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Abstract: In this work, a wireless UAV unmanned landing system is considered, using the principles
of pseudo conical scanning with a phased antenna array (PAA). The basic requirements for the
characteristics and parameters of the system as a whole and of its components are defined. Special
attention is paid to the primary sensor of the system—PAA with electronic scanning. A variant
with a minimum number of four states on the radiation pattern of a low-budget patch PAA was
studied. A linear regression of the difference characteristics of the measured radiation beams is
proposed, which allows the practical application of the recommended landing algorithm with low
computational complexity. Systematic and random positioning errors, both by measurement and by
Monte Carlo simulation, were studied. Obtained statistical results prove the algorithm convergence
and acceptable accuracy for the system implementation. They are applied if necessary to adjust the
Kalman filter parameters. The proposed wireless system can be used for unmanned landing, tracking,
and navigating the UAV in flight, or wireless navigation of other mobile objects.

Keywords: unmanned aerial vehicles (UAV); automatic landing; pseudo conical scanning; radiolocation;
navigation; phased antenna array

1. Introduction

Unmanned aerial vehicles (UAVs) are a special apparatus that in recent years are
increasingly used to solve problems in industry, telecommunications, agriculture, ecology,
military affairs, civil defense, transport, entertainment, etc. [1,2]. It is essential to automate
the UAV operating processes. The automated landing of UAVs expands the possibilities
and scope of their use. Typically, qualified operators perform UAV landings. On the other
hand, these devices have the necessary technical tools, optical and other onboard sensors,
which are used for landing.

Most existing UAV automatic landing techniques are based on differential GPS sys-
tems [3], pseudoconical scanning radio systems (PCS) [4], laser optical curtains [5,6], video
systems, image recognition at the landing site [7], etc.

Usually, the landing pad is the same size as the UAV. In some cases, the civilian GPS
accuracy is often insufficient to perform a landing process. Additionally, the landing must
be performed on mobile vehicles: a boat, another vehicle, or enclosed areas.

Different positioning methods have their advantages and disadvantages. For example,
Real-Time Kinematic (RTK) [8] and/or Differential GPS systems have high precision. They
require an additional base station for more accurate navigation and communication with
moving objects. The additional equipment, in many cases, has a cost comparable to the
UAV. In addition, RTK uses the connection to satellite navigation systems and a base station,
which may, in some cases, be inapplicable. In patents [5,7], the landing is performed by
analyzing an image recognition of a mobile landing pad. Optical laser methods also have
the necessary accuracy, but they have a limited range of capture and tracking of the object
and are not applicable in bad weather conditions: snowfall, fog, or landing in areas with
dense smoke.
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Landing methods with radio signal processing and pseudo-conical scanning (PCS) are
known for the imposition of the radar and navigation basic principles. They are widely
used in automatic satellite docking, for satellite tracking from terrestrial telecommunication
stations and tracking and navigation of mobile objects [9,10].

The PCS’s main element is the system sensor—phased antenna array. The unmanned
landing system’s accuracy, range, and functionality depend significantly on its parameters.
The main advantages of PCS are:

• It is possible to track and navigate remote objects at relatively bigger distances com-
pared to optical systems. Restrictive condition is the radio connection energy balance
with the mobile object.

• Satisfactory accuracy for navigating, directing, and performing the automatic landing
process. Due to the nature of PCS, it is interesting to note that positioning accuracy
increases with decreasing distance between UAV and landing pad.

• The landing pad may be of dimensions commensurate with the UAV size.
• Ability to work in bad weather, rain, snow, smoky areas, etc. Of course, it depends

on the selected operating frequency, which affects the propagation of electromag-
netic waves.

• Possibility to land on mobile platforms.
• Relatively low cost and easy implementation.

The electromagnetic wave multi-path propagation has a significant effect on the
accuracy even in the presence of obstacles. The received signal power can fluctuate in the
range of 3–6 dB. Hence one of the method disadvantages related to the requirement for
direct visibility between the moving object and the landing site. Then, the propagation
model can be interpreted as a Rice fading model. This effect can be minimized if the PCS
antenna array has a low level of the side radiation lobes. Moreover, as the distance between
the UAV and landing site decreases, the positioning accuracy increases, and direct path
signal strength increases compared to the reflected ones.

In this paper, a system solution is analyzed based on the UAV’s automatic steering to
the center of a stationary landing site by a modified pseudo-conical scan version.

2. Materials and Methods
2.1. Pseudo-Conical Navigation System

A pseudo-conical navigation system is a separate autonomous radio communication
system used to determine the relative position of an object in space. The UAV landing
process is performed as follows. The UAV is directed to the landing site through the
available tools and algorithms for navigation and positioning, usually using GPS. Once
the UAV falls within a PCS system range, the automatic landing algorithm is started. The
algorithm should include the following main processes: determining the UAV location
relative to the landing pad (LP) coordinate system, tracking, filtering, and steering to the
coordinate system center, as shown in Figure 1.

Figure 1. Coordinate systems of the pseudo-conical navigation system.
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The automatic landing system is conditionally divided into transmitting and receiving
parts. An interesting question is the location of the two parts. The following options can be
formulated here:

• The transmitting part is located in LP. The receiving part is on a UAV, and it uses
PCS. All tracking and positioning processing is performed in the UAV, and these
functions can be integrated into the vehicle’s onboard algorithms. The disadvantage
of this approach is that the receiving part antenna system has more weight than the
transmitting part because it has to perform a pseudo-conical scan. Additionally, the
receiving antenna dimensions and its location will affect the flight characteristics.
The vehicle energy source must have a larger capacity to provide energy for the
operation of the receiver and UAV in landing mode. This requirement also applies to
other options. Energy must be provided for the transmitting or receiving part of the
PCS system.

• The UAV has a transmitting part, and the receiving part is in the LP. This option is more
suitable according to the above considerations, but it requires landing positioning
commands to be transmitted from the LP via a communication channel. That is not a
significant problem because remote control channels can be used and keep the same
device positional data format. The positioning and landing algorithms can then be
integrated into the remote control module.

