 0 ◦C ± 2 ◦C 50 ◦C ± 2 ◦C

1 m 10 m
Humidity 20% ± 5% 80% ± 5%

PIR Motion sensor 0 V [0] 3 V [1] 1 m 7 m

IR Obstacle sensor 0 V [0] 5 V [1] 1 m 5 m

MQ-2 CO2 and Smoke
sensor 300 ppm 10,000 ppm 2 cm 4 m

3.1.3. Network Connectivity and Protocols

The main tasks of a node were split into sensing/actuation, computation, storage,
and communication, among the other nodes [31]. The node architecture was a bundle
of multiple sensors which gathered environmental parameters to be sent to the cloud.
The controller was the part of the node that fetched data from the sensor, exchanged
them with the communication device, and controlled the behavior of the actuators. The
microcontroller added the ability to interact with it by programming it. It had memory,
enabling it to control the behavior of the node [32].

The implementation used the RPi board, which allowed LAN internet connectivity.
The communication used two protocols: MQTT and HTTP. MQTT operated through data
messaging architecture that used the publish/subscribe paradigm to ensure that the data
was sent smoothly if the sensor node was subscribed to the broker and the database. At the
end-user data access, the web services used HTTP so the user could access the information
through a browser application.

3.2. Underlying Software Components

This section details the software components used in the implementation of the pro-
posed framework, including the Docker engine as services containers manager, server
setup for web and database management, data formats, protocols for transmission, services
patterns, and performance monitoring tools.

3.2.1. Dockers

Containerization is a technique used to abstract applications from the environments
that they execute. Docker containers wrap up the software and its dependencies into a
standardized unit for software development that includes everything it needs to run [33].
Containers are a lightweight alternative to virtual machines (VMs) for multi-tenancy within
a single host. Here, computing devices were modeled as containers and managed using the
Docker automation framework. This was accomplished in two parts: firstly, for resource
allocation, and secondly, for software configuration.

The key advantages of using Docker for distributed applications included lower
CPU overhead, version control, portability, and network performance improvement [34].
Docker developed a distributed service platform by considering the fault tolerance of
services [35,36]. Dockers-based gateways and architecture have flexibility with scalability
through the microservices paradigm [22,37].

This research took advantage of Docker’s features. The idea was to combine Docker
container services and microservices strategies for modular, scalable edge computing
frameworks for IoT smart buildings.

3.2.2. Data Management and Data Format

All sensor-generated data were periodically saved in the database, with data man-
agement conducted on the webserver. The database module was implemented using
PostgreSQL over the webserver used as Nginx.

Sensors 2022, 22, 6462 7 of 29

Postgres was chosen as an object-relational database management system (RDBMS).
It emphasized extensibility and standards compliance, and had the ability to provide
replication of the database for scalability and security.

Nginx is an open-source reversed proxy server for HTTPS, with a load balancer. Nginx
was chosen as the web server for its security, reliability, and load balancing when there was
huge traffic with connected users. Its characteristics focused on high concurrency, high
performance, and low memory usage.

The data exchange from sensor nodes to the cloud was formatted to allow efficient
data transmission with low bandwidth. The data were converted into JSON (JavaScript
Object Notation). JSON has been adopted as a standard text-based format for representing
structured data.

3.2.3. Application Services: Microservices

The proposed architecture in this research targeted the microservices architecture
applied to the IoT framework. The architecture is made by different components including
all real-time data acquisition and processing architectures in the IoT domain as shown in
Figure 1. It had three key components: (1) data sources, (2) data processing, and (3) end-user
data access.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 31

Figure 1. Proposed Deployment Architecture.

The concept considered allowed independent mounting and unmounting of the new
nodes. Every node was considered one service for data acquisition and transmission. It
allowed any connected node to be updated and integrated with the management of the
services manager played by Docker Swarm. The transmission protocol, data management,
web services, and visualization services were managed as microservices. This allowed
services reusability without affecting the whole structure.

Figure 2. Architecture with containerization principles.

Figure 1. Proposed Deployment Architecture.

The proposed solutions of microservices for smart buildings in general and fire detec-
tion with occupancy detection are detailed in Figure 2.

Sensors 2022, 22, 6462 8 of 29

Sensors 2022, 22, x FOR PEER REVIEW 8 of 31

Figure 1. Proposed Deployment Architecture.

The concept considered allowed independent mounting and unmounting of the new
nodes. Every node was considered one service for data acquisition and transmission. It
allowed any connected node to be updated and integrated with the management of the
services manager played by Docker Swarm. The transmission protocol, data management,
web services, and visualization services were managed as microservices. This allowed
services reusability without affecting the whole structure.

Figure 2. Architecture with containerization principles. Figure 2. Architecture with containerization principles.

The concept considered allowed independent mounting and unmounting of the new
nodes. Every node was considered one service for data acquisition and transmission. It
allowed any connected node to be updated and integrated with the management of the
services manager played by Docker Swarm. The transmission protocol, data management,
web services, and visualization services were managed as microservices. This allowed
services reusability without affecting the whole structure.

3.2.4. Monitoring Parameters

The performance of edge computing applications followed different runtime varia-
tions depending on the running conditions. Conditions could have included the number
of arrival requests and the availability of virtual resources. Additionally, the network
connection quality between different interoperating application components distributed
over the communication network was an additional key to consider.

A mechanism to allow the aforementioned resources to be intelligently provisioned
with little or no effort an application provider was required. The container manager was
configured to ensure that the orchestration process of provisioning resources was done.
The resources considered for provisioning in edge/cloud computing were: the usage of
CPU, memory, storage, and network.

3.2.5. Performance Analysis and Monitoring Tools

There are four levels of monitoring (containers, virtual machines (VM), end-to-end
link quality, and application) for self-adaptative applications to edge computing appli-
cations [38]. Due to the heterogeneity of the applications used in this implementation
context, the need for performance measurement was critical. This research was imple-
mented for container-based performance monitoring purposes. It assisted the process of
pulling and migrating container images across computing nodes in fog or cloud in contrast
to virtual machine [39].

Docker itself had a built-in mechanism to access and convert container metrics into
statistical format using Docker stats methods. Those metrics included runtime metrics
and resource usage for a given container. This research proposed to use external built-in
components to retrieve detailed sets of metrics by accessing exposed remote API using
GET methods.

In monitoring the system behaviors, the following tools were used:

Sensors 2022, 22, 6462 9 of 29

- Container advisor, also known as cAdvisor, is a provided open-source platform. It
was used to track, measure, aggregate, process, and display performance monitoring
data for the running containers.

- Prometheus is a monitoring tool relying on an open-source scheme. On top of moni-
toring activity, Prometheus can also store persistence time-series-based data for further
processing and retrieval using PromQL language.

- Grafana is a web-based open-source user interface, used to visualize large-scale per-
formance monitoring information. It can be configured to work with the Prometheus
database to visualize the time series data of the metrics.

4. Proposed Architecture

The proposed framework architecture consisted of a set of services distributed across
different computing sites. Each application was made of separate independent deploy-
able components/containers, with all possible functionalities hiding their implementation
details. The provision of those separate modular services enabled the services to be charac-
teristically small and loosely coupled. This improved both testability and management,
using containerization packages configured in each end device node. Those configurations
provided minimum environmental capabilities for the application to run properly.

Different layers of the proposed architecture are shown in Figure 1, describing each
layer with its computational resources. The device layer known as the edge layer held all
capabilities of sensing and communicating with the surrounding environment. The sensor
nodes were grouped to allow connection and disconnection management.

The gateways worked cooperatively to ensure that the sent data were well cached and
processed to reduce system response times. Additionally, the middle layer orchestrated
communication between sensing nodes by providing a single-entry point to the local
systems. The manager containers worked hand-in-hand with the device groups to maintain
system updates of the resources. The manager containers were hosted in the cloud layer
to allow multiple local domains to share data and resource status and make all resource-
intensive applications run concurrently.

This proposed scheme was designed such that, in highly dynamic distributed systems,
the management of multiple deployed sensor nodes and their resources could be achieved
efficiently. The role of the manager (Docker Swarm), shown in Figure 2, was to ensure
the most efficient resource allocation possible by keeping track of service deployment. It
was able to manage sensor node groups and allow system scale-up, and updated as many
containers as possible in clusters of machines.

The communication of sensitive data generated by multiple sources occurred in high
velocity at high volumes. It was managed by messaging hub techniques provided by the
MQTT (message queuing telemetry transport) protocol. The aforementioned multiple
layering entry allowed a manager to define communication channels for applications. It
reduced the intra-service network overhead. The message broker module was included at
each layer in the Docker container.

4.1. Edge Layer

The sensing layer consisted of different sensor nodes deployed in the testing environ-
ment. The sensor nodes included, but were not limited, to: Temperature, Humidity, CO2,
Proximity Sensor, and IR sensor. They were all deployed to a powered RPi board connected
to a LAN network. Each RPi board was configured with a Docker machine and all sensor
services were deployed on it in a container-based approach.

4.2. Gateway Layer

This layer was designed to manage the device groups deployed in different buildings
to ensure the security and scalability of the framework. Once the new device was mounted,
its corresponding gateway could update the container manager in the next layer (Fog layer)
to update its discovery service, thus allowing other containers to be updated.

Sensors 2022, 22, 6462 10 of 29

The gateway layer ensured that all containers were running efficiently. The deci-
sions with light computation needs were also done at this level, as this Pi board had
constrained resources.