• The radiated UAV radio signals can be used instead of having a separate unique
transmitter. They usually bear system messages and/or video streams generated by
a camera located on the device. Then, only the receiving part of the landing site is
needed. This option significantly reduces the whole system complexity: no need to
install additional UAV equipment, it does not increase the UAV weight, and it reduces
the system cost.

PCS may be performed in the transmission part, but then it is necessary to transmit
synchronization information between the two parts. The receiver must know which antenna
beam has transmitted a signal to determine a position. This condition only complicates the
system and is not acceptable for automatic landing.

Below is described option two of the system with PCS in the receiving part, including
option three—Figure 2.

Figure 2. The system block diagram. Transmitting and receiving parts.

The positioning system works as follows. After the device enters the automatic
landing system operation area, the UAV radio transmitter turns on. It forms a reference
radio signal with a specific power. The signal is radiated from the transmitting antenna
and is used to determine the location on the receiving side. Additionally, through the
appropriate modulation and coding, it can carry navigation information, identification
information, and more. The receiving part is in the landing site. The system sensor is a
phased antenna array, and its diagram successively in time scans the space in a circle with
a discrete finite number of positions in space—Figure 1. The diagram describes a cone
with a certain central angle 2Θ0. The receiving power is measured for each beam state,
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and after processing and calculations, the angular coordinates of the object in space are
determined. These coordinates give the device deviation from the LP center and are used to
form commands to correct the UAV location. A unique algorithm performs the automatic
landing process with the estimated angular deviations. The UAV location is determined by
the angular coordinates and its height above the ground. This information is taken from
the UAV navigation messages. Landing commands are transmitted on the available UAV
communication channels, and with each iteration, the device consistently reduces its height
in space.

2.1.1. Transmitting Part

The transmitting part consists of a radio transmitter RTr and an antenna Atr. For
positioning, the transmitter forms a reference radio signal with a certain power, and the
signal can carry additional information for navigation, identification, synchronization, etc.
The transmitting signal power must be such as to ensure the range and accuracy of the
landing system.

The system operating frequency is an important parameter. It determines the operation
distance and angular range, the transmitting and receiving antenna feasibility, the ability,
and accuracy for the angular coordinate assessment, equipment weight, implementation,
cost, etc. In terms of scanning functionality and sensor dimensions, it needs to be in the
range of dm, cm, or mm waves. This frequency can be selected in the free licensed frequency
bands (ISM). There are several considerations here:

• The antennas size, weight, and radiation patterns feasibility largely depend on the
operating frequency.

• The electromagnetic wave propagation attenuation depends on the wavelength. That
significantly affects the radio link budget. Free licensed frequencies also are limited
by the maximum isotropic radiated power of transmitters. That limits the operating
range of the positioning system.

• The UAV radio signals emitted for its operation can be used. For example, navigation
and control signals, signals related to the transmission of video streams, etc. This
feature should be used because it has many advantages. No additional PCS transmitter
is required to be mounted on the UAV. Apart from the cost, this is especially important
for maintaining the aircraft’s flight characteristics, related to payload weight, energy
consumption, flight distance, etc.

Furthermore, in the presented discussions, the ISM band of 2.4 GHz is chosen. The
choice was made for the following reasons. Easy feasibility of the antenna array with
PCS, low cost, achieving the required system operation range, instead of an additional
transmitter can be used the UAV transmitter for information exchange with the remote
controller RC.

The transmitting antenna Atr is mounted on a UAV and must be small in size and
weight. The Atr characteristics must meet the following conditions. The radiation diagram
has a specific width and shape. The width defines the PCS system angular range. If it
operates in an angular range ±Θ0 (Figure 1), then the diagram width must not be less
than 2Θ0. This condition is necessary because the electromagnetic wave radiated power
must not change when changing the UAV angular location. The received signal power
will not depend on the device’s angular location when the height is constant. For ease of
implementation and low weight and dimensions, the polarization of Atr is chosen to be
linear. Dipole, printed, patch antennas with cosine RP are suitable. A dipole with a gain
factor is chosen for the initial design calculations Gtr = 3 dBi. The choice is justified because
most UAVs have a built-in dipole antenna in the discussed frequency. Patch antennas have
a higher gain in the range of 6–8 dBi and are suitable for increasing the system range.

The output transmitted reference signal power shall comply with the limit for the
maximum permissible EIRP set by the regulatory authorities in the respective country for
the ISM band use. According to the selected factor Gtr, the transmitter power is chosen to
be PT = 10 dBm.
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2.1.2. Receiving Part

The receiving part must perform functionalities for determining the device location,
tracking, filtering, and steering to the coordinate system center. The necessary elements
are an Are antenna array with pseudoconical electronic scanning, RRe radio receiver, BmC
block for control of the radiation diagrams, EAD power meter, EST block for determining
the angular coordinates φS, θS, PC positioning controller, and RC remote control controller
through which navigation information is exchanged with the UAV.

The phased antenna array (PAA) with pseudo-conical electronic scanning Are is an
essential element referred to as the system sensor. Using control signals from the BmC,
the antenna forms a finite number of radiation patterns (beams). Each beam deviates at a
certain angle from the coordinate system z-axis Θ0—Figure 1. The BmC block sequentially
switches the antenna diagrams.

The RRe radio receiver’s task is to process radio frequency signals, providing the
necessary sensitivity and selectivity by amplification, filtering, and, if necessary, frequency
conversion and/or detection. A radio receiver with analog processing of radio frequency
signals, built on a superheterodyne principle or with direct frequency conversion, can be
used here. An option is to use a software-defined radio. If it is not necessary to detect the
information borne by the reference radio frequency signal. In that case, the receiver may
contain a radio frequency bandpass filter with a high attenuation for frequencies outside of
the bandpass, a radio frequency amplifier providing a sufficient level for operation of the
power measuring unit. This option has limited sensitivity and low dynamic range but is
acceptable due to its simplicity and low cost.

The EAD unit is part of the radio receiver and is an envelope detector, at the output
of which there is a signal proportional to received power. In SDR, the power estimation is
calculated naturally after the respective processing of in-phase and quadrature components.
This block can be performed with a logarithmic power meter for the simplified version.
It is an analog integrated circuit whose output has a voltage proportional to the received
power on a logarithmic scale.

In EST block the signal, which is proportional to the received power and after analog-
digital conversion, is used to determine the object angular coordinates θS, φS. This unit is
a hardware microcontroller in which the received power of the separate antenna beams
is processed using a corresponding algorithm, and from this, the angle coordinates are
determined. This can be done by prior knowledge of the antenna radiation diagrams,
which give the power dependence on angular coordinates.

The UAV location is relative to the Cartesian coordinate system (Ox,y,z), where zero
is in the landing pad center, the antenna sensor center. The polar coordinate system
(Oφθz) is used for convenience in calculations. The connection of two coordinate systems
is determined by angular object coordinates being φ—the angular deviation in the xOz
plane and θ in the xOz plane. The position of the UAV in space is uniquely defined by the
coordinates of a point M (φ,θ,z). The transformation between two coordinate systems is:

OφΘz → Oxyz x = z.tg(φ), y = z.tan(Θ), z = z,

Oxyz→ OφΘz φ = atan(x/z), Θ = atan(y/z), z = z.
(1)

The block EST φS, θS calculates a projection of the point M in the plane Oφθ. The
UAV position is determined by the estimated angular deviations φS, θS, and current height
z—Figure 3.

The positioning controller (PC) is part of a microprocessor. Its software calculates the
corrections for steering the device to the coordinate system center and implements the
landing algorithm with estimated angular deviations φS, θS, and current height zS. The
landing algorithm tracks the location and performs necessary data processing by Kalman
filtering [11,12]. The landing corrections are transmitted as commands to the UAV via
R—remote control.
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Figure 3. Polar and Cartesian coordinate systems.

2.1.3. Phased Antenna Array with Pseudo-Conical Electronic Scanning

PAA with PCS is the main system sensor with which the unmanned landing is realized.
The sensor basic technical requirements are defined as follows:

• Operating frequency. The operating frequency is determined according to the given
system frequency considerations.

• PAA with circular polarization. Thus, the UAV can use a transmitting antenna with
linear polarization. That minimizes the received power dependence on the difference
in the UAV directions coordinate systems and landing pad.

• The number of beams for pseudo-conical scanning. They determine the positioning
accuracy and the algorithm complexity for estimating angular deviations and the
sensor complexity and cost. With many beam states, an increase in the angular coor-
dinates estimating accuracy is expected. However, on the other hand, this leads to
antenna sensor complexity, such as an increased number of elementary antennas in
PAA, increased number of additional elements for their excitation, complex imple-
mentation, larger antenna dimensions, and increased cost. Therefore, a compromise is
sought to meet the conflicting requirements outlined above. The number of beams of
the antenna array is chosen to be at least equal to 5, with one central beam and four
deviated in the coordinate system directions—Table 1.

Table 1. States and deviations of the beams.

Antenna Beam State i Angular Deviation of the Beam
in Both Planes [deg]

0, Central (Null) position φo = 0◦, θo = 0◦

1, Back direction (B) φo = 0◦, θo = −20◦

2, Right direction (R) φo = 20◦, θo = 0◦

3, Forward direction (F) φo = 0◦, θo = 20◦

4, Left direction (L) φo = −20◦, θo = 0◦

• Beam deviation angle Θ0. The angle determines not only the PAA complexity but
also the UAV angular engagement range before positioning. This parameter also
determines the system’s minimum range of acquisition—the distance from which the
PCS tracks and UAV positions. In Table 1, we can see that the PCS angular deviation is
Θ0 = 20◦, and the system angular range is 2Θ0 = 40◦. Assuming that the UAV is in flight
mode and is guided to the landing site by some navigation system with coordinate
uncertainty ∇x,y, then the minimum system engagement distance is determined by
the formula:

h0min = ∇x,y/tg(Θo), (2)

For example, if the UAV positioning system uses GPS with a relatively large value of
∇x,y = 6 m for the altitude, h0min = 16.5 m.

• The radiation pattern width of each beam depends on the diagrams of each PAA
element, its number, and position. All this also affects the antenna gain. The beams
should be symmetrical in two antenna planes xOz, yOz to simplify the signal process-
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ing. That means the number of elementary radiators must be the same in both Ox, and
Oy, for example, 2 × 2, 4 × 4, etc. On the other hand, a narrow beam diagram implies
a high characteristic steepness and hence more high accuracy. There is the problem of
sensitivity in space areas where the PAA does not have sufficient gain. A compromise
of ∆φmax = 20◦, ∆θmax = 20◦ for all beams is chosen. Research shows that then the
diagram in the falling segment has a steepness of 2 dB/grad, which is sufficient for
small distance positioning.

• Satisfactory amplification to achieve system sensitivity. A compromise shall be chosen
between sensitivity and accuracy, and the PAA gain shall be not less than 6 dBi.

• Low level of the side lobles of each antenna beam states. Recommended to be no
bigger than −10 dB.

• Compact dimensions.
• High-speed antenna beam switching.
• High reliability.
• Cheap realization.

According to the selected operating frequency, the above requirements can be achieved
if the PAA single radiation element is a patch antenna. Advantages of patch antennas
are simple design and implementation methodology, low cost, high gain, easy to achieve
circular polarization, and ease of integration into an antenna array. The PAA contains patch
emitters and an excitation network in a microstrip implementation [13,14]. The antenna
array and excitation network can be implemented as a multilayer circuit board, which in
turn provides the compact size of the PAA.

To prove the relevance of the proposed approach and system for UAV positioning and
landing, a PAA with 2 × 2 deployed circular patch elements was designed, simulated, and
measured, as seen in Figure 4.

Figure 4. Topological diagram of the PAA with 2 × 2 patch elements and feed points.