4.3. Fog Layer

In a large-scale container deployment over numerous servers, tracking all the con-
tainers and managing their life cycles is a complex task. The fog layer was composed of
a configured server with a machine-learning Linux operating system (OS). On top of the
OS, the Docker Swarm was installed. Its role was to ensure the proper administration
of service lifecycles in massive deployments of Docker containers. The layer allowed
data management as well. In order to maintain the system, the security-with-redundancy
paradigm, database server, and access were all done at this layer. All deployed services
in the Docker environment cooperated hand-in-hand with the Docker hub to update new
versions of container images used, just in case.

4.4. Cloud Layer

The research took advantage of cloud services by allowing all the public management
and access to the implemented microservices resources to be managed. Main message hub
services were fully managed in the cloud to control data transmission through queuing
discipline. Database servers were deployed to keep persistent data for further usage.
Overall web services to allow data access and user permissions at different user services
were also managed at this layer. Finally, the data analytics were performed over the cloud
to use cloud infrastructures that were limited at the edge node.

5. Discussion of the Case Study—Rwanda

Rwanda is an eastern African country with a fast-growing economy. Its cities have
been gradually expanding, with 881,445 city dwellers in its largest cities and 8,169,341
in rural areas [40]. Increasing urban populations have also led to increasing risk of fire.
There is a high risk of fire outbreak due to new public construction, combined with a lack
of firefighting equipment and sufficient people to operate it. Over the last 10 years, fire
outbreaks have increased, with 327 fires registered across the country since 2010. Public
buildings include shops and higher learning institutions, holding a huge number of people.
The case study taken used for this research was from the University of Rwanda, College of
Science and Technology, Kalisimbi Block, where the research was conducted and deployed.
Table 3 summarizes fire incidents recorded from 2010 to 2019.

Table 3. Summary of the fire incidents recorded over the past 10 years.

Years Alerts Deaths Injured Houses Destroyed Crops Ha Liver-Stock Churches Admin Buildings

2010 0 4 9 73 5 0 0 0
2011 0 2 7 84 12 0 2 0
2012 0 0 8 83 21 1 3 0
2013 0 8 8 88 17 2 3 1
2014 0 3 7 88 12 0 6 0
2015 0 0 0 0 0 0 0 0
2016 45 2 7 37 40 0 0 0
2017 48 2 12 33 26 3 5 0
2018 0 0 0 15 4 0 2 1
2019 0 1 19 30 4 0 11 0
Total 93 22 77 531 141 6 32 2

A national inquiry, set up to investigate the causes of the fire outbreaks, found that 61%
of fire incidents were due to short circuits, while 22% were due to unknown causes [41]. Ad-
ditionally, 9% were arson, 4% were caused by road incidents, 3% were caused by hazardous
domestic activities, and 1% were caused by chemical explosion as shown in Figure 3.

Sensors 2022, 22, 6462 11 of 29

Sensors 2022, 22, x FOR PEER REVIEW 11 of 31

Rwanda is an eastern African country with a fast-growing economy. Its cities have
been gradually expanding, with 881,445 city dwellers in its largest cities and 8,169,341 in
rural areas [40]. Increasing urban populations have also led to increasing risk of fire. There
is a high risk of fire outbreak due to new public construction, combined with a lack of
firefighting equipment and sufficient people to operate it. Over the last 10 years, fire
outbreaks have increased, with 327 fires registered across the country since 2010. Public
buildings include shops and higher learning institutions, holding a huge number of
people. The case study taken used for this research was from the University of Rwanda,
College of Science and Technology, Kalisimbi Block, where the research was conducted
and deployed. Table 3 summarizes fire incidents recorded from 2010 to 2019.

Table 3. Summary of the fire incidents recorded over the past 10 years.

Years Alerts Deaths Injured Houses Destroyed Crops Ha Liver-Stock Churches Admin Buildings
2010 0 4 9 73 5 0 0 0
2011 0 2 7 84 12 0 2 0
2012 0 0 8 83 21 1 3 0
2013 0 8 8 88 17 2 3 1
2014 0 3 7 88 12 0 6 0
2015 0 0 0 0 0 0 0 0
2016 45 2 7 37 40 0 0 0
2017 48 2 12 33 26 3 5 0
2018 0 0 0 15 4 0 2 1
2019 0 1 19 30 4 0 11 0
Total 93 22 77 531 141 6 32 2

A national inquiry, set up to investigate the causes of the fire outbreaks, found that
61% of fire incidents were due to short circuits, while 22% were due to unknown causes
[41]. Additionally, 9% were arson, 4% were caused by road incidents, 3% were caused by
hazardous domestic activities, and 1% were caused by chemical explosion as shown in
Figure 3.

Figure 3. Fire outbreak causes.

Due to the aforementioned fire outbreaks, there was a need to address the issue by
incorporating an IoT solution. Some research proposed the implementation of IoT
techniques for early warning and notification, but the solution was limited by system
escalation and modular reusability [42]. Many applications of IoT focus on the smart
health care domain [43]; however, this research proposed IoT frameworks applied in
smart buildings with the following capabilities: reusability, scalability, accessibility,
interoperability, and updateability.

61%22%

9%
4% 3% 1%

Fire Outbreaks causes

Short circuit Unknown causes
Arson Road incidents
Hazardous domestic activities Chemical explosion

Figure 3. Fire outbreak causes.

Due to the aforementioned fire outbreaks, there was a need to address the issue by
incorporating an IoT solution. Some research proposed the implementation of IoT tech-
niques for early warning and notification, but the solution was limited by system escalation
and modular reusability [42]. Many applications of IoT focus on the smart health care
domain [43]; however, this research proposed IoT frameworks applied in smart build-
ings with the following capabilities: reusability, scalability, accessibility, interoperability,
and updateability.

Referring to the sensor node deployment shown in Figure 4, temperature, humidity,
and CO2 sensors were connected in the middle of the room to maximize capture. A
proximity sensor was deployed at the entry point of the room. The reason for choosing
this configuration was to be sure that any captured positive value would show the moving
being. The last parameter of interest was the counting of entries using two communicating
infrared sensors (IR). The presence of a moving object in the office would not necessarily
mean that it was a human being. All of those sensors in combination would help to improve
the questions asked in [44], for instance, to recognize the presence of humans if there were
a moving chair during an earthquake.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 31

Referring to the sensor node deployment shown in Figure 4, temperature, humidity,
and CO2 sensors were connected in the middle of the room to maximize capture. A
proximity sensor was deployed at the entry point of the room. The reason for choosing
this configuration was to be sure that any captured positive value would show the moving
being. The last parameter of interest was the counting of entries using two communicating
infrared sensors (IR). The presence of a moving object in the office would not necessarily
mean that it was a human being. All of those sensors in combination would help to
improve the questions asked in [44], for instance, to recognize the presence of humans if
there were a moving chair during an earthquake.

Figure 4. Sensor Deployment architecture in UR, Kalisimbi Block offices.

The management of the architecture used a distributed set of identical IoT devices
deployed in different locations. Each device was configured to be part of the same group.

Every time a new device was turned on or connected, there were different steps to
follow:
- A New IoT device, such as a sensor or sensor node, is connected to the manager.
- The connected device/sensor is identified with its unique identification.
- The manager assigns the device to the device group, meaning the floor coverage of

the building.
- The latest device group configurations are pulled.
- The manager checks for any updates from the broker (manager) map table to update

the connected groups.
Any time the admin deployed a new device or changed existing device

configurations, the following steps were to be followed:
- Push a new container version, with its corresponding tags, into the configured

Docker registry.
- Update the control API.
- Update the backend database with the new configuration.
- Update all connected IoT devices in their respective groups.

For occupant presence counting, Algorithm 1 was used to synchronize two
communicating IR sensors (one counting incoming users, the other one decrementing
ongoing users). Its deployment, shown in Figure 4, positioned it at any known entry
points of the building. The reason for this was to facilitate the knowledge of the
aggregated number of occupants in a specific building, in case of an incident.

The configuration and cooperation of two IR sensors were programmed using the
following algorithm:

Figure 4. Sensor Deployment architecture in UR, Kalisimbi Block offices.

The management of the architecture used a distributed set of identical IoT devices
deployed in different locations. Each device was configured to be part of the same group.

Sensors 2022, 22, 6462 12 of 29

Every time a new device was turned on or connected, there were different steps
to follow:

- A New IoT device, such as a sensor or sensor node, is connected to the manager.
- The connected device/sensor is identified with its unique identification.
- The manager assigns the device to the device group, meaning the floor coverage of

the building.
- The latest device group configurations are pulled.
- The manager checks for any updates from the broker (manager) map table to update

the connected groups.

Any time the admin deployed a new device or changed existing device configurations,
the following steps were to be followed:

- Push a new container version, with its corresponding tags, into the configured Docker
registry.

1. Update the control API.
2. Update the backend database with the new configuration.
3. Update all connected IoT devices in their respective groups.

For occupant presence counting, Algorithm 1 was used to synchronize two commu-
nicating IR sensors (one counting incoming users, the other one decrementing ongoing
users). Its deployment, shown in Figure 4, positioned it at any known entry points of the
building. The reason for this was to facilitate the knowledge of the aggregated number of
occupants in a specific building, in case of an incident.

The configuration and cooperation of two IR sensors were programmed using the
following algorithm:

Sensors 2022, 22, x FOR PEER REVIEW 13 of 31

Algorithm 1: An Algorithm for Entry Counting

 Input: peopleIN, peopleOUT, IRinStatus, IRoutStatus, inPeople, outPeople, stayPeople

 Output: Number of stayPeople in a Room

1 Initialization of variables: assign zero to variable peopleIN, peopleOUT

2 while (true) do

3 Read IRinStatus

4 Read IRoutStatus

5 if IRinStatus == 0 then

6 RETURN inPeople ← peopleIN++

7 end if

8 if IRoutStatus == 0 then

9 RETURN outPeople ← peopleOUT++

10 end if

11 stayPeople = inPeople − outPeople

12 if stayPeople ≤ 0 then

13 No people inside // No sending process as there is null data to be sent

14 else

15 RETURN stayPeople

16 Send stayPeople in the database // Send data to the database

17 end if

18 end while

5.1. Deployment Architecture of the IoT Sensor Nodes

Figure 5 depicts the deployment design architecture of the proposed building

monitoring IoT system. The system components concerning the

Edge/Gateway/Fog/Cloud architecture are also shown.

Figure 5. Deployment design of building monitoring IoT system.

The system consisted of multiple nodes deployed in different rooms or locations to

monitor selected environmental parameters, including temperature, humidity, CO2,

motion, and occupants. The end nodes were equipped with various sensors (such as

humidity, temperature, CO2, motion, and RIF sensors) and connected to the manager

(centralized controller) to ensure connectivity with deactivation in case of poor function.

5.1. Deployment Architecture of the IoT Sensor Nodes

Figure 5 depicts the deployment design architecture of the proposed building moni-
toring IoT system. The system components concerning the Edge/Gateway/Fog/Cloud
architecture are also shown.

Sensors 2022, 22, 6462 13 of 29

Sensors 2022, 22, x FOR PEER REVIEW 13 of 31

Algorithm 1: An Algorithm for Entry Counting
 Input: peopleIN, peopleOUT, IRinStatus, IRoutStatus, inPeople, outPeople, stayPeople
 Output: Number of stayPeople in a Room

1Initialization of variables: assign zero to variable peopleIN, peopleOUT
2while (true) do
3 Read IRinStatus
4 Read IRoutStatus
5 if IRinStatus == 0 then
6 RETURN inPeople ← peopleIN++
7 end if
8 if IRoutStatus == 0 then
9 RETURN outPeople ← peopleOUT++

10 end if
11 stayPeople = inPeople − outPeople
12 if stayPeople ≤ 0 then
13 No people inside // No sending process as there is null data to be sent
14 else
15 RETURN stayPeople
16 Send stayPeople in the database // Send data to the database
17 end if
18end while

5.1. Deployment Architecture of the IoT Sensor Nodes
Figure 5 depicts the deployment design architecture of the proposed building

monitoring IoT system. The system components concerning the
Edge/Gateway/Fog/Cloud architecture are also shown.

Figure 5. Deployment design of building monitoring IoT system.

The system consisted of multiple nodes deployed in different rooms or locations to
monitor selected environmental parameters, including temperature, humidity, CO2,
motion, and occupants. The end nodes were equipped with various sensors (such as
humidity, temperature, CO2, motion, and RIF sensors) and connected to the manager
(centralized controller) to ensure connectivity with deactivation in case of poor function.

Figure 5. Deployment design of building monitoring IoT system.

The system consisted of multiple nodes deployed in different rooms or locations to
monitor selected environmental parameters, including temperature, humidity, CO2, motion,
and occupants. The end nodes were equipped with various sensors (such as humidity,
temperature, CO2, motion, and RIF sensors) and connected to the manager (centralized
controller) to ensure connectivity with deactivation in case of poor function.

The controller was configured as a Linux computer with all management capabilities.
An orchestrator was installed there to manage all microservices, including the services
to connect, update, and disconnect any newly connected sensor node. The evaluation
of running, pending swarm of services, was monitored through the configured services
Docker Swarm visualizer. The end nodes sent the data to the cloud database using pub-
lish/subscribe services. However, the management of sensor nodes’ gateways was man-
aged by the manager through REST services. The data analytics were done in the cloud to
aggregate the data and make predictions.

5.2. The Representation of the IoT Domain Model

This section details the architecture of the proposed connected modules from the
device end to the human services visualization.

Figure 6 represents the identification of the proposed IoT scenario. The overall figure
shows that the user needed to interact with a physical entity in the physical world. In
order to allow/control the interaction of humans with the rest of the system, there was an
entity called an active artifact that was running software. In the context of this research,
an active digital artifact role was played by the Docker manager to harmonize the sensor
nodes’ operation with their respective containers. A physical entity represented a discrete
identifiable entity in the physical environment: building, rooms, as well as any actuation. A
virtual entity represented the physical entity in the digital world; in other words, it could be
represented as the logical interface to allow physical object interaction. The device provided
a medium for interaction between physical entities and virtual entities. It could be attached
to the physical entities or placed closer to the physical entities. Resources were software
components, either on-device or network resources. Services provided an interface for
integrating with the physical entity. It accessed the resources hosted on the device (or the
network resources) to obtain information about the physical entity or perform the actuation
process upon it.

Sensors 2022, 22, 6462 14 of 29

Sensors 2022, 22, x FOR PEER REVIEW 14 of 31

The controller was configured as a Linux computer with all management capabilities.
An orchestrator was installed there to manage all microservices, including the services to
connect, update, and disconnect any newly connected sensor node. The evaluation of
running, pending swarm of services, was monitored through the configured services
Docker Swarm visualizer. The end nodes sent the data to the cloud database using
publish/subscribe services. However, the management of sensor nodes’ gateways was
managed by the manager through REST services. The data analytics were done in the
cloud to aggregate the data and make predictions.

5.2. The Representation of the IoT Domain Model
This section details the architecture of the proposed connected modules from the

device end to the human services visualization.
Figure 6 represents the identification of the proposed IoT scenario. The overall figure

shows that the user needed to interact with a physical entity in the physical world. In
order to allow/control the interaction of humans with the rest of the system, there was an
entity called an active artifact that was running software. In the context of this research,
an active digital artifact role was played by the Docker manager to harmonize the sensor
nodes’ operation with their respective containers. A physical entity represented a discrete
identifiable entity in the physical environment: building, rooms, as well as any actuation.
A virtual entity represented the physical entity in the digital world; in other words, it
could be represented as the logical interface to allow physical object interaction. The
device provided a medium for interaction between physical entities and virtual entities.
It could be attached to the physical entities or placed closer to the physical entities.
Resources were software components, either on-device or network resources. Services
provided an interface for integrating with the physical entity. It accessed the resources
hosted on the device (or the network resources) to obtain information about the physical
entity or perform the actuation process upon it.

Figure 6. Proposed UML representation of the IoT Domain Model.

Figure 7 shows the process of mounting a new sensor node to the existing system.
The configuration of a new sensor node consisted of only a few steps. The first step was
the process of mounting the new device with its respective driver. The second was to
allow the preparation of device updates on the list of available services. The third was to

Figure 6. Proposed UML representation of the IoT Domain Model.

Figure 7 shows the process of mounting a new sensor node to the existing system. The
configuration of a new sensor node consisted of only a few steps. The first step was the
process of mounting the new device with its respective driver. The second was to allow
the preparation of device updates on the list of available services. The third was to be able
to pull the update from the container manager. The last step was to be able to interact by
pushing data to the respective entities.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 31

be able to pull the update from the container manager. The last step was to be able to
interact by pushing data to the respective entities.

Figure 7. Sequence diagram activity at the sensor node perspective.

Due to the publish and subscribe services offered by the MQTT protocol for real-time
information sharing between connected devices with the central controllers, the sensor
node was able to connect with predefined rules to meet the required configuration. The
broker deployed in fog edge with Docker Swarm was able to work in cooperation to
ensure that there was no interference. The Docker Swarm could also make sure that every
device with its resources was containerized. Every container was assigned its unique
identification to allow the restriction to available resources.

Figure 8 shows the system views from the end-user perspective. The user interacted
with the system by accessing its services through the web application. In the monitoring
process, the end-users, such as the fire brigade, called Emergency Response Controller
(ERC) in this context, must be authenticated by the system.

Figure 7. Sequence diagram activity at the sensor node perspective.

Sensors 2022, 22, 6462 15 of 29

Due to the publish and subscribe services offered by the MQTT protocol for real-time
information sharing between connected devices with the central controllers, the sensor
node was able to connect with predefined rules to meet the required configuration. The
broker deployed in fog edge with Docker Swarm was able to work in cooperation to ensure
that there was no interference. The Docker Swarm could also make sure that every device
with its resources was containerized. Every container was assigned its unique identification
to allow the restriction to available resources.

Figure 8 shows the system views from the end-user perspective. The user interacted
with the system by accessing its services through the web application. In the monitoring
process, the end-users, such as the fire brigade, called Emergency Response Controller
(ERC) in this context, must be authenticated by the system.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 31

Figure 8. Sequence Diagram for End-User Perspective.

For the client application (services) to be able to access the data generated by sensors,
the services must be subscribed to the broker to allow smooth message queueing and
notification sharing using the MQTT protocol. The broker used in the research
implementation was EMQ. In the data management process, all generated data from the
sensor nodes were saved to another service database subscriber known as the PostgreSQL
server. Data could be retrieved from the database server in a different format based on the
user context. In this situation, as there was a need for data for research purposes, there
was no beautified user interface built. The data were kept for further use and retrieved in
JSON format for preprocessing.