The antenna is designed and fabricated with dielectric substrate FR4, with relative
dielectric permittivity εr = 4.75, tan δ = 0.003, and height h = 1.5 mm for the operating
frequency fc = 2.4 GHz. The wavelength in free space is λ = 125 mm and distance between
the element centers is obtained at 0.5λ [15–17]. The circular polarization is done by two feed
points for each patch located at 90◦ electrical degrees concerning each other and a suitable
dephasing obtained from the feeding network. The realized antenna has nine beam states,
the first five are according to Table 1. The switching of the different PAA diagrams is
performed with electronic switches and microstrip lines in the excitation network structure.

The measured results for the normalized antenna gain after PAA design and fabrication
are given in the following figures. The automatic system [18] performing antenna RP
measurement results. Figure 5 shows the measured four states from 2 to 5 in a 3D coordinate
system. The normalized gain diagrams, measured in logarithmic scale in the Cartesian
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coordinate system, are shown in Figure 6a,b for the two antipodal states concerning θ, and
Figure 7a,b for the states concerning φ, respectively.

Figure 5. 3D measured RP states 2–5.

Figure 6. Measured relative antenna gain in Cartesian angular coordinates for: (a) st; (b) st.

Figure 7. Measured relative antenna gain in Cartesian angular coordinates for: (a) st. 2; (b) st. 4.

2.1.4. UAV Angular Coordinates Determination

In the EST algorithm’s output, the object’s angular coordinates—φS, θS—should be
calculated. The measured values of the received power at different PAA beam states must be
used. There are various methods for estimating angular coordinates from measured powers,
such as with Least Mean Square Error (LMSE), the correlation between measured power
values and the angular coordinates of the diagram, Kalman filtering, etc. For example,
in [16], the two LMS and Kalman filtering methods are discussed. In [17], a least-square
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error (LSE) estimation method is used. The main difference with the present work is that
the cited systems for moving objects tracking are determined by their application specifics:

• They are intended for tracking satellites that are at a vast distance from the ground
station—hundreds, thousands of kilometers, and in the considered system, the distance
between the object and the sensor is dozens of meters.

• They use a conical scanning antenna with a narrow RP of a few degrees and have
high amplification to achieve the required signal-to-noise ratio. The scanning antenna
pattern is deflected to a small angle due to the long distances, and the order of
deviation is a mdeg. For the used sensor, the beam deviation is dozens of degrees
because considerations given in Section 2.1.3.

• Conical scanning is accomplished by the mechanical movement of a parabolic antenna.
The number of beam states and measured powers is large for higher positioning
accuracy. Here, the number of beam PAA states is proposed to be limited to four in
the four directions in the antenna plane due to the imposed requirement of the PAA
simplicity and the slight computational algorithms complexity.

• The narrow diagram parabolic antenna allows applicating an analytical beam model
approximated by a Gaussian function. It estimates the object angular deviations by
giving a direct mathematical, deterministic analytical relationship between measured
powers and satellite angular coordinates to the antenna axis. For the considered PAA
with electronic scanning and a small number of elementary emitters, the diagram
for the corresponding beam is inaccurately approximated by a Gaussian function.
Additionally, the side lobes level is higher, and such an approximation will increase
the estimation error.

Let us suppose that the antenna gain as an angular coordinates function is approxi-
mated by a Gaussian function [16]. This approximation is relevant, provided there are no
side lobes on the radiation pattern. The normalized gain gi(φ, Θ) at the i-th beam state
(i-th radiation pattern) is described by:

gi(φ, Θ) = exp

{
−4 ln 2×

[
(φ− φ0i)

2

∆φi
2 +

(Θ−Θ0i)
2

∆Θi
2

]}
(3)

where φ0i and Θ0i are the projection of the maximum of the diagram in the 2D angular
coordinate system, and ∆φi and ∆Θi are the beamwidths at a gain of 0.5. The antenna is
designed such that for each beam i ∆φi = ∆Θi = γ.

If the logarithmic scale of gi(φ, Θ) is used, the gain is:

Fi(φ, Θ) = −4log102×
[
(φ− φ0i)

2

γ2 +
(Θ−Θ0i)

2

γ2

]
[dB]. (4)

The simplification of Equation (4) can be achieved if, for some i, the beam center
projection in the angular coordinate system lies on its axes. For scanning, let only these
states be used. For the projected PAA and i = 1,2,3,4 according to Table 1, difference
diagrams in pairs will lead to a linear dependence of the angular coordinates or:

F2(φ, Θ)− F4(φ, Θ) = 4log102× φ02
γ2 .φ [dB],

F3(φ, Θ)− F1(φ, Θ) = 4log102× Θ03
γ2 .Θ [dB].

(5)

Equation (5) describes two planes on which the projections of their normal vectors
onto the 2D angular coordinate system are orthogonal, and the normal vectors themselves
are orthogonal. Furthermore, the two planes’ offset, concerning the coordinate system
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center, is zero. They show that object angular coordinates can be easily calculated based on
the measured powers on a logarithmic scale For this purpose, (5) can be transformed into:

P2(φ, Θ)− P4(φ, Θ) = F2(φ, Θ)− F4(φ, Θ) [dB],
P3(φ, Θ)− P1(φ, Θ) =F3(φ, Θ)− F1(φ, Θ) [dB], because for every i

(6)

Pi(φ, Θ) = P0 + Fi(φ, Θ) [dBm]. (7)

The power entering into the antenna aperture P0 [dBm] is the same for all beam states.

2.1.5. Approximation of Measured Sensor Diagrams

The EST algorithm must have low computational complexity to be implemented
as program code in a microcontroller. One option is to use measured beam antenna
gains to find the angular coordinates’ inverse dependence on measured powers. The
Gaussian approximation of diagrams and (5), (6), and (7) shows that such an approach
is possible. It should be noted that the sensor would then have a systematic error due to
Gaussian approximation error—diagrams are not Gaussian functions, a presence of side
lobes, the designed antenna conditions in Table 1 are not strictly satisfied, the widths of
the diagrams may be different in two planes of φ and Θ, also for the individual beams, or
quadrature imbalance, since the approximated projections of the normal planes such as
(5) are not orthogonal.

The measured PAA gain diagrams for the four states are shown more fully in
Figures 6 and 7. The difference diagrams in pairs are easily obtained from them. They are
presented in Figure 8a,b.