For performance monitoring, a combination of different monitoring tools were
used—cAdvisor, Prometheus and Grafana. Figure 8 shows only Prometheus to simplify
the view. All services used in this research (subscription/publish, web application, web
server, database server, monitoring servers) were built as microservices under the Docker
container. This configuration eased dependencies on management and ensured the
correct configuration. The services, known as microservices, were wrapped into an
efficient orchestration module known as Docker Swarm. This facilitated the process of
activation and deactivation any time there were any malfunctioning services, including
device services.

Configuration of the services used in this research was done in layering structures.
Prometheus was configured to ensure all the metrics from the cAdvisor were ingested and
grabbed. To confirm the time interval of sharing the data, the scrape interval was set,
including the endpoint where the cAdvisor was executing. It was forced to expose the
data at port 8080.

All defined services were wrapped within Docker containers to embed all required
dependencies.

Figure 8. Sequence Diagram for End-User Perspective.

For the client application (services) to be able to access the data generated by sensors,
the services must be subscribed to the broker to allow smooth message queueing and noti-
fication sharing using the MQTT protocol. The broker used in the research implementation
was EMQ. In the data management process, all generated data from the sensor nodes were
saved to another service database subscriber known as the PostgreSQL server. Data could
be retrieved from the database server in a different format based on the user context. In
this situation, as there was a need for data for research purposes, there was no beautified
user interface built. The data were kept for further use and retrieved in JSON format
for preprocessing.

For performance monitoring, a combination of different monitoring tools were
used—cAdvisor, Prometheus and Grafana. Figure 8 shows only Prometheus to simplify
the view. All services used in this research (subscription/publish, web application, web
server, database server, monitoring servers) were built as microservices under the Docker

Sensors 2022, 22, 6462 16 of 29

container. This configuration eased dependencies on management and ensured the correct
configuration. The services, known as microservices, were wrapped into an efficient
orchestration module known as Docker Swarm. This facilitated the process of activation and
deactivation any time there were any malfunctioning services, including device services.

Configuration of the services used in this research was done in layering structures.
Prometheus was configured to ensure all the metrics from the cAdvisor were ingested
and grabbed. To confirm the time interval of sharing the data, the scrape interval was set,
including the endpoint where the cAdvisor was executing. It was forced to expose the data
at port 8080.

All defined services were wrapped within Docker containers to embed all re-
quired dependencies.

The configurations in the Docker-compose file specified which containers were part of
the installation and which ports were exposed by each container service. The configuration
file focused on data ingestion from cAdvisor, Prometheus, and Grafana for simplicity.

One key point to mention regarding the configuration: by configuring the specific
container image, the dependency was able to ensure the direction the data took from
container service one to container service two, and so on. There was also another configured
time-series database (TSDB) to capture metrics parameters in real-time. In this research
context, the configured storage was known as the Redis database.

6. Results

This section describes the results and outcomes of the implementation. It details the de-
ployment place, along with the setup of the testbed, including the service usage visualization.

6.1. Deployment Location Selection

This research detailed its application in the fire brigade domain. The architecture
was deployed in the KALISIMBI building of the University of Rwanda (UR), as shown
in Figure 4. The site was selected due to multiple fire outbreak cases noted in the student
kitchen in 2018. The KALISIMBI Block site was selected because it contained many labora-
tory equipment and supplies for chemistry, physics, and electronics, as well as computer
labs. At any time, these chemical components could have reacted and impacted students’
lives. The deployment for testing was configured on the third floor in one room, to help
prevent and forecast incidents.

6.2. Hardware Setup

The real implementation of the proposed IoT architecture system used the hardware
components detailed in Tables 1 and 2 described above. The testbed was configured with all
selected sensors based on the case study. They were all mounted in an RPi microcontroller
board running Docker services. The reason for deploying all sensor nodes services as
microservices in the Docker environment was to allow easy scalability with lightweight
performance management capability.

The system was powered by a power source and connected to the LAN network of
the campus to ensure that it could sync services with Docker Hub. All data were sent by
subscribed sensor nodes through the pipelined microservices up to the hosted database in
the UR campus data center. Each RPi sensor was categorized into groups to manage its
resources and connection capabilities. In the testbed, the computer was used where the
Docker manager was configured to facilitate microservices management and scalability,
referred to in Figures 9 and 10.

Sensors 2022, 22, 6462 17 of 29Sensors 2022, 22, x FOR PEER REVIEW 18 of 31

Figure 9. Detailed mounted sensor node with all related components.

Figure 10. Real mounted sensor nodes with all related components in the building.

6.3. User Application Section
The user was able to access the platform services through the developed web

application under JavaScript, HTML5, Cascading Style Sheets (CSS), and ReactJS

Figure 9. Detailed mounted sensor node with all related components.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 31

Figure 9. Detailed mounted sensor node with all related components.

Figure 10. Real mounted sensor nodes with all related components in the building.

6.3. User Application Section
The user was able to access the platform services through the developed web

application under JavaScript, HTML5, Cascading Style Sheets (CSS), and ReactJS

Figure 10. Real mounted sensor nodes with all related components in the building.

Sensors 2022, 22, 6462 18 of 29

6.3. User Application Section

The user was able to access the platform services through the developed web appli-
cation under JavaScript, HTML5, Cascading Style Sheets (CSS), and ReactJS technologies.
More clearly, the ReactJS framework was used to develop the web application following
the responsive paradigm. For monitoring of the statuses of the containers through the
container manager, Docker Swarm visualization tools were used, as shown in Figure 11.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 31

technologies. More clearly, the ReactJS framework was used to develop the web
application following the responsive paradigm. For monitoring of the statuses of the
containers through the container manager, Docker Swarm visualization tools were used,
as shown in Figure 11.

Figure 11. (a) Visualization of container clusters with one non-working container service with the
attached RPi worker. (b) Visualization after system container stabilization.

In a test experiment, the initial condition of the visualizer service was executed by
the computer system. The Docker Swarm was configured in the board first. However, due
to the limited capability of the storage, the laptop was used as a Docker Swarm manager.
The RPi board was configured as the worker. It was given the IP address to be able to run
independently.

In summary, the system consisted of one Swarm manager (laptop), and one node
worker for testing purposes. All the container services were running in the Swarm
manager, while the sensor node services were running on the worker side. The Swarm
manager ran all services including worker services. The reason for this configuration was
so that it would be able to update the new connected worker and show the status of non-
performing services, as shown in Figure 11.

Figure 12 shows the behavior of the Docker Swarm manager during the process of
orchestration at the scale-up process.

Figure 11. (a) Visualization of container clusters with one non-working container service with the
attached RPi worker. (b) Visualization after system container stabilization.

In a test experiment, the initial condition of the visualizer service was executed by the
computer system. The Docker Swarm was configured in the board first. However, due
to the limited capability of the storage, the laptop was used as a Docker Swarm manager.
The RPi board was configured as the worker. It was given the IP address to be able to run
independently.

In summary, the system consisted of one Swarm manager (laptop), and one node
worker for testing purposes. All the container services were running in the Swarm manager,
while the sensor node services were running on the worker side. The Swarm manager
ran all services including worker services. The reason for this configuration was so that it
would be able to update the new connected worker and show the status of non-performing
services, as shown in Figure 11.

Figure 12 shows the behavior of the Docker Swarm manager during the process of
orchestration at the scale-up process.

The other testing process was to measure the system availability level based on
scalability capability for the system by trying to scale up and scale down all the deployed
container services running in the Docker Swarm manager. The performed operation was
designed to test the capability of the system availability when it came to serving an instant
number of incoming requests that may affect the system overload.

The scaling test was designed to observe how the system would behave in cases where
there were hundreds of thousands of connected workers (sensor nodes) interacting with
the services. The other concern was to see how the platform behaved when many end-users
requested the services (building control units).

Sensors 2022, 22, 6462 19 of 29Sensors 2022, 22, x FOR PEER REVIEW 20 of 31

Figure 12. Docker Swarm with duplicated container services at the scale up purpose.

The other testing process was to measure the system availability level based on
scalability capability for the system by trying to scale up and scale down all the deployed
container services running in the Docker Swarm manager. The performed operation was
designed to test the capability of the system availability when it came to serving an instant
number of incoming requests that may affect the system overload.

The scaling test was designed to observe how the system would behave in cases
where there were hundreds of thousands of connected workers (sensor nodes) interacting
with the services. The other concern was to see how the platform behaved when many
end-users requested the services (building control units).

7. Performance Analysis: Reliability and Scalability
This section covers the performance evaluation of the proposed framework by

following the approach and metrics discussed in Section 3.2.4. The evaluation strategy
used consisted of a function to generate a huge amount of data ingesting into the system
to observe its behavior. The data generator function’s purpose was to simulate IoT devices
as publishers. The ingested data allowed observation of how the containers would be
orchestrated under the governance of the Docker Swarm manager to compete for te
available resources. The goal of this experiment was to assess the proposed IoT framework
from two different points of view:
- Reliability: the reliability of the system was measured by utilizing all the available

resources to ensure that the system was running at full capacity. Those resources
included CPU and active memory usage, with how many data were processed in a
specific period. CPU usage metrics indicated average OS core utilization for all
available CPU physical and virtual cores of the running system. Active memory
showed the number of bytes stored in memory during the experiment at the time of
the test.