Figure 8. Difference diagrams in Cartesian angular coordinates for: (a) FR-FL; (b) FF-FB.

The FR-FL difference diagram accounts for the variation of φ, and FR-FL for θ, and
their indices are according to Table 1. The figures clearly show that an approximating
plane in the sensor range Θ0 = ±20◦ can be used, instead of the complex surfaces of the
difference diagrams. The approximating planes are easy to describe mathematically, and
their equations can be used to calculate the angular coordinates quickly. This idea is further
developed below.

Because numerical values of the diagrams are known, the plane equations can be
determined by regression analysis. The plots show that the spacing characteristics are
linear functions on the angular coordinates only in regions around the sensor center.
Furthermore, the sensor captures and tracks the moving object in the angular range of
Θ0 = ±20◦. Then, the difference diagrams regression is limited to the specified angular
range. Figure 9 shows the results of one such linear regression.

In addition, Figure 8 gives the regression planes plotted on the measured
differences diagrams.

The regression was performed using MATLAB (Matlab R2022a/9 March 2022, The
MathWorks, Inc. [9]—3 Apple Hill Drive, Natick, MA 01760 -508-647-7000) [19,20]. A
first-degree polynomial surface fit on φ and Θ with the regression method Least Absolute
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Residuals (LAR) was used. The standard errors of the regression for Figure 9a,b are
rmse(φ) = 0.24 and rmse(θ) = 0.23 degrees, respectively.

Figure 9. Linear regression of difference diagrams for: (a) FR-FL; (b) FF-FB.

The equations of the approximated planes are represented as follows:∣∣∣∣Apφ = a.φ + b.Θ + oφ

ApΘ = c.φ + d.Θ + oΘ
. (8)

As a result of the approximation, the following coefficients were obtained: a = 0.9002;
b = 0.1007; c = 0.0403; d = 0.9351. Because the antenna is centered concerning its coordinate
origin, offsets oΘ = oφ = 0. The centering is done in the process of antenna measuring.
Because the coefficients b and c are different from zero, a quadrature imbalance exists. The
diagrams of the fabricated antenna deviate from the requirements in Table 1. The angular
coordinates cannot be directly calculated with (5). It is appropriate to solve the above
system of equations for the angular coordinates by inverse matrix or consistently with:

Θs = (ApΘ −
c
a

Apφ)/D, φS = (Apφ − bΘs )/a, D = d− b
c
a

(9)

Figure 10 presents the differences functions for the two cross-sections along the φ and
θ axes and the approximating lines from the resulting cross-sections.

Figure 10. Difference diagrams in φ and θ planes and their approximations.

The figure shows once more that the interval ±20◦ they can be approximated by
linear functions.



Sensors 2022, 22, 6451 12 of 19

2.1.6. Positioning and Landing Algorithm

The main algorithm requirement is low computational complexity to be implemented
as program code in a simple microcontroller.

The algorithm uses the estimated angular coordinates to correct the UAV position to
the coordinate system center—LP center. The angular coordinates are computed from the
measured power values of the received scan signal with the different antenna array dia-
grams. A vector consisting of the measured powers is input to the internal EST algorithm:

P = [P1, P2, . . . , PN ], (10)

where N is the beam numbers.
From the EST, the object angular coordinates—φS, θS—estimated by the receiver part

are obtained. The vehicle’s location is determined by the estimated angular deviations φS,
θS, and the vehicle current altitude z = h.

The UAV is directed to the landing site through available tools and algorithms for
navigation and positioning. Once the UAV is within range of the system with the PCS, an
automatic landing algorithm is started. As defined, for the UAV to fall within the sensor
area, the minimum high must not be less h0min. Each position k of the UAV is defined by
the coordinates φk, Θk, zk = hk. The current high hk is an input parameter and is taken at
each step by the vehicle’s onboard navigation system. At each lending process step, the
algorithm adjusts a vehicle position in the plane (x0y) and decreases the absolute high by
a step zk+1 = hk +∆h. The change in height determines the landing speed and is chosen
experimentally. Acceptable values of ∆h = 0.5 m to 2 m depending on the current high hk
and UAV flight characteristics.

The algorithm must perform the following basic steps:

1. Evaluating the current height hk and step counter k = 0.
2. Sequentially switching the sensor diagrams for each k and measuring the received power.
3. With the measured powers Pk = [P0k, P1k, P2k, P3k, P4k], the angular coordinates of

UAV φSk, Θsk are calculated on the basis of (6, 9). Here P0k is the zero state of the
antenna array diagram, and respectively P3k, P5k are the measured powers in diagrams
with deviations +20◦, −20◦ along the x-axis, and respectively, P2k, P4k, +20◦, −20◦

along the y-axis;
4. Calculating the Cartesian coordinates with Equation (1).
5. Kalman filtration and discrete PI controller. It is applied to minimize the mean

square error of the estimation of the angular coordinates φk, Θk. When setting filter
parameters, the sensor error estimate shown in the next section is used. The deviation
of the UAV from the coordinate system coincides with the error function of the PI
controller, and the position correction command is formed by:

xk+1 = KI × xk + KP × zk × tg (φSk), yk+1 = KI × yk + KP × zk × tg (Θsk), (11)

where KI , KP are the integral and proportional coefficients of the PI controller. Here
the height zk is not subject to filtration because it relies on the built-in processing in
the UAV control system.

6. Sending command to the UAV to change position in-plane (x0y) with the calculated
by: KP × zk × tg (φSk) и KP × zk × tg (Θsk);

7. Decreasing the height hk = hk + ∆h and check if hk < hmin. hmin is the minimum
height to which the vehicle changes its vertical position during landing. It is selected
depending on the characteristics of the UAV but cannot be less than the limit for the
antenna’s far-field. For example, for the antennas selected above, hmin ≥ 1 m.

8. If not, a command to the vehicle to change h is transmitted.

a. Increasing the counter k = k + 1. A pause for a specific time, the UAV needs to
be set to the new position. This time depends on the UAV flight characteristics
and is consistent with the speed of correction and landing.
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b. Iterative execution from step 2 onwards.