- Scalability: the measure of the prediction for extending the system to support
hundreds of thousands of IoT devices publishing data with minimum system
overhead to help time-critical applications. The measurement of these characteristics
was indicated by the system throughput and response time metrics, showing how
the system scalability was maintained.
The excellent performance was shown by the high throughput rate, as in principle, it

should have been increased linearly as the number of devices or requests increased. The
calculation of the throughput was given by the number of messages received and

Figure 12. Docker Swarm with duplicated container services at the scale up purpose.

7. Performance Analysis: Reliability and Scalability

This section covers the performance evaluation of the proposed framework by fol-
lowing the approach and metrics discussed in Section 3.2.4. The evaluation strategy used
consisted of a function to generate a huge amount of data ingesting into the system to
observe its behavior. The data generator function’s purpose was to simulate IoT devices
as publishers. The ingested data allowed observation of how the containers would be or-
chestrated under the governance of the Docker Swarm manager to compete for te available
resources. The goal of this experiment was to assess the proposed IoT framework from two
different points of view:

- Reliability: the reliability of the system was measured by utilizing all the available
resources to ensure that the system was running at full capacity. Those resources
included CPU and active memory usage, with how many data were processed in
a specific period. CPU usage metrics indicated average OS core utilization for all
available CPU physical and virtual cores of the running system. Active memory
showed the number of bytes stored in memory during the experiment at the time of
the test.

- Scalability: the measure of the prediction for extending the system to support hun-
dreds of thousands of IoT devices publishing data with minimum system overhead
to help time-critical applications. The measurement of these characteristics was indi-
cated by the system throughput and response time metrics, showing how the system
scalability was maintained.

The excellent performance was shown by the high throughput rate, as in principle, it
should have been increased linearly as the number of devices or requests increased. The
calculation of the throughput was given by the number of messages received and processed
by the IoT system in one second; the lower the response time, the faster the response and
processing of the system.

7.1. Evaluation Approach and Tools

The experiment to access the performance of the proposed framework was separated
into two categories. The first was from the normal connected IoT devices’ viewpoint. The
second was from the simulated requests to capture the system behaviors. For the normally
connected sensor node, the measurements were also acquired. Testing was done to ensure
the experimental testbed was feasible. The simulated experiment was done to test the
performance while system scaling was conducted.

Sensors 2022, 22, 6462 20 of 29

During the testing phase, the function of sending requests was executed to simulate
virtual IoT devices published in the specified time interval. The simulated IoT devices
sent requests or messages with an increment of 103 (1000, 100,000, 1,000,000) to the IoT
platform. In this experiment, the platform ran under the MQTT publishing operation with
Quality of Service (QoS) level 0—the client simply published the message, and there was
no acknowledgment by the broker. The reason for choosing level 0 was to avoid the system
overhead created by acknowledgment messages. The data used for the system ingestion
were simulated and represented an observation of a unique and random phenomenon. The
estimated average size of each datum generated was 240 bytes. These implied the amount of
data ingested to the platform backend services from sensor nodes and container controller.

The experiment aims to collect CPU, throughputs, and memory metrics usage is con-
ducted by using cAdvisor as container resources usage analysis platform and Prometheus
in combination with Grafana for monitoring the proposed platform as shown in Table 4.

Table 4. Specifications of environments used for performance analysis.

Specifications Test Runner Deployment Server

CPU 4.5 GHz Intel Core TM (4 cores) 4.5 GHz Intel Core TM (4 cores)

Memory 8 GB DDR3 8 GB DDR3

Storage 500 GB HDD 500 GB HHD

OS Linux x86_64 Ubuntu 20.04 LTS

Installed Softwares

Docker Swarm, MQTT
Microservices, NGINX,

PostgreSQL 10.3, Redis, cAdivisor,
Prometheus, Grafana

Docker Swarm, MQTT,
Microservices, NGINX,

PostgreSQL 10.3, Redis, cAdivisor,
Prometheus, Grafana

7.2. Experiment Results

This subsection details the performance analysis conducted given different parameters.
The key concerns were related to the reliability and scalability of the system based on the
changing requests.

7.2.1. Performance in Terms of System Reliability and Scalability

Figures 13 and 14 show different metrics captured for performance evaluation in case
the real IoT sensor node device were to be sending data. In the section on CPU usage, the
average performance results showed that the maximum usage was 2.25 while the minimum
usage was 0.25. This was considered a benchmark against which to measure if any increase
in the load could affect CPU usage.

The evaluation showed that, due to the use of microservices, there was no single core
overload. The graph showed that all works were distributed among the available 4 cores
used in this testing, with an average of around 40% (0.4). The engagement of all cores
implied an increase in system throughput.

On the graph of throughput, the dominant operation was the reception as the data
were being sent from the sensor node to the platform. The observed maximum value
of the reception was 46,000 bytes per second. It showed a minimum of around zero at
some specific period. The presence of some points with zero throughputs could depend
on the sensor node device set to send data at an interval of 5 s. The maximum memory
usage in this configuration was around 4600 megabytes, while the minimum was around
4200 megabytes. This implied that the average usage of 4400 megabytes of memory.

Sensors 2022, 22, 6462 21 of 29Sensors 2022, 22, x FOR PEER REVIEW 22 of 31

Figure 13. CPU resource behavior with normal sensor node setup.

Figure 14. Resource usage for memory and throughput with normal sensor node setup.

On the graph of throughput, the dominant operation was the reception as the data
were being sent from the sensor node to the platform. The observed maximum value of
the reception was 46,000 bytes per second. It showed a minimum of around zero at some
specific period. The presence of some points with zero throughputs could depend on the

Figure 13. CPU resource behavior with normal sensor node setup.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 31

Figure 13. CPU resource behavior with normal sensor node setup.

Figure 14. Resource usage for memory and throughput with normal sensor node setup.

On the graph of throughput, the dominant operation was the reception as the data
were being sent from the sensor node to the platform. The observed maximum value of
the reception was 46,000 bytes per second. It showed a minimum of around zero at some
specific period. The presence of some points with zero throughputs could depend on the

Figure 14. Resource usage for memory and throughput with normal sensor node setup.

Sensors 2022, 22, 6462 22 of 29

Figures 15 and 16 depict the observations of the system behavior after applying
the generated IoT sensor requests. In predicting the platform scalability, 10,000 IoT
sensor requests were generated. In these graphs, there was a considerable increase in
CPU usage with an average of (0.75) 75%. The memory usage maximum was around
4800 megabytes while the minimum used was around 4400 megabytes. This implied an
average of 4600 megabytes of memory. In this experiment, the throughput graph showed a
maximum of around 50,000 bytes/second with a minimum of around zero, generating an
average of 25,000 bytes/second.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 31

sensor node device set to send data at an interval of 5 s. The maximum memory usage in
this configuration was around 4600 megabytes, while the minimum was around 4200
megabytes. This implied that the average usage of 4400 megabytes of memory.

Figures 15 and 16 depict the observations of the system behavior after applying the
generated IoT sensor requests. In predicting the platform scalability, 10,000 IoT sensor
requests were generated. In these graphs, there was a considerable increase in CPU usage
with an average of (0.75) 75%. The memory usage maximum was around 4800 megabytes
while the minimum used was around 4400 megabytes. This implied an average of 4600
megabytes of memory. In this experiment, the throughput graph showed a maximum of
around 50,000 bytes/second with a minimum of around zero, generating an average of

Figure 15. CPU resources with 10,000 generated sensor requests. Figure 15. CPU resources with 10,000 generated sensor requests.

Figures 17 and 18 show the considerable increases, especially in CPU core usage, with
the generation of 1,000,000 requests. The average usage of all CPU cores was around (0.8)
80%. The maximum memory of 5000 megabytes and the minimum of 4500 megabytes
of RAM were consumed. The average memory usage as around 4750 megabytes. The
maximum throughput measured was equal to 60,000 bytes per second, with an average of
30,000 bytes per second.

Sensors 2022, 22, 6462 23 of 29
Sensors 2022, 22, x FOR PEER REVIEW 24 of 31

Figure 16. Resource usage for memory and throughput with 10,000 generated sensor requests.

Figures 17 and 18 show the considerable increases, especially in CPU core usage, with
the generation of 1,000,000 requests. The average usage of all CPU cores was around (0.8)
80%. The maximum memory of 5000 megabytes and the minimum of 4500 megabytes of
RAM were consumed. The average memory usage as around 4750 megabytes. The
maximum throughput measured was equal to 60,000 bytes per second, with an average
of 30,000 bytes per second.

Figure 16. Resource usage for memory and throughput with 10,000 generated sensor requests.

Sensors 2022, 22, x FOR PEER REVIEW 25 of 31

Figure 17. CPU resource with 1,000,000 generated sensor requests.

Figure 18. Resource usage for memory and throughput, with 1,000,000 generated sensor requests.

7.2.2. Performance Measurement in Terms of Container’s Resources Usages at the Scale-
Up

The second experiment was conducted by increasing the number of nodes to track
how the system behaved if it were scaled up. This experiment was conducted by setting
the number of nodes to 3; the observations were measured using the same performance
tools discussed (Prometheus and Grafana). In this experimental setup, the assumption
was to scale up the containers to observe the system behaviors. The experiment was

Figure 17. CPU resource with 1,000,000 generated sensor requests.