9. If yes, end the algorithm a landing command is transmitted.

3. Results
3.1. Assessment of the Approximation and Positioning Error

The use of approximating planes on the difference diagrams to estimate the angular
coordinates is an approach that implies low computational complexity for the estimation
algorithm. However, the measured antenna diagrams and their spacing characteristics are
not linear over the entire angular range of the PAA. Therefore, it is necessary to estimate
the systematic error from positioning.

The absolute error is calculated as the difference between the actual UAV angular coor-
dinates φ, θ, and the coordinates φs and θs determined by the approximated characteristics.

Figure 11 separately presents the absolute error in degrees in the estimation of the two
angular coordinates φS and θS. The same results are shown as family of characteristics for
the two cases in Figure 12.

Figure 11. The absolute error: (a) φ; (b) θ.

Figure 12. The absolute error: (a) φ at parameter θ; (b) θ at parameter φ.

Table 2 gives specific values and intervals of the absolute error variation. The results
show that the error for both coordinates is no larger than ±2◦ when the positioned object
offset concerning the sensor center is ±15◦. At the sensor center, it is no larger than 0.15◦,
which gives a bias of a few millimeters at an apparatus height above the landing site of
h = 1 m. The error decreases as the object gets closer to the sensor’s center. This fact is
important because it shows the approach’s applicability and will ensure convergence of the
landing algorithm.

Table 2. Absolute error from approximation.

φ, θ [deg] ∆φ, ∆θ [deg] ∆x, ∆y [m], h = 1 m

0◦, 0◦ 0.11◦, 0.12◦ 0.0019, 0.0021
−20 to 20◦, −20 to 20◦ max 8◦, max 5.8◦ 0.14, 0.10
−15 to 15◦, −15 to 15◦ max 2◦, max 2◦ 0.035, 0.035
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Separately, the above fact is confirmed by representing the vector magnitude with the
estimated angular coordinates as a function of actual coordinates φ, θ—Figure 13.

Figure 13. Evaluation of angular distance RS as a function of actual angular coordinates.

Figure 13 demonstrates the positioning error by comparing actual angular distance
circles and the curves determined using the proposed regression.

Figure 14 gives an estimate of the mean angular distance error and its standard
deviation as a function of the actual angular distance R. The averaging was performed for
RS estimate values over the circle defined by R.

Figure 14. Average error of angular distance (a) and its standard deviation (b).

Here it is once again proved that as the angular distance at which the navigated object
is located decreases, the sensor accuracy estimate increases. The mean absolute error and
its standard deviation in the range of angular deviation up to 20◦ are acceptable.

The estimated errors can be further used to determine the Kalman filter parameters.

3.2. Statistical Evaluation of the Impact of Power Measurement Noise and Coordinate Estimation

To test the proposed approach of automatic UAV landing using a wireless positioning
system with pseudo conical scanning, a variant of a Figure 15 radio receiver was designed
and fabricated. It contains a RF band-pass filter BPF, a radio frequency amplifier A, a power
measurement block EAD, and a microcontroller. As mentioned, this variant has limited
sensitivity and a small dynamic range but is acceptable due to its simplicity.

The BPF is the basic unit of the receiver, ensuring its selectivity and suppression of
out-of-band interferences. A dual-coaxial-resonator filter structure with electrical coupling
between the resonators is designed. Such a structure provides attenuation of not less
than −30 dB for frequencies outside the passband at 100 MHz from the cutoff frequencies.
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The center frequency is the PAA operating frequency fc = 2.4 GHz, and the passband is
BW ≈ 150 MHz.

Figure 15. Studied radio receiving part of the PCS system.

The amplifier is needed to increase receiver sensitivity and output signal power to be
within the dynamic range of the envelope amplitude detector (EAD). A ready-made low
noise amplifier module was used, with a gain factor of 15 dB in the frequency range from 1
to 6 GHz.

The EAD block is an envelope amplitude detector implemented with a logarithmic
power detector. An AD8318 RF Logarithmic Detector power meter (by Analog devices,
Wilmington, USA) was used. A voltage proportional to the power of the input signal
in relative value dBm is obtained in its output. This feature is important to reduce the
algorithm computation to estimate the angular coordinates. The logarithmic detector
dynamic range is from −65 dBm to +10 dBm. It matches the PAA’s received signal power
and provides sufficient output voltage amplitude.

The resulting voltage is converted to discrete values by an analog-to-digital converter
ADC. The same is embedded in the microcontroller. The micro-controller controls beam
states through digital outputs and switches PAA beams for all cases. With each beam’s mea-
sured, discretized power values, the EST algorithm computes object angular coordinates φS,
θS. The PC positioning algorithm produces the necessary commands to change the UAV lo-
cation to the coordinate system center. The controller is implemented with an STN32F103C,
which has a built-in 12 bits ADC and has sufficient speed to run the PAA beam switching,
power measurement, angular coordinate estimation, and UAV positioning commands.

The transmitting part is mounted on the UAV and transmits an RF signal modulated
with BPSK and direct spread spectrum (DSS). A transmit patch antenna with 6 dBi gain
and a cosine diagram is used.

One measured value is obtained after averaging 2048 ADC samples. The rate at
which the measurement is performed in nine states of the diagram per 100 ms. The
power measurement for all PAA states, the angular coordinates estimation, and the control
commands’ elaboration take a computational time tc no greater than 150 ms.

The PAA Are, implemented and its parameters described in Section 2.1.3, is used as
the system sensor.

The measurements were performed as follows. The transmitting part is mounted
on a stand at different distances from the receiving part to be located in the center of the
coordinate system, i.e., φ = θ = 0. The receiving part measures the received power and
estimates the angular coordinates φS, θS. The received power was measured with five PAA
diagrams (Table 1) at distances from 6 to 40 m between transmitting and receiving parts.
This includes the variants where the UAV is located at ±20◦.