Sensors 2022, 22, 6462 24 of 29

Sensors 2022, 22, x FOR PEER REVIEW 24 of 30

Figures 17 and 18 show the considerable increases, especially in CPU core usage, with
the generation of 1,000,000 requests. The average usage of all CPU cores was around (0.8)
80%. The maximum memory of 5000 megabytes and the minimum of 4500 megabytes of
RAM were consumed. The average memory usage as around 4750 megabytes. The
maximum throughput measured was equal to 60,000 bytes per second, with an average
of 30,000 bytes per second.

Figure 17. CPU resource with 1,000,000 generated sensor requests.

Figure 18. Resource usage for memory and throughput, with 1,000,000 generated sensor requests. Figure 18. Resource usage for memory and throughput, with 1,000,000 generated sensor requests.

7.2.2. Performance Measurement in Terms of Container’s Resources Usages at the Scale-Up

The second experiment was conducted by increasing the number of nodes to track
how the system behaved if it were scaled up. This experiment was conducted by setting
the number of nodes to 3; the observations were measured using the same performance
tools discussed (Prometheus and Grafana). In this experimental setup, the assumption was
to scale up the containers to observe the system behaviors. The experiment was detailed
with two entries: scaling the application, in terms of container services, and generating
different requests to observe the system. In this experiment, the observations are sticking
to CPU, Memory, and Traffic metrics behaviors.

Figure 19 visualizes the memory and CPU usages in the scaled 3 nodes, using 1000
generated requests. The graph of memory usage showed that the increases in requests
could increase the amount of consumed memory, but for the time being, there was no
increase. The CPU usage graph showed that, while at the time, there was a small increase
in usage, this increase may have depended on the internal cooperation of all container
services involved in the data processing.

Sensors 2022, 22, 6462 25 of 29

Sensors 2022, 22, x FOR PEER REVIEW 26 of 31

detailed with two entries: scaling the application, in terms of container services, and
generating different requests to observe the system. In this experiment, the observations
are sticking to CPU, Memory, and Traffic metrics behaviors.

Figure 19 visualizes the memory and CPU usages in the scaled 3 nodes, using 1000
generated requests. The graph of memory usage showed that the increases in requests
could increase the amount of consumed memory, but for the time being, there was no
increase. The CPU usage graph showed that, while at the time, there was a small increase
in usage, this increase may have depended on the internal cooperation of all container
services involved in the data processing.

Figure 19. Performance of the platform after scaling up with the requests of 1000—memory and
CPU usage.

The performance metrics were concerned with the transmission cost of the network
as shown in Figure 20. The main point of tracking those parameters was to observe how
the internal containers were costly while exchanging message requests. In network
transmission, the busy container was cAdvisor, as it was concerned with the huge number
of requests being generated.

Figure 20. Performance of the platform after scaling up with requests to 1000 network data
transmissions.

Figure 21 shows the visualization of the system after increasing the number of
requests up to 1,000,000. The graph shows that CPU and memory did not change
significantly, but the trend increased compared to Figure 19.

Figure 19. Performance of the platform after scaling up with the requests of 1000—memory and
CPU usage.

The performance metrics were concerned with the transmission cost of the network
as shown in Figure 20. The main point of tracking those parameters was to observe
how the internal containers were costly while exchanging message requests. In network
transmission, the busy container was cAdvisor, as it was concerned with the huge number
of requests being generated.

Sensors 2022, 22, x FOR PEER REVIEW 26 of 31

detailed with two entries: scaling the application, in terms of container services, and
generating different requests to observe the system. In this experiment, the observations
are sticking to CPU, Memory, and Traffic metrics behaviors.

Figure 19 visualizes the memory and CPU usages in the scaled 3 nodes, using 1000
generated requests. The graph of memory usage showed that the increases in requests
could increase the amount of consumed memory, but for the time being, there was no
increase. The CPU usage graph showed that, while at the time, there was a small increase
in usage, this increase may have depended on the internal cooperation of all container
services involved in the data processing.

Figure 19. Performance of the platform after scaling up with the requests of 1000—memory and
CPU usage.

The performance metrics were concerned with the transmission cost of the network
as shown in Figure 20. The main point of tracking those parameters was to observe how
the internal containers were costly while exchanging message requests. In network
transmission, the busy container was cAdvisor, as it was concerned with the huge number
of requests being generated.

Figure 20. Performance of the platform after scaling up with requests to 1000 network data
transmissions.

Figure 21 shows the visualization of the system after increasing the number of
requests up to 1,000,000. The graph shows that CPU and memory did not change
significantly, but the trend increased compared to Figure 19.

Figure 20. Performance of the platform after scaling up with requests to 1000 network data transmissions.

Figure 21 shows the visualization of the system after increasing the number of requests
up to 1,000,000. The graph shows that CPU and memory did not change significantly, but
the trend increased compared to Figure 19.

Sensors 2022, 22, x FOR PEER REVIEW 27 of 31

Figure 21. Performance of the platform after scaling up with 1,000,000 requests: memory and CPU
usage.

Figure 22 shows the increase in performance for the network transmission, as this
experiment did not discuss testing the user access of the requests at the user end side.

Figure 22. Performance of the platform after scaling up the requests to 1,000,000 network data
transmissions.

Figures 21 and 22 demonstrated the overall behavior of the platform using 3 nodes.
Figure 21 shows the increase of the CPU usage as the number of requests increased.

Figure 23 shows the CPU usage performance, while Figure 24 visualizes the
performance of the system in terms of memory usage and network transmission. The
graph summarized the details shown in Figures 19–22. It was observed that the memory
did not increase in consideration of the increase of the requests, as seen in the observations
detailed in the above figures. The network transmission at the receiver side (Rx) did not
increase much as the experiment performed was aimed at generating requests to be sent
to the platform. Generating requests trying to access the generated data was out of the
scope of this research.

Figure 21. Performance of the platform after scaling up with 1,000,000 requests: memory and CPU
usage.

Sensors 2022, 22, 6462 26 of 29

Figure 22 shows the increase in performance for the network transmission, as this
experiment did not discuss testing the user access of the requests at the user end side.

Sensors 2022, 22, x FOR PEER REVIEW 27 of 31

Figure 21. Performance of the platform after scaling up with 1,000,000 requests: memory and CPU
usage.

Figure 22 shows the increase in performance for the network transmission, as this
experiment did not discuss testing the user access of the requests at the user end side.

Figure 22. Performance of the platform after scaling up the requests to 1,000,000 network data
transmissions.

Figures 21 and 22 demonstrated the overall behavior of the platform using 3 nodes.
Figure 21 shows the increase of the CPU usage as the number of requests increased.

Figure 23 shows the CPU usage performance, while Figure 24 visualizes the
performance of the system in terms of memory usage and network transmission. The
graph summarized the details shown in Figures 19–22. It was observed that the memory
did not increase in consideration of the increase of the requests, as seen in the observations
detailed in the above figures. The network transmission at the receiver side (Rx) did not
increase much as the experiment performed was aimed at generating requests to be sent
to the platform. Generating requests trying to access the generated data was out of the
scope of this research.

Figure 22. Performance of the platform after scaling up the requests to 1,000,000 network data
transmissions.

Figures 21 and 22 demonstrated the overall behavior of the platform using 3 nodes.
Figure 21 shows the increase of the CPU usage as the number of requests increased.

Figure 23 shows the CPU usage performance, while Figure 24 visualizes the perfor-
mance of the system in terms of memory usage and network transmission. The graph
summarized the details shown in Figures 19–22. It was observed that the memory did
not increase in consideration of the increase of the requests, as seen in the observations
detailed in the above figures. The network transmission at the receiver side (Rx) did not
increase much as the experiment performed was aimed at generating requests to be sent to
the platform. Generating requests trying to access the generated data was out of the scope
of this research.

Sensors 2022, 22, x FOR PEER REVIEW 28 of 31

Figure 23. Performance of the scaled system by 3 nodes: CPU usage.

Figure 24. Performance of the scaled system by 3 nodes: memory and transmissions (Rx, and Tx).

The network transmission at the transfer side showed tremendous changes, but it
was also observed that, at one hundred requests, the graph began to go down to ten
thousand, but then increased.

8. Conclusions
The implementation of a comprehensive solution for the whole IoT lifecycle was

presented in this research. The lifecycle presented fit into four phases: data capture,
communication, analysis, and implementation. A generic framework architecture, based
on the above layers, was defined in the DevOps paradigm. The architecture complied with
the main system requirements of all proposed IoT solutions.

The proposed IoT solutions were discussed in the building fire prevention sector, to
improve building comfort and security. Different challenges were discussed concerning
the scalability, updating, and performance of IoT devices with low computing capabilities.

3050 3200

3800 3900

4500

0 0 0 0 0
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

[0] [100] [10,000] [100,000] [1,000,000]

CP
U

UT
IL

IZ
AT

IO
N

NUMBER OF REQUESTS

CPU Usage Number_of_Requests

Figure 23. Performance of the scaled system by 3 nodes: CPU usage.

Sensors 2022, 22, 6462 27 of 29

Sensors 2022, 22, x FOR PEER REVIEW 28 of 31

Figure 23. Performance of the scaled system by 3 nodes: CPU usage.

Figure 24. Performance of the scaled system by 3 nodes: memory and transmissions (Rx, and Tx).

The network transmission at the transfer side showed tremendous changes, but it
was also observed that, at one hundred requests, the graph began to go down to ten
thousand, but then increased.

8. Conclusions
The implementation of a comprehensive solution for the whole IoT lifecycle was

presented in this research. The lifecycle presented fit into four phases: data capture,
communication, analysis, and implementation. A generic framework architecture, based
on the above layers, was defined in the DevOps paradigm. The architecture complied with
the main system requirements of all proposed IoT solutions.

The proposed IoT solutions were discussed in the building fire prevention sector, to
improve building comfort and security. Different challenges were discussed concerning
the scalability, updating, and performance of IoT devices with low computing capabilities.

3050 3200

3800 3900

4500

0 0 0 0 0
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

[0] [100] [10,000] [100,000] [1,000,000]

CP
U

UT
IL

IZ
AT

IO
N

NUMBER OF REQUESTS

CPU Usage Number_of_Requests

Figure 24. Performance of the scaled system by 3 nodes: memory and transmissions (Rx, and Tx).

The network transmission at the transfer side showed tremendous changes, but it was
also observed that, at one hundred requests, the graph began to go down to ten thousand,
but then increased.

8. Conclusions

The implementation of a comprehensive solution for the whole IoT lifecycle was
presented in this research. The lifecycle presented fit into four phases: data capture,
communication, analysis, and implementation. A generic framework architecture, based
on the above layers, was defined in the DevOps paradigm. The architecture complied with
the main system requirements of all proposed IoT solutions.

The proposed IoT solutions were discussed in the building fire prevention sector, to
improve building comfort and security. Different challenges were discussed concerning the
scalability, updating, and performance of IoT devices with low computing capabilities. The
IoT devices were installed in buildings, accessing the building’s electrical power resources.

In the proposed framework for data transmission and management, the nonfunctional
requirement (QoS) was considered to address all critical cases to be solved by IoT solutions.
It also showed that some computation was possible at the edge side, minimizing the
decision time delay.

Data transmissions were considered by ensuring data transfer in real-time using
MQTT-based protocols, along with data packaged in JSON format—which has been consid-
ered lightweight—to ensure low network bandwidth consumption. For services, scalability,
and reusability, the container-based and microservices solution was proposed, using Docker.
It satisfied the horizontal scalability of the framework. The sensor nodes, considered Docker
workers for updating and easy connectivity, were under the control of the Docker Swarm
manager. Data sent from sensor nodes were managed by the Nginx web server, which
also acted as a load balancer in case of the huge amount of user requests coming from
the front-end.

The IoT framework presented in this research was validated and used in a smart
building scenario to contribute to fire prevention situations. The system was deployed in
the UR–KALISIMBI block site for three months to experiment with the challenges of the
data capture process. The performance metrics were extracted to visualize if they were
suitable for adoption by the whole University.

Finally, for future work, the authors will improve the IoT interoperability for disparate
and heterogeneous sensor devices, data, and the standard IoT models. Additionally, the

Sensors 2022, 22, 6462 28 of 29

extensions will concentrate on an advanced custom visualization layer with machine
learning techniques included for decision making.

Author Contributions: Conceptualization, E.H. and G.B.; methodology, E.H.; software, E.H.; valida-
tion, K.J., R.M. and L.S.; formal analysis, G.B.; investigation, E.H.; resources, E.H.; data curation, K.J.;
writing—original draft preparation, E.H.; writing—review and editing, E.H. and G.B.; visualization,
E.H.; supervision, G.B.; project administration, G.B.; funding acquisition, E.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by African Centre of Excellence in the Internet of Things (ACEIoT)
running under the University of Rwanda, College of Science and Technology (UR-CST).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used to achieve the research objectives are available online
(ACEIoT portal at the University of Rwanda).

Acknowledgments: This research was under the support of the African Centre of Excellence in
the Internet of Things (ACEIoT) running under the University of Rwanda, College of Science and
Technology (UR-CST).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Benazzouz, Y.; Munilla, C.; Gunalp, O.; Gallissot, M.; Gurgen, L. Sharing user IoT devices in the cloud. In Proceedings of the IEEE

World Forum on Internet of Things, WF-IoT 2014, Seoul, Korea, 6–8 March 2014; pp. 373–374. [CrossRef]
2. Macías, A.; Navarro, E.; González, P. A Microservice-Based Framework for Developing Internet of Things and People Applications.

Multidiscip. Digit. Publ. Inst. Proc. 2019, 31, 85. [CrossRef]
3. Reason, J.; Hobbs, A. Managing Maintenance Error: A Practical Guide; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780754615910.
4. Caballero, A. Information Security Essentials for Information Technology Managers: Protecting Mission-Critical Systems. In

Computer and Information Security Handbook; Morgan Kaufmann: Burlington, MA, USA, 2013; pp. 1–45. [CrossRef]
5. Judvaitis, J.; Nesenbergs, K.; Balass, R.; Greitans, M. Challenges of DevOps ready IoT Testbed. In Proceedings of the ACM/IEEE

22nd International Conference on Model Driven Engineering Languages and Systems, Munich, Germany, 15–20 September 2019.
6. DevOps—The Web’s Largest Collection of DevOps Content. Available online: https://devops.com/ (accessed on 16 July 2021).
7. Muller, G. Systems Engineering Research Methods. Procedia Comput. Sci. 2013, 16, 1092–1101. [CrossRef]
8. Farroha, B.S.; Farroha, D.L. A framework for managing mission needs, compliance, and trust in the DevOps environment. In

Proceedings of the 2014 IEEE Military Communications Conference, Washington, DC, USA, 6–8 October 2014; pp. 288–293.
[CrossRef]

9. Casale, G.; Chesta, C.; Deussen, P.; Di Nitto, E.; Gouvas, P.; Koussouris, S.; Stankovski, V.; Symeonidis, A.; Vlassiou, V.;
Zafeiropoulos, A.; et al. Current and Future Challenges of Software Engineering for Services and Applications. Procedia Comput.
Sci. 2016, 97, 34–42. [CrossRef]

10. Lwakatare, L.E.; Kuvaja, P.; Oivo, M. Relationship of DevOps to Agile, Lean and Continuous Deployment. In Proceedings of
the International Conference on Product-Focused Software Process Improvement, Trondheim, Norway, 22–24 November 2016;
pp. 399–415. [CrossRef]

11. Lwakatare, L.E.; Kuvaja, P.; Oivo, M. An Exploratory Study of DevOps: Extending the Dimensions of DevOps with Practices.
ICSEA 2016, Rome, 2016. Available online: http://n4s.dimecc.com/publication/an-exploratory-study-of-devops-extending-the-
dimensions-of-devops-with-practices/ (accessed on 17 July 2021).

12. Dyck, A.; Penners, R.; Lichter, H. Towards Definitions for Release Engineering and DevOps. In Proceedings of the 2015 IEEE/ACM
3rd International Workshop on Release Engineering, Florence, Italy, 19 May 2015; p. 3. [CrossRef]

13. Ali, S.; Jarwar, M.A.; Chong, I. Design Methodology of Microservices to Support Predictive Analytics for IoT Applications. Sensors
2018, 18, 4226. [CrossRef] [PubMed]

14. Moore, J.; Kortuem, G.; Smith, A.; Chowdhury, N.; Cavero, J.; Gooch, D. DevOps for the Urban IoT. In Proceedings of the Second
International Conference on IoT in Urban Space, Tokyo, Japan, 24–25 May 2016; pp. 78–81. [CrossRef]

15. Gokceli, S.; Zhmurov, N.; Kurt, G.K.; Ors, B. IoT in Action: Design and Implementation of a Building Evacuation Service. J.
Comput. Networks Commun. 2017, 2017, 8595404. [CrossRef]

16. Truong, H.-L.; Klein, P. DevOps Contract for Assuring Execution of IoT Microservices in the Edge. Internet Things 2019, 9, 100150.
[CrossRef]

17. Abbott, M.; Fisher, M. The Art of Scalability: Scalable Web Architecture, Processes, and Organizations for the Modern Enterprise;
Addison-Wesley Prof.: San Francisco, CA, USA, 2009; ISBN-10: 134032802; ISBN-13: 978-0134032801.

http://doi.org/10.1109/wf-iot.2014.6803193
http://doi.org/10.3390/proceedings2019031085
http://doi.org/10.1016/b978-0-12-416688-2.00001-5
https://devops.com/
http://doi.org/10.1016/j.procs.2013.01.115
http://doi.org/10.1109/MILCOM.2014.54
http://doi.org/10.1016/j.procs.2016.08.278
http://doi.org/10.1007/978-3-319-49094-6_27
http://n4s.dimecc.com/publication/an-exploratory-study-of-devops-extending-the-dimensions-of-devops-with-practices/
http://n4s.dimecc.com/publication/an-exploratory-study-of-devops-extending-the-dimensions-of-devops-with-practices/
http://doi.org/10.1109/releng.2015.10
http://doi.org/10.3390/s18124226
http://www.ncbi.nlm.nih.gov/pubmed/30513822
http://doi.org/10.1145/2962735.2962747
http://doi.org/10.1155/2017/8595404
http://doi.org/10.1016/j.iot.2019.100150

Sensors 2022, 22, 6462 29 of 29

18. Vresk, T.; Cavrak, I. Architecture of an Interoperable IoT Platform based on Microservices. In Proceedings of the 2016 39th
International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 30 May–3 June 2016; pp. 1196–1201. [CrossRef]

19. Villamizar, M.; Garces, O.; Castro, H.; Verano, M.; Salamanca, L.; Casallas, R.; Gil, S. Evaluating the monolithic and the
microservice architecture pattern to deploy web applications in the cloud. In Proceedings of the 2015 10th Computing Colombian
Conference (10CCC), Bogota, Colombia, 21–25 September 2015; pp. 583–590. [CrossRef]