After statistical processing, the random error influence of the power measurement
can be determined, and the results are shown in Figure 16a,b. Figure 16a combines the
measured powers p for different distances with different states of the PAA plot against the
mean value ∆p = p-mean(p). The same figure shows the standard deviation as a function
of the measured mean power (distance) and prediction interval with a 95% probability of
falling a new measured power value. Figure 16b draws attention to the standard deviation
dependence on the mean power.
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Figure 16. (a) Absolute deviation, standard deviation of the measured power and 95% prediction
interval for the new measurement. (b) Standard deviation of the measured power and fitting curve
v.s. mean power.

The following conclusions can be made here:

• The standard deviation increases with decreasing received power, respectively, with
increasing distance. Up to −45 dBm, it does not change and is of the order of 0.11 dB.
The error is primarily determined at a small distance by quantization noise, switching
noise, white thermal noise, and receiver noise figure.

• At longer distances, multipath propagation and Rice fading are manifested, and
therefore an increase in the standard deviation is observed. The reason for this is also
that the PAA diagrams have side lobes.

• The prediction interval for a 95% probability of hitting each new measured power
value is related to the absolute error. It is ±0.21 dB for a small distance. The power
difference characteristic deviation for the heaviest case gives ±0.37 dB. The value
transformed by (9) into angular deviation is ±0.41◦. For a distance of 6 m, the object
coordinates deviation is 4 cm, and for 1 m, the deviation is 7 mm. At 40 m, the interval
is ±0.86 dB, giving a 0.44 m offset of the coordinates from the centrum.

• The obtained standard deviation results can be used for the Kalman filter parame-
ters tuning.

3.3. The Landing Algorithm Simulation Results

The landing algorithm was simulated in a MATLAB environment without using
Kalman filtering. The integral and proportional coefficients of the discrete PI controller are
chosen KI = 1, KP = 0.55 to ensure the system’s robustness. The initial height for a group
of simulations is ho = 15 m and ho = 45 m, the step is ∆h = 0.5 m or the UAV has a certain
number of positions in 3D space. The initial deviation in the xOy plane is different, but in
this case, for ho = 15 m the deviation is ±25◦, more than Θ0, and for ho = 45 m ± 20◦. The
actual location is determined with the measured PAA difference characteristics, and the
location correction is done with the approximated ones.

The influence of the error from the received power measurement is simulated by
adding Gaussian noise with parameters ℵ

(
0, std2) to the measured power. The standard

deviation of the power is taken from the results in Figure 16b and using the communication
channel system parameters std = 0.14 dB for height 15 m and std = 0.45 dB for ho = 45 m.
The study was performed using the Monte Carlo method.

The results given in Figure 17 refer to an initial altitude of ho = 15 m. Figure 17a
illustrates the landing process relative to the 3D coordinate system of the landing site.
Figure 17b shows the statistics of the coordinates of the estimated position a the end of
the algorithm—hmin = 1 m above the sensor. The standard deviation is 0.7 cm, or the
positioning accuracy in the final landing stage is satisfactory.
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Figure 17. Landing algorithm simulation with initial UAV height ho = 15 m and object deviation of
±25◦. (a) 3D landing trajectories; (b) Object coordinates for height hmin = 1 m above the sensor.

Figure 18 presents the results at a starting landing height of ho = 45 m. The worst
case is investigated where the standard deviation of the measured power, according to
Figure 16b, is std = 0.45 dB. The aggravation here comes from the choosing of Gaussian
noise parameters. Its variance is not changed by the distance between the object and the
sensor. Figure 18a shows the variation of the x, y coordinates in the landing process for the
height h. Figure 18b gives a visual evaluation of the statistics at the end of the algorithm, as
in Figure 17b for 1000 trials. From the x and y traces, the effect of measurement noise is
visible. The standard deviation of the coordinates for the last point of the landing is on the
order of std = 1.26 cm. A summary of the data is presented in Table 3.

Figure 18. Simulation of the landing algorithm with initial UAV height ho = 45 m and initial object
deviation of ±20. (a) 2D landing trajectories; (b) Object coordinates for height hmin = 1 m above
the sensor.

Figures 17 and 18 prove the applicability of the studied wireless landing system, even
without Kalman filtration. The algorithm is converging, despite the presence of uncertainty
in power measurement, and the system error of the positioning sensor is automatically
involved in the tests performed.

Table 3. Study results of the standard deviation of the x, y coordinates at the end of the landing algorithm.

Start High ho [m] Power Standard Deviation [dB] x,y Coordinates Standard
Deviation by hmin = 1 m

15 0.14 0.72 cm
45 0.45 1.26 cm
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4. Discussion and Conclusions

The research shows that it is possible to implement a wireless positioning system for
UAV unmanned landing using a PAA sensor with electronic scanning and a limited number
of scanning beam states. It is necessary to observe the recommendations made to the
characteristics and parameters of the system when selecting and designing its components.
Pre-measurement of the radiation patterns and subsequent linear regression allows for
achieving satisfactory accuracy even with a simplified version of the receiver part. The
landing algorithm is convergent due to the systematic positioning error reduction as the
landing site centrum is approached and the random error reduction from received power
measurement as the UAV altitude is decreased. The error standard deviation increases with
increasing distance due to electromagnetic wave multipath propagation and the presence
of side lobes of the used PAA sensor. Therefore, a line of sight between the transmitting and
receiving parts of the system is required during the landing process. Another constraint is
that the algorithm must be run when the UAV is within the sensor angular range.

Tests of the algorithm have been carried out in simulation without applying Kalman
filtering with artificial addition of uncertainty with a centered Gaussian distribution. The
obtained statistical parameters allow the tuning of the Kalman filter characteristics. Its
application will guarantee the algorithm’s convergence and reduce the positioning error at
the final point of the landing process.

The developed system allows not only the unmanned landing of UAVs, but it can also
find applications in flight mode: tracking of UAVs or wireless positioning and navigation
of moving objects in 3D and 2D space.

An actual UAV landing study is to be carried out using the developed system and
implementing Kalman filtering in the processing. Another problem to work on is to extend
the angular range of the system by exploiting the central position of the PAA diagram and
to reducing the positioning error as the number of PAA beams increases.