20. Ali, S.; Kibria, M.G.; Jarwar, M.A.; Lee, H.K.; Chong, I. A Model of Socially Connected Web Objects for IoT Applications. Wirel.
Commun. Mob. Comput. 2018, 2018, 6309509. [CrossRef]

21. Akasiadis, C.; Pitsilis, V.; Spyropoulos, C.D. A Multi-Protocol IoT Platform Based on Open-Source Frameworks. Sensors 2019,
19, 4217. [CrossRef] [PubMed]

22. Salikhov, D.; Khanda, K.; Gusmanov, K.; Mazzara, M.; Mavridis, N. Microservice-based IoT for smart buildings. In Proceedings
of the 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), Taipei,
Taiwan, 27–29 March 2017; pp. 302–308. [CrossRef]

23. Morabito, R.; Farris, I.; Iera, A.; Taleb, T. Evaluating Performance of Containerized IoT Services for Clustered Devices at the
Network Edge. IEEE Internet Things J. 2017, 4, 1019–1030. [CrossRef]

24. de Prado, R.P.; García-Galán, S.; Muñoz-Expósito, J.E.; Marchewka, A.; Ruiz-Reyes, N. Smart Containers Schedulers for
Microservices Provision in Cloud-Fog-IoT Networks. Challenges and Opportunities. Sensors 2020, 20, 1714. [CrossRef] [PubMed]

25. Rodriguez, M.A.; Buyya, R. Container-based cluster orchestration systems: A taxonomy and future directions. Softw. Pract. Exp.
2018, 49, 698–719. [CrossRef]

26. Babar, M.A. Understanding Container Isolation Mechanisms for Building Security-Sensitive Private Cloud; Technical Re-
port; CREST—Centre for Research on Engineering Software Technologies, University of Adelaide: Australia. Available on-
line: https://www.researchgate.net/publication/316602321_Understanding_Container_Isolation_Mechanisms_for_Building_
Security-Sensitive_Private_Cloud (accessed on 28 November 2021).

27. Docker. Swarm Mode Overview|Docker Documentation. Available online: https://docs.docker.com/engine/swarm/ (accessed
on 5 December 2021).

28. Smith, B. ARM and Intel Battle over the Mobile Chip’s Future. Computer 2008, 41, 15–18. [CrossRef]
29. Petrolo, R.; Morabito, R.; Loscrì, V.; Mitton, N. The design of the gateway for the Cloud of Things. Ann. Telecommun. 2016,

72, 31–40. [CrossRef]
30. ARM, A.L. Arch Linux ARM. 2018. Available online: https://archlinuxarm.org/ (accessed on 22 October 2021).
31. Karl, H.; Willig, A. Protocols and Architectures for Wireless Sensor Networks; John Wiley & Sons: Hoboken, NJ, USA, 2005. [CrossRef]
32. Singh, S.K.; Singh, M.; Singh, D.K. Routing Protocols in Wireless Sensor Networks—A Survey. Int. J. Comput. Sci. Eng. Surv. 2010,

1, 63–83. [CrossRef]
33. Device Authority, Docker + Device Authority’s KeyScaler Platform. 2019. Available online: https://www.deviceauthority.com/

wp-content/uploads/2021/09/solutionbrief_docker_keyscaler.pdf (accessed on 27 April 2022).
34. Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An Updated Performance Comparison of Virtual Machines and Linux Containers. In

Proceedings of the 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia,
PA, USA, 29–31 March 2015; pp. 171–172. [CrossRef]

35. Liu, D.; Zhao, L. The Research and Implementation of Cloud Computing Platform Based on Docker. In Proceedings of the
2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing (ICCWAMTIP),
Chengdu, China, 19–21 December 2014; pp. 475–478. [CrossRef]

36. Ismail, B.I.; Goortani, E.M.; Ab Karim, M.B.; Tat, W.M.; Setapa, S.; Luke, J.Y.; Hoe, O.H. Evaluation of Docker as Edge Computing
Platform. In Proceedings of the 2015 IEEE Conference on Open Systems (ICOS), Melaka, Malaysia, 24–26 August 2015; pp. 130–135.
[CrossRef]

37. Morabito, R.; Petrolo, R.; Loscri, V.; Mitton, N. Enabling a Lightweight Edge Gateway-as-a-Service for the Internet of Things. In
Proceedings of the 2016 7th International Conference on the Network of the Future (NOF), Búzios, Brazil, 16–18 November 2016;
pp. 1–5. [CrossRef]

38. Taherizadeh, S.; Jones, A.C.; Taylor, I.; Zhao, Z.; Stankovski, V. Monitoring self-adaptive applications within edge computing
frameworks: A state-of-the-art review. J. Syst. Softw. 2018, 136, 19–38. [CrossRef]

39. Seo, K.-T.; Hwang, H.-S.; Moon, I.-Y.; Kwon, O.-Y.; Kim, B.-J. Performance Comparison Analysis of Linux Container and Virtual
Machine for Building Cloud. Adv. Sci. Technol. Lett. 2014, 66, 2. [CrossRef]

40. Minema, R. National Contingency Plan for Fire Incidents. 2019. Available online: https://www.minema.gov.rw/fileadmin/user_
upload/Minema/Publications/Contingency_Plans/Contingency_Plan_for_Fire_Incidents.pdf (accessed on 5 March 2022).

41. The New Times|Rwanda, Fire Outbreaks on the Increase Again?|The New Times|Rwanda. 2016. Available online: https:
//www.newtimes.co.rw/section/read/202470 (accessed on 7 March 2022).

42. Hitimana, E.; Bajpai, G.; Musabe, R.; Sibomana, L.; Kayalvizhi, J. IoT Application for Spruce Fire Detection in Rwanda. In ICT
Analysis and Applications; Springer: Singapore, 2022; pp. 823–831. [CrossRef]

43. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
44. Hitimana, E.; Bajpai, G.; Musabe, R.; Sibomana, L.; Kayalvizhi, J. Implementation of IoT Framework with Data Analysis Using

Deep Learning Methods for Occupancy Prediction in a Building. Future Internet 2021, 13, 67. [CrossRef]

http://doi.org/10.1109/mipro.2016.7522321
http://doi.org/10.1109/columbiancc.2015.7333476
http://doi.org/10.1155/2018/6309509
http://doi.org/10.3390/s19194217
http://www.ncbi.nlm.nih.gov/pubmed/31569338
http://doi.org/10.1109/WAINA.2017.77
http://doi.org/10.1109/JIOT.2017.2714638
http://doi.org/10.3390/s20061714
http://www.ncbi.nlm.nih.gov/pubmed/32204390
http://doi.org/10.1002/spe.2660
https://www.researchgate.net/publication/316602321_Understanding_Container_Isolation_Mechanisms_for_Building_Security-Sensitive_Private_Cloud
https://www.researchgate.net/publication/316602321_Understanding_Container_Isolation_Mechanisms_for_Building_Security-Sensitive_Private_Cloud
https://docs.docker.com/engine/swarm/
http://doi.org/10.1109/MC.2008.142
http://doi.org/10.1007/s12243-016-0521-z
https://archlinuxarm.org/
http://doi.org/10.1002/0470095121
http://doi.org/10.5121/ijcses.2010.1206
https://www.deviceauthority.com/wp-content/uploads/2021/09/solutionbrief_docker_keyscaler.pdf
https://www.deviceauthority.com/wp-content/uploads/2021/09/solutionbrief_docker_keyscaler.pdf
http://doi.org/10.1109/ispass.2015.7095802
http://doi.org/10.1109/iccwamtip.2014.7073453
http://doi.org/10.1109/icos.2015.7377291
http://doi.org/10.1109/nof.2016.7810110
http://doi.org/10.1016/j.jss.2017.10.033
http://doi.org/10.14257/astl.2014.66.25
https://www.minema.gov.rw/fileadmin/user_upload/Minema/Publications/Contingency_Plans/Contingency_Plan_for_Fire_Incidents.pdf
https://www.minema.gov.rw/fileadmin/user_upload/Minema/Publications/Contingency_Plans/Contingency_Plan_for_Fire_Incidents.pdf
https://www.newtimes.co.rw/section/read/202470
https://www.newtimes.co.rw/section/read/202470
http://doi.org/10.1007/978-981-16-5655-2_79
http://doi.org/10.1016/j.comnet.2010.05.010
http://doi.org/10.3390/fi13030067

	Introduction
	Related Works
	Usage of DevOps Methodology
	Application of Microservices
	Container Management
	Docker Swarm

	Materials and Methods
	Underlying Hardware Components
	Embedded Board
	Edge Sensor Nodes
	Network Connectivity and Protocols

	Underlying Software Components
	Dockers
	Data Management and Data Format
	Application Services: Microservices
	Monitoring Parameters
	Performance Analysis and Monitoring Tools

	Proposed Architecture
	Edge Layer
	Gateway Layer
	Fog Layer
	Cloud Layer

	Discussion of the Case Study—Rwanda
	Deployment Architecture of the IoT Sensor Nodes
	The Representation of the IoT Domain Model

	Results
	Deployment Location Selection
	Hardware Setup
	User Application Section

	Performance Analysis: Reliability and Scalability
	Evaluation Approach and Tools
	Experiment Results
	Performance in Terms of System Reliability and Scalability
	Performance Measurement in Terms of Container’s Resources Usages at the Scale-Up

	Conclusions
	References