Author Contributions: Conceptualization, I.I. and I.N.; methodology, I.I.; software, I.I. and I.N.;
validation, I.I. and I.N.; formal analysis, I.I. and I.N.; investigation, I.N.; resources, I.I. and I.N.; data
curation, I.I.; writing—original draft preparation, I.N.; writing—review and editing, I.I. and I.N.;
visualization, I.I. and I.N.; supervision, I.I.; project administration, I.I.; funding acquisition, I.I. All
authors have read and agreed to the published version of the manuscript.

Funding: Contract №212ΠД0005-07 for a research project to help doctoral students: “Automatic
landing systems for unmanned aerial vehicles by means microwave antenna arrays” of the Technical
University of Sofia, Research Sector.: №212ΠД0005-07.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our sincere gratitude to the Faculty of Telecommunica-
tions at the Technical University of Sofia for providing the laboratory base. The scientific research
and the results obtained are part of a contract №212ΠД0005-07 for a research project to help doctoral
students: “Automatic landing systems for unmanned aerial vehicles by means microwave antenna
arrays” of the Technical University of Sofia, Research Sector. The authors would like to thank the
Research and Development Sector at the Technical University of Sofia for the financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the current state of UAV regulations. Remote Sens. 2017,

9, 459. [CrossRef]
2. Hildmann, H.; Kovacs, E. Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil

security and public safety. Drones 2019, 3, 59. [CrossRef]

http://doi.org/10.3390/rs9050459
http://doi.org/10.3390/drones3030059


Sensors 2022, 22, 6451 19 of 19

3. Lizárraga, M.; Dobrokhodov, V.; Kaminer, I. Implementación de un Sistema de Control para Recuperación Autónoma de un
Vehiculo Aéreo no Tripulado (UAV). In Proceedings of the International Conference on Mechatronics, Niagara Falls, ON, Canada,
20 July–1 August 2005.

4. Andreev, K.; Georgi, S. Flight safety sensor and auto-landing system of unmanned aerial system. Int. J. Reason.-Based Intell. Syst.
2020, 12, 170–178. [CrossRef]

5. Lee, D.; Park, W.; Nam, W. Autonomous Landing of Micro Unmanned Aerial Vehicles with Landing-Assistive Platform and
Robust Spherical Object Detection. Appl. Sci. 2021, 11, 8555. [CrossRef]

6. Fumio, O.; Osaragi, K.; Otani, H. Taking-Off and Landing Target Instrument and Automatic Taking-Off and Landing System. U.S.
Patent No. 9,020,666, 28 April 2015.

7. Fumio, O.; Osaragi, K.; Anai, T.; Otani, H. Automatic Taking-Off and Landing System. U.S. Patent No. 8,630,755, 14 January 2014.
8. Desta, E.; Nex, F.; Kerle, N. Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles

(UAV) for direct geo-referencing. Geo-Spat. Inf. Sci. 2020, 23, 165–181.
9. Xiaowei, S.; Chang, R.; Ding, Y. Pseudo-monopulse tracking method for low profile mobile satellite antenna system. AEU-Int. J.

Electron. Commun. 2019, 101, 160–167.
10. Gawronski, W.; Craparo, E.M. Antenna scanning techniques for estimation of spacecraft position. IEEE Antennas Propag. Mag.

2002, 44, 38–45. [CrossRef]
11. Chui, C.K.; Chen, G. Kalman Filtering; Springer: Berlin/Heidelberg, Germany, 2017.
12. Mao, G.; Drake, S.; Anderson, B.D.O. Design of an extended kalman filter for uav localization. In Proceedings of the 2007

Information, Decision and Control Conference, Adelaide, Australia, 12–14 February 2007; IEEE: Piscataway, NJ, USA, 2007.
13. Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015.
14. Zhao, J.; Gao, F.; Wu, Q.; Jin, S.; Wu, Y.; Jia, W. Beam tracking for UAV mounted SatCom on-the-move with massive antenna array.

IEEE J. Sel. Areas Commun. 2018, 36, 363–375. [CrossRef]
15. Skolnik, M.I. Introduction to radar. In Radar Handbook 2; McGraw-Hill: New York, NY, USA, 1962.
16. Souza, A.L.; Ishihara, J.Y.; Ferreira, H.C.; Borges, R.A.; Borges, G.A. Antenna pointing system for satellite tracking based on

Kalman filtering and model predictive control techniques. Adv. Space Res. 2016, 58, 2328–2340. [CrossRef]
17. Gawronski, W. Control and pointing challenges of antennas and telescopes. In Proceedings of the 2005, American Control

Conference, Portland, Oregon, USA, 8–10 June 2005; IEEE: Piscataway, NJ, USA, 2005.
18. Iliev, I.; Nachev, I. An Automatic System for Antenna Radiation Pattern Measurement. In Proceedings of the 2020 55th

International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Niš, Serbia,
10–12 September 2020; IEEE: Piscataway, NJ, USA, 2020.

19. Martinez, W.L.; Martinez, A.R. Computational Statistics Handbook with MATLAB; Chapman and Hall/CRC: Boca Raton, FL,
USA, 2001.

20. Makarov, S.N.; Iyer, V.; Kulkarni, S.; Best, S.R. Antenna and EM Modeling with MATLAB Antenna Toolbox; John Wiley & Sons:
Hoboken, NJ, USA, 2021.

http://doi.org/10.1504/IJRIS.2020.109645
http://doi.org/10.3390/app11188555
http://doi.org/10.1109/MAP.2002.1167263
http://doi.org/10.1109/JSAC.2018.2804239
http://doi.org/10.1016/j.asr.2016.08.002

	Introduction 
	Materials and Methods 
	Pseudo-Conical Navigation System 
	Transmitting Part 
	Receiving Part 
	Phased Antenna Array with Pseudo-Conical Electronic Scanning 
	UAV Angular Coordinates Determination 
	Approximation of Measured Sensor Diagrams 
	Positioning and Landing Algorithm 


	Results 
	Assessment of the Approximation and Positioning Error 
	Statistical Evaluation of the Impact of Power Measurement Noise and Coordinate Estimation 
	The Landing Algorithm Simulation Results 

	Discussion and Conclusions 
	References

